ON EXISTENCE AND UNIQUENESS OF L_{1}-SOLUTIONS FOR QUADRATIC INTEGRAL EQUATIONS VIA A KRASNOSELSKII-TYPE FIXED POINT THEOREM

RAVI P. AGARWAL, MOHAMED M.A. METWALI AND DONAL O'REGAN

Abstract

Using a Krasnoselskii-type fixed point theorem due to Burton [7], we discuss the existence of integrable solutions of general quadratic-Urysohn integral equations on a bounded interval (a, b). Uniqueness of the solution is also studied. An example to illustrate our theory is also included.

1. Introduction. Quadratic integral equations play an important role in the theory of radioactive transfer, kinetic theory of gases, neutron transport theory, and in traffic theory $[\mathbf{2}, \mathbf{6}, \mathbf{8}]$. In this paper, we study the equation

$$
\begin{equation*}
x(t)=g\left(t, T_{1} x(t)\right)+T_{2} x(t) \cdot \int_{a}^{b} u(t, s, x(s)) d s, \quad t \in I=(a, b) \tag{1.1}
\end{equation*}
$$

where T_{1} and T_{2} are two operators.
Equation (1.1) is very general and includes the following equations as special cases:
(1) $T_{1} x=x, T_{2} x=1, u(t, s, x)=K(t, s) f(s, x)$, and the integral equation is of Hammerstein type [15];
(2) $g\left(t, T_{1} x\right)=h(t)$, and $T_{2} x=x$ is the functional-integral equation [14];
(3) $g\left(t, T_{1} x\right)=h(t), u(t, s, x)=K(t, s) f(s, x)$, and the quadratic integral equation was discussed in Orlicz spaces [9, 10];

[^0](4) for continuous solutions with $T_{1} x=x, T_{2} x=f(t, x)$ and
$$
u(t, s, x)=\frac{u_{1}(t, s, x)}{\Gamma(\alpha) \cdot(t-s)^{1-\alpha}}, \quad \text { see }[5] ;
$$
(5) $T_{1} x=x, T_{2} x=\lambda$ is the functional Urysohn integral equation (for continuous solutions see [3]);
(6) $T_{1} x=x, T_{2} x=x$ is the quadratic (functional) Urysohn integral equation (see, for example, [4]);
(7) $T_{1} x=\int_{0}^{1} u(t, s, x(s)) d s, T_{2} x(t)=0$ and was discussed in [12].

In this paper, we discuss the existence of integrable solutions of (1.1). We will distinguish between two different cases: when an operator takes its values in the Lebesgue spaces $L_{p}(I)$ or in a space of essentially bounded functions $L_{\infty}(I)$. Uniqueness of the solution is also discussed in each case.
2. Notation and auxiliary facts. Let \mathbb{R} be the field of real numbers, I an interval (a, b) and $L_{1}(I)$ the space of Lebesgue integrable functions (equivalence classes of functions) on a measurable subset I of \mathbb{R}, with the standard norm

$$
\|x\|_{L_{1}(I)}=\int_{I}|x(t)| d t
$$

Recall that, by $L_{p}, 1 \leq p<\infty$, we will denote the space of (equivalences classes of) functions x, satisfying

$$
\int_{I}|x(t)|^{p}<\infty
$$

By $\|\cdot\|_{p}$, we will denote the norm in $L_{p}(I)$. In addition, $L_{\infty}(I)$ denotes the Banach space of essentially bounded measurable functions together with the essential supremum norm (denoted by $\|\cdot\|_{L_{\infty}}$). We will write L_{1}, L_{p} and L_{∞} instead of $L_{1}(I), L_{p}(I)$ and $L_{\infty}(I)$, respectively. Denote by $B(x, r)$ the closed ball with the center at x and with radius r and B_{r} for the ball $B(\theta, r)$ centered at zero element θ.

Now, let $I \subset \mathbb{R}$ be a given interval.

Definition 2.1. Assume that a function $f(t, x)=f: I \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies the Carathéodory condition, i.e., it is measurable in t for any
$x \in \mathbb{R}$ and continuous in x for almost all $t \in I$. Then, to every measurable function x on I, we shall define the operator

$$
F_{f}(x)(t)=f(t, x(t)), \quad t \in I
$$

The operator F_{f}, defined in such a way, is called the superposition (Nemytskii) operator generated by the function $f[\mathbf{1}]$.

Theorem 2.2 ([1]). Suppose that f satisfies Carathéodory conditions. The superposition operator F_{f} maps the space L_{p} into $L_{q}, p, q \geq 1$, if and only if:

$$
\begin{equation*}
|f(t, x)| \leq a(t)+b|x|^{p / q} \tag{2.1}
\end{equation*}
$$

for all $t \in I$ and $x \in \mathbb{R}$, where $a \in L_{q}$ and $b \geq 0$. Moreover, this operator is continuous.

For Nemytiskii operators, we have the following theorem.

Theorem 2.3 ([1, Theorem 3.17]). The superposition operator F_{f} maps L_{p} into L_{∞} if and only if

$$
|f(t, x)| \leq a(t), \quad x \in \mathbb{R}
$$

for some $a \in L_{\infty}$, i.e., f is independent of x.

We now recall some basic facts concerning the Urysohn operators $U x(t)=\int_{a}^{b} u(t, s, x(s)) d s$.

Theorem 2.4 ([17, Theorem 10.1.10]). Let $u: I \times I \times \mathbb{R}$ satisfy the Carathéodory condition, i.e., it is measurable in (t, s) for any $x \in \mathbb{R}$ and continuous in x for almost all $(t, s) \in I \times I$. Assume that the operator U maps L_{p} into $L_{q}(q<\infty)$ and, for each $h>0$, the function

$$
R_{h}(t, s)=\max _{|x| \leq h}|u(t, s, x)|
$$

is integrable with respect to s for almost every $t \in I$. If, moreover, for each $h>0$ and $D \subset I$, we have

$$
\lim _{\text {meas } D \rightarrow 0} \sup _{|x| \leq h}\left\|\int_{D} u(t, s, x) d s\right\|_{L_{q}}=0
$$

and, for any nonnegative $z \in L_{q}$,

$$
\lim _{\text {meas } D \rightarrow 0} \sup _{|x| \leq z}\left\|\int_{D} u(t, s, x) d s\right\|_{L_{q}}=0
$$

then U is a continuous operator. The first two conditions are satisfied when $\int_{I} R_{h}(t, s) d s \in L_{q}$.

Theorem 2.5. [17] Let $u: I \times I \times \mathbb{R} \rightarrow \mathbb{R}$ satisfy the Carathéodory condition, i.e., it is measurable in (t, s) for any $x \in \mathbb{R}$ and continuous in x for almost all (t, s). Assume that

$$
|u(t, s, x)| \leq k(t, s)
$$

where the nonnegative function k is measurable in (t, s) such that the linear integral operator K_{0} with the kernel $k(t, s)$ maps L_{1} into L_{∞}. Then, the operator U maps L_{1} into L_{∞}. Moreover, if, for arbitrary $h>0, x_{i} \in \mathbb{R}, i=1,2$,

$$
\lim _{\delta \rightarrow 0}\left\|\int_{I} \max _{\substack{\left|x_{i}\right| \leq h \\\left|x_{1}-x_{2}\right| \leq \delta}}\left|u\left(t, s, x_{1}\right)-u\left(t, s, x_{2}\right)\right| d s\right\|_{L_{\infty}}=0
$$

then U is a continuous operator.

We note that some particular conditions ensuring the continuity of the operator U may be found in $[\mathbf{1 6}, \mathbf{1 7}]$.

Next, we state the compactness criteria due to Kolmogorov, see [11].
Theorem 2.6 ([13]). Let $\Omega \subseteq L_{p}[0,1], 1 \leq p<\infty$. If
(i) Ω is bounded in $L_{p}[0,1]$,
(ii) $v_{h} \rightarrow v$ (converges in $\left.L_{p}[0,1]\right)$ as $h \rightarrow 0$ uniformly with respect to $v \in \Omega$, then Ω is relatively compact in $L_{p}[0,1]$; here,

$$
v_{h}(t)=\frac{1}{h} \int_{t}^{t+h} v(s) d s
$$

Finally, we state a Krasnoselskii-type fixed point theorem due to Burton [7].

Theorem 2.7. Let S be a nonempty, closed, convex and bounded subset of the Banach space E, and let $A: E \rightarrow E$ and $B: S \rightarrow E$ be two operators such that:
(a) A is contraction;
(b) B is completely continuous;
(c) $x=A x+B y \Rightarrow x \in S$ for all $y \in S$.

Then, the equation $A x+B x=x$ has a solution in S.
3. Main result. Rewrite (1.1) as

$$
x=A x+B x,
$$

where

$$
\begin{aligned}
(A x)(t) & =F_{g}\left(T_{1} x\right)(t), \quad(B x)(t)=\left(T_{2} x\right)(t) \cdot(U x)(t) \\
F_{g}\left(T_{1} x\right) & =g\left(t, T_{1} x\right), \quad \text { and } \quad(U x)(t)=\int_{a}^{b} u(t, s, x(s)) d s
\end{aligned}
$$

3.1. The case when the operator U has values in L_{∞}. We consider (1.1) and the following assumptions.
(i) $g: I \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies the Carathéodory condition. The operators $T_{i}: L_{1} \rightarrow L_{1}, i=1,2$, are continuous. There are positive functions $a_{i} \in L_{1}, i=1,2,3$, such that

$$
|g(t, 0)| \leq a_{3}(t), \quad\left|T_{1}(0)\right| \leq a_{1}(t)
$$

and

$$
\left|T_{2} x(t)\right| \leq a_{2}(t)+b_{2}|x(t)|, \quad b_{2} \geq 0
$$

for almost every $t \in I$ and $x \in L_{1}$. Also, there are constants $b_{j} \geq 0$, $j=1,3$, such that, for almost every $t \in I$:

$$
|g(t, x)-g(t, y)| \leq b_{3}|x-y|, \quad x, y \in \mathbb{R}
$$

and

$$
\left|T_{1}(x(t))-T_{1}(y(t))\right| \leq b_{1}|x(t)-y(t)|, \quad x, y \in L_{1}
$$

(ii) $u: I \times I \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies the Carathéodory condition. Moreover, for arbitrary fixed $s \in I$ and $x \in \mathbb{R}$, the function $t \rightarrow u(t, s, x)$ is integrable.
(iii) Assume that $|u(t, s, x)| \leq k(t, s)$, for all $t, s \geq 0$ and $x \in$ \mathbb{R}, where the function k is measurable in (t, s). Assume that the linear integral operator K_{0} with the kernel $k(t, s)$ maps L_{1} into L_{∞}. Moreover, assume that, for arbitrary $h>0, x_{i} \in \mathbb{R}, i=1,2$,

$$
\lim _{\delta \rightarrow 0}\left\|\int_{I} \max _{\substack{\left|x_{i}\right| \leq h \\\left|x_{1}-x_{2}\right| \leq \delta}}\left|u\left(t, s, x_{1}\right)-u\left(t, s, x_{2}\right)\right| d s\right\|_{L_{\infty}}=0
$$

and let

$$
\begin{equation*}
\lim _{h \rightarrow 0}\left\|\frac{1}{h} \int_{t}^{t+h}|k(\theta, s)-k(t, s)| d \theta\right\|_{L_{1}}=0 \tag{3.1}
\end{equation*}
$$

(iv) $b_{1} b_{3}+b_{2}\left\|K_{0}\right\|_{L_{\infty}}<1$.
(v) Let

$$
r=\frac{\left\|a_{3}\right\|_{L_{1}}+b_{3}\left\|a_{1}\right\|_{L_{1}}+\left\|K_{0}\right\|_{L_{\infty}} \cdot\left\|a_{2}\right\|_{L_{1}}}{1-\left(b_{1} b_{3}+b_{2}\left\|K_{0}\right\|_{L_{\infty}}\right)}
$$

and assume that

$$
\begin{equation*}
\left\|\frac{1}{h} \int_{t}^{t+h}\left|T_{2} x(\theta)-T_{2} x(t)\right| d \theta\right\|_{L_{1}} \longrightarrow 0 \tag{3.2}
\end{equation*}
$$

as $h \rightarrow 0$ uniformly with respect to $x \in B_{r}$, where B_{r} is the closed ball with center 0 and radius r, i.e., $B_{r}=\left\{x \in L_{1}:\|x\|_{L_{1}} \leq r\right\}$.

Theorem 3.1. Suppose that assumptions (i)-(v) hold. Then, (1.1) has at least one integrable solution $x \in L_{1}$ on I.

Proof. The proof will be given in five steps.
Step 1. The operator $A: L_{1} \rightarrow L_{1}$ is a contraction.
Step 2. The operator B maps the ball B_{r} into L_{1} and is continuous.
Step 3. $B\left(B_{r}(I)\right)$ is relatively compact in L_{1} using Theorem 2.6.
Step 4. We prove that Theorem 2.7 (c) holds.
Step 5 . We apply Theorem 2.7 .

Step 1. Let $x \in L_{1}$. From assumption (i), we have, for almost every $t \in I$, that

$$
\begin{aligned}
\| T_{1}(x(t))\left|-\left|T_{1}(0)\right|\right| & \leq\left|T_{1}(x(t))-T_{1}(0)\right| \leq b_{1}|x(t)| \\
\Longrightarrow\left|T_{1}(x(t))\right| & \leq\left|T_{1}(0)\right|+b_{1}|x(t)| \leq a_{1}(t)+b_{1}|x(t)|
\end{aligned}
$$

and

$$
\begin{aligned}
\left|g\left(t, T_{1} x(t)\right)\right| & \leq a_{3}(t)+b_{3}\left|T_{1}(x(t))\right| \\
& \leq a_{3}(t)+b_{3}\left[a_{1}(t)+b_{1}|x(t)|\right] \\
& \leq\left[a_{3}(t)+b_{3} a_{1}(t)\right]+b_{1} b_{3}|x(t)|
\end{aligned}
$$

Thus, A maps L_{1} into itself. In addition,

$$
\begin{aligned}
\int_{I}|(A x)(t)-(A y)(t)| d t & =\int_{a}^{b}\left|g\left(t, T_{1} x(t)\right)-g\left(t, T_{1} y(t)\right)\right| d t \\
& \leq \int_{a}^{b} b_{3}\left|T_{1} x(t)-T_{1} y(t)\right| d t \\
& \leq b_{3} \int_{a}^{b} b_{1}|x(t)-y(t)| d t \\
& \leq b_{1} b_{3} \int_{a}^{b}|x(t)-y(t)| d t
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\|A x-A y\|_{L_{1}} \leq b_{1} b_{3}\|x-y\|_{L_{1}} . \tag{3.3}
\end{equation*}
$$

From assumption (iv), we deduce that A is a contraction.
Step 2. From assumptions (ii) and (iii), we deduce that the operator U maps L_{1} into L_{∞} continuously. From assumption (i), the operator T_{2} maps L_{1} into itself continuously, which implies that B transforms the ball $B_{r}\left(L_{1}\right)$ into L_{1} and is continuous.

Step 3. Now, for $x \in B_{r}(I)$, we have

$$
\begin{aligned}
\|B(x)\|_{L_{1}} & =\int_{I}|(B x)(t)| d t \leq \int_{I}\left|T_{2} x(t) \cdot U(x)(t)\right| d t \\
& \leq \int_{I}\left|T_{2} x(t)\right| \cdot \int_{I}|u(t, s, x(s))| d s d t \\
& \leq \int_{I}\left[a_{2}(t)+b_{2}|x(t)|\right] d t \cdot \int_{I} k(t, s) d s \\
& =\left\|K_{0}\right\|_{L_{\infty}}\left[\left\|a_{2}\right\|_{L_{1}}+b_{2}\|x\|_{L_{1}}\right]
\end{aligned}
$$

thus, $B\left(B_{r}(I)\right)$ is bounded in L_{1}, i.e., Theorem 2.6 (i) is satisfied. Letting $x \in B_{r}(I)$, then

$$
\begin{aligned}
&\left|(B x)_{h}(t)-(B x)(t)\right|=\left|\frac{1}{h} \int_{t}^{t+h}(B x)(\theta) d \theta-(B x)(t)\right| \\
& \leq \frac{1}{h} \int_{t}^{t+h}|(B x)(\theta)-(B x)(t)| d \theta \\
&= \left.\frac{1}{h} \int_{t}^{t+h} \right\rvert\, T_{2} x(\theta) \cdot \int_{a}^{b} u(\theta, s, x(s)) d s \\
& \quad-T_{2} x(t) \cdot \int_{a}^{b} u(t, s, x(s)) d s \mid d \theta \\
& \leq \left.\frac{1}{h} \int_{t}^{t+h} \right\rvert\, T_{2} x(\theta) \cdot \int_{a}^{b} u(\theta, s, x(s)) d s-T_{2} x(t) \\
& \left.+\frac{1}{h} \int_{t}^{b} u(\theta, s, x(s)) d s \right\rvert\, d \theta \\
& \quad T_{2} x(t) \cdot \int_{a}^{b} u(\theta, s, x(s)) d s \\
& \leq \frac{1}{h} \int_{t}^{t+h}\left|T_{2} x(\theta)-T_{2} x(t)\right| \\
& \left.\cdot \int_{a}^{b}|u(\theta, s, x(s))| d s\left|d \theta+\frac{1}{h} \int_{t}^{t+h}\right| T_{2} x(t) \right\rvert\, \\
& \cdot \int_{a}^{b}|u(\theta, s, x(s)) d s| d \theta \\
& \leq \frac{1}{h} \int_{t}^{t+h}\left|T_{2} x(\theta)-T_{2} x(t)\right| \cdot \int_{a}^{b} k(\theta, s) d s d \theta \\
&+\int_{a}^{b}\left[a_{2}(t)+b_{2}|x(t)|\right] \\
& \cdot\left(\frac{1}{h} \int_{t}^{t+h}|k(\theta, s)-k(t, s)| d \theta\right) d s \\
&
\end{aligned}
$$

which implies that

$$
\begin{aligned}
\left\|(B x)_{h}-(B x)\right\|_{L_{1}}= & \int_{a}^{b}\left|(B x)_{h}(t)-(B x)(t)\right| d t \\
\leq & \left\|K_{0}\right\|_{L_{\infty}} \int_{a}^{b}\left(\frac{1}{h} \int_{t}^{t+h}\left|T_{2} x(\theta)-T_{2} x(t)\right| d \theta\right) d t \\
& +\int_{a}^{b} \int_{a}^{b}\left[a_{2}(t)+b_{2}|x(t)|\right] \\
& \cdot\left(\frac{1}{h} \int_{t}^{t+h}|k(\theta, s)-k(t, s)| d \theta\right) d s d t \\
\leq & \left\|K_{0}\right\|_{L_{\infty}}\left\|\frac{1}{h} \int_{t}^{t+h}\left|T_{2} x(\theta)-T_{2} x(t)\right| d \theta\right\|_{L_{1}} \\
& +\left[\left\|a_{2}\right\|_{L_{1}}+b_{2} \cdot r\right] \cdot\left\|\frac{1}{h} \int_{t}^{t+h}|k(\theta, s)-k(t, s)| d \theta\right\|_{L_{1}} .
\end{aligned}
$$

From (3.1) and (3.2), we deduce that $(B x)_{h} \rightarrow(B x)$, (converges in $\left.L_{1}\right)$ as $h \rightarrow 0$ uniformly with respect to $x \in B_{r}(I)$. Now, Theorem 2.6 guarantees that $B\left(B_{r}(I)\right)$ is relatively compact in the space L_{1}.

Step 4. Fix $x \in L_{1}$, and assume that the equality $x=A x+B y$ holds for some $y \in B_{r}$. Then,

$$
\begin{aligned}
\int_{I}|x(t)| d t \leq & \int_{I}|A x(t)+B y(t)| d t \\
\leq & \int_{I}\left(\left|g\left(t, T_{1} x(t)\right)\right|+\left|T_{2} y(t)\right| \cdot\left|\int_{I} u(t, s, y(s)) d s\right|\right) d t \\
\leq & \int_{I}\left(a_{3}(t)+b_{3}\left|T_{1} x(t)\right|+\left[a_{2}(t)+b_{2}|y(t)|\right] \int_{I} k(t, s) d s\right) d t \\
\leq & \left\|a_{3}\right\|_{L_{1}}+b_{3} \int_{I}\left|T_{1} x(t)\right| d t \\
& +\int_{I}\left(\left[a_{2}(t)+b_{2}|y(t)|\right] \cdot \int_{I} k(t, s) d s\right) d t \\
\leq & \left\|a_{3}\right\|_{L_{1}}+b_{3} \int_{a}^{b}\left[a_{1}(t)+b_{1}|x(t)|\right] d t \\
& +\left(\int_{I} a_{2}(t) d t+b_{2} \int_{a}^{b}|y(t)| d t\right)\left\|K_{0}\right\|_{L_{\infty}} \\
\leq & \left\|a_{3}\right\|_{L_{1}}+b_{3}\left\|a_{1}\right\|_{L_{1}}+b_{1} b_{3}\|x\|_{L_{1}}+\left[\left\|a_{2}\right\|_{L_{1}}+b_{2}\|y\|_{L_{1}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \quad \cdot\left\|K_{0}\right\|_{L_{\infty}} \\
& \leq\left\|a_{3}\right\|_{L_{1}}+b_{3}\left\|a_{1}\right\|_{L_{1}}+b_{1} b_{3}\|x\|_{L_{1}}+\left\|K_{0}\right\|_{L_{\infty}} \\
& \quad \cdot\left[\left\|a_{2}\right\|_{L_{1}}+b_{2} \cdot r\right] .
\end{aligned}
$$

The above inequality yields

$$
\left(1-b_{1} b_{3}\right)\|x\|_{L_{1}} \leq\left\|a_{3}\right\|_{L_{1}}+b_{3}\left\|a_{1}\right\|_{L_{1}}+\left\|K_{0}\right\|_{L_{\infty}} \cdot\left[\left\|a_{2}\right\|_{L_{1}}+b_{2} \cdot r\right] .
$$

Since $\left(1-b_{1} b_{3}\right)>0$, this implies

$$
\|x\|_{L_{1}} \leq \frac{\left\|a_{3}\right\|_{L_{1}}+b_{3}\left\|a_{1}\right\|_{L_{1}}+\left\|K_{0}\right\|_{L_{\infty}} \cdot\left[\left\|a_{2}\right\|_{L_{1}}+b_{2} \cdot r\right]}{\left(1-b_{1} b_{3}\right)}
$$

Now, recall that

$$
\frac{\left\|a_{3}\right\|_{L_{1}}+b_{3}\left\|a_{1}\right\|_{L_{1}}+\left\|K_{0}\right\|_{L_{\infty}} \cdot\left[\left\|a_{2}\right\|_{L_{1}}+b_{2} \cdot r\right]}{\left(1-b_{1} b_{3}\right)}=r .
$$

Hence, $\|x\|_{L_{1}} \leq r$, i.e., $x \in B_{r}$. Thus, Theorem 2.7 (c) is satisfied.
Step 5. From the above steps, we can apply Theorem 2.7. Thus, (1.1) has at least one integrable solution $x \in L_{1}$ in $B_{r}(I)$.
3.1.1. Uniqueness of the solution. Consider the next two assumptions.
(vi) $g: I \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies the Carathéodory condition. The operators $T_{i}: L_{1} \rightarrow L_{1}, i=1,2$, are continuous. There are positive functions $a_{i} \in L_{1}, i=1,2,3$, such that

$$
|g(t, 0)| \leq a_{3}(t), \quad\left|T_{j}(0)\right| \leq a_{j}(t), \quad j=1,2
$$

for almost every $t \in I$. In addition, there are constants $b_{i} \geq 0$, $i=1,2,3$, such that, for almost every $t \in I$:

$$
|g(t, x)-g(t, y)| \leq b_{3}|x-y|, \quad x, y \in \mathbb{R}
$$

and

$$
\left|T_{j}(x(t))-T_{j}(y(t))\right| \leq b_{j}|x(t)-y(t)|, \quad j=1,2, x, y \in L_{1}
$$

(vii) There exists a positive constant M (which may depend upon r) such that

$$
|u(t, s, x(s))-u(t, s, y(s))| \leq M|x(s)-y(s)|
$$

for almost every $t \in I$, almost every $s \in I$ and $x, y \in B_{r}$ (where r is given in Theorem 3.1).

Theorem 3.2. Suppose that assumptions (ii)-(vii) hold. If

$$
M \leq \frac{\left[1-\left(b_{1} b_{3}+b_{2}\left\|K_{0}\right\|_{L_{\infty}}\right)\right]^{2}}{\left(1-b_{1} b_{3}\right)\left\|a_{2}\right\|_{L_{1}}+b_{2}\left\|a_{3}\right\|_{L_{1}}+b_{2} b_{3}\left\|a_{1}\right\|_{L_{1}}}
$$

then (1.1) has a unique, integrable solution $x \in L_{1}$ in $B_{r}(I)$.

Proof. Let x and y be any two solutions of (1.1) in $B_{r}(I)$. Then, for almost every $t \in I$,

$$
\begin{aligned}
|x(t)-y(t)| \leq & \left|g\left(t, T_{1} x(t)\right)-g\left(t, T_{1} y(t)\right)\right| \\
& +\left|T_{2} x(t) \cdot \int_{I} u(t, s, x(s)) d s-T_{2} y(t) \cdot \int_{I} u(t, s, y(s)) d s\right| \\
\leq & b_{3}\left|T_{1} x(t)-T_{1} y(t)\right| \\
& +\left|T_{2} x(t) \cdot \int_{I} u(t, s, x(s)) d s-T_{2} x(t) \cdot \int_{I} u(t, s, y(s)) d s\right| \\
& +\left|T_{2} x(t) \cdot \int_{I} u(t, s, y(s)) d s-T_{2} y(t) \cdot \int_{I} u(t, s, y(s)) d s\right| \\
\leq & b_{1} b_{3}|x(t)-y(t)| \\
& +\left|T_{2} x(t)\right| \cdot \int_{I}|u(t, s, x(s))-u(t, s, y(s))| d s \\
& +\left|T_{2} x(t)-T_{2} y(t)\right| \int_{I}|u(t, s, y(s))| d s \\
\leq & b_{1} b_{3}|x(t)-y(t)|+\left[a_{2}(t)+b_{2}|x(t)|\right] \int_{I} M|x(s)-y(s)| d s \\
& +b_{2}|x(t)-y(t)| \int_{I} k(t, s) d s ;
\end{aligned}
$$

thus,

$$
\begin{aligned}
\|x-y\|_{L_{1}}= & \int_{I}|x(t)-y(t)| d t \leq b_{1} b_{3} \int_{I}|x(t)-y(t)| d t \\
& +\int_{I}\left[a_{2}(t)+b_{2}|x(t)|\right] \int_{I} M|x(s)-y(s)| d s d t
\end{aligned}
$$

$$
\begin{aligned}
& +b_{2} \int_{I}|x(t)-y(t)| \int_{I} k(t, s) d s d t \\
= & b_{1} b_{3}\|x-y\|_{L_{1}}+M\left[\left\|a_{2}\right\|_{L_{1}}+b_{2}\|x\|_{L_{1}}\right] \cdot\|x-y\|_{L_{1}} \\
& +b_{2}\left\|K_{0}\right\|_{L_{\infty}}\|x-y\|_{L_{1}} \\
\leq & b_{1} b_{3}\|x-y\|_{L_{1}}+M\left[\left\|a_{2}\right\|_{L_{1}}+b_{2} \cdot r\right] \cdot\|x-y\|_{L_{1}} \\
& +b_{2}\left\|K_{0}\right\|_{L_{\infty}}\|x-y\|_{L_{1}} .
\end{aligned}
$$

The above inequality yields

$$
\left[1-\left(b_{1} b_{3}+b_{2}\left\|K_{0}\right\|_{L_{\infty}}+M\left[\left\|a_{2}\right\|_{L_{1}}+b_{2} \cdot r\right]\right)\right] \cdot\|x-y\|_{L_{1}} \leq 0
$$

which implies that

$$
\|x-y\|_{L_{1}}=0, \quad \Longrightarrow x=y
$$

This completes the proof.
3.2. The existence of solutions when the operator U has values in L_{p}. In this section, we use Theorem 2.4 (with $1 / p+1 / q=1$).

We consider (1.1) with the following assumptions:
(i)' $g: I \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies the Carathéodory condition. The operator $T_{1}: L_{1} \rightarrow L_{1}$ is continuous, and the operator $T_{2}: L_{1} \rightarrow L_{p}$ is continuous. There are positive functions $a_{1}, a_{3} \in L_{1}$ and $a_{2} \in L_{p}$ such that

$$
|g(t, 0)| \leq a_{3}(t), \quad\left|T_{1}(0)\right| \leq a_{1}(t)
$$

and

$$
\left|T_{2} x(t)\right| \leq a_{2}(t)+b_{2}|x(t)|^{1 / p}, \quad b_{2} \geq 0
$$

for all $t \in I$ and $x \in L_{1}$. In addition, there are constants $b_{j} \geq 0$, $j=1,3$, such that, for almost every $t \in I$:

$$
|g(t, x)-g(t, y)| \leq b_{3}|x-y|, \quad x, y \in \mathbb{R}
$$

and

$$
\left|T_{1}(x(t)) T_{1}(y(t))\right| \leq b_{1}|x(t)-y(t)|, \quad x, y \in L_{1}
$$

(ii) $u: I \times I \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies the Carathéodory condition. Suppose that, for any nonnegative $z \in L_{q}$ and for $D \subset I$,

$$
\lim _{\text {meas } D \rightarrow 0} \sup _{|x| \leq z}\left\|\int_{D} u(t, s, x(s)) d s\right\|_{L_{q}}=0,
$$

and that

$$
|u(t, s, x)| \leq k(t, s)\left(a_{4}(s)+b_{4}|x|^{1 / p}\right) \quad \text { for all } t, s \geq 0 \text { and } x \in \mathbb{R}
$$

where the function k is measurable in $(t, s), a_{4}$ is a positive function in L_{p} and $b_{4} \geq 0$. Assume that the linear integral operator K_{0} with the kernel $k(t, s)$ maps L_{p} into L_{q}. Moreover, assume that

$$
\begin{equation*}
\lim _{h \rightarrow 0}\left\|\frac{1}{h} \int_{t}^{t+h}\right\| k(\theta, \cdot)-k(t, \cdot)\left\|_{L_{q}} d \theta\right\|_{L_{q}}=0 \tag{3.4}
\end{equation*}
$$

(iii) $)^{\prime}$ Assume that r^{\prime} is a positive solution of the equation

$$
\begin{aligned}
& \left\|a_{3}\right\|_{L_{1}}+b_{3}\left\|a_{1}\right\|_{L_{1}}+\left\|a_{2}\right\|_{L_{p}}\left\|a_{4}\right\|_{L_{p}}\left\|K_{0}\right\|+\left(b_{1} b_{3}-1\right) \cdot w \\
& \quad+w^{1 / p} \cdot\left\|K_{0}\right\|\left(b_{2}\left\|a_{4}\right\|_{L_{p}}+b_{4}\left\|a_{2}\right\|_{L_{p}}\right)+b_{2} b_{4}\left\|K_{0}\right\| \cdot w^{2 / p}=0
\end{aligned}
$$

where $\left\|K_{0}\right\|=\| \| k(t, \cdot)\left\|_{L_{q}}\right\|_{L_{q}}$, and assume that

$$
\begin{equation*}
\left\|\frac{1}{h} \int_{t}^{t+h}\left|T_{2} x(\theta)-T_{2} x(t)\right| d \theta\right\|_{L_{p}} \longrightarrow 0 \tag{3.5}
\end{equation*}
$$

as $h \rightarrow 0$ uniformly with respect to $x \in B_{r^{\prime}}$.

Theorem 3.3. Suppose that assumptions (i)'-(iii)' hold. If $b_{1} b_{3}<1$, then (1.1) has at least one integrable solution $x \in L_{1}$ in $B_{r^{\prime}}(I)$.

Proof.
Step 1 is the same as in Theorem 3.1.
Step 2. From assumption (ii)', we deduce that the operator U maps L_{1} into L_{q} continuously. From assumption (i)', the operator T_{2} maps L_{1} into L_{p} continuously, which implies that B transforms the ball $B_{r^{\prime}}\left(L_{1}\right)$ into L_{1} and is continuous.

Step 3. Now, for $x \in B_{r^{\prime}}(I)$, we have

$$
\begin{aligned}
\|B(x)\|_{L_{1}} & =\left\|T_{2} x \cdot U(x)\right\|_{L_{1}} \\
& \leq\left\|T_{2} x\right\|_{L_{p}} \cdot\left\|\int_{a}^{b} u(t, s, x(s)) d s\right\|_{L_{q}} \\
& \leq\left\|a_{2}+b_{2} x^{1 / p}\right\|_{L_{p}} \cdot\left\|\int_{a}^{b} k(t, s)\left(a_{4}(s)+b_{4}|x(s)|^{1 / p}\right) d s\right\|_{L_{q}}
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left(\left\|a_{2}\right\|_{L_{p}}+b_{2}\left\|x^{1 / p}\right\|_{L_{p}}\right) \cdot\| \| k(t, \cdot)\left\|_{L_{q}}\right\| a_{4}+b_{4} x^{1 / p}\left\|_{L_{p}}\right\|_{L_{q}} \\
& \leq\left(\left\|a_{2}\right\|_{L_{p}}+b_{2}\|x\|_{L_{1}}^{1 / p}\right) \cdot\left\|K_{0}\right\|\left(\left\|a_{4}\right\|_{L_{p}}+b_{4}\|x\|_{L_{1}}^{1 / p}\right)
\end{aligned}
$$

thus, $B\left(B_{r^{\prime}}(I)\right)$ is bounded in L_{1}, i.e., Theorem 2.6 (i) is satisfied. Let $x \in B_{r^{\prime}}(I)$. Then,

$$
\begin{aligned}
& \left|(B x)_{h}(t)-(B x)(t)\right| \\
& \quad \leq \frac{1}{h} \int_{t}^{t+h}\left|T_{2} x(\theta)-T_{2} x(t)\right| \cdot \int_{a}^{b} k(\theta, s)\left(a_{4}(s)+b_{4}|x(s)|^{1 / p}\right) d s d \theta \\
& \quad+\frac{1}{h} \int_{t}^{t+h}\left(\left[a_{2}(t)+b_{2}|x(t)|^{1 / p}\right]\right. \\
& \left.\quad \cdot \int_{a}^{b}|u(\theta, s, x(s))-u(t, s, x(s))| d s\right) d \theta \\
& \quad \leq \frac{1}{h} \int_{t}^{t+h}\left|T_{2} x(\theta)-T_{2} x(t)\right| \cdot\|k(\theta, \cdot)\|_{L_{q}} \\
& \quad \cdot\left\|a_{4}+b_{4} x^{1 / p}\right\|_{L_{p}} d \theta+\left[a_{2}(t)+b_{2}|x(t)|^{1 / p}\right] \frac{1}{h} \\
& \quad \cdot \int_{t}^{t+h}\left(\int _ { a } ^ { b } | k (\theta , s) - k (t , s) | \left(a_{4}(s)\right.\right. \\
& \left.\left.\quad+b_{4}|x(s)|^{1 / p}\right) d s\right) d \theta \\
& \leq \frac{1}{h} \int_{t}^{t+h}\left|T_{2} x(\theta)-T_{2} x(t)\right| \cdot\|k(\theta, \cdot)\|_{L_{q}} \\
& \quad \cdot\left(\left\|a_{4}\right\|_{L_{p}}+b_{4}\|x\|_{L_{1}}^{1 / p}\right) d \theta+\left[a_{2}(t)+b_{2}|x(t)|^{1 / p}\right]\left(\left\|a_{4}\right\|_{L_{p}}+b_{4}\|x\|_{L_{1}}^{1 / p}\right) \\
& \quad \cdot \frac{1}{h} \int_{t}^{t+h}\|k(\theta, \cdot)-k(t, \cdot)\|_{L_{q}} d \theta,
\end{aligned}
$$

which implies that

$$
\begin{aligned}
\left\|(B x)_{h}-(B x)\right\|_{L_{1}} \leq & \left\|\frac{1}{h} \int_{t}^{t+h}\left|T_{2} x(\theta)-T_{2} x(t)\right| \cdot\right\| k(\theta, \cdot) \|_{L_{q}} \\
& \cdot\left(\left\|a_{4}\right\|_{L_{p}}+b_{4}\|x\|_{L_{1}}^{1 / p}\right) d \theta \|_{L_{1}} \\
& +\|\left[a_{2}+b_{2}|x|^{1 / p}\right]\left(\left\|a_{4}\right\|_{L_{p}}+b_{4}\|x\|_{L_{1}}^{1 / p}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \quad \cdot \frac{1}{h} \int_{t}^{t+h}\|k(\theta, \cdot)-k(t, \cdot)\|_{L_{q}} d \theta \|_{L_{1}} \\
& \leq\left\|\frac{1}{h} \int_{t}^{t+h}\left|T_{2} x(\theta)-T_{2} x(t)\right| d \theta\right\|_{L_{p}} \\
& \quad \cdot\left\|\|k(\theta, \cdot)\|_{L_{q}}\left(\left\|a_{4}\right\|_{L_{p}}+b_{4}\|x\|_{L_{1}}^{1 / p}\right)\right\|_{L_{q}} \\
& \quad+\left\|a_{2}+b_{2}|x|^{1 / p}\right\|_{L_{p}} \\
& \quad \cdot \|\left(\left\|a_{4}\right\|_{L_{p}}+b_{4}\|x\|_{L_{1}}^{1 / p}\right) \frac{1}{h} \\
& \quad \cdot \int_{t}^{t+h}\|k(\theta, \cdot)-k(t, \cdot)\|_{L_{q}} d \theta \|_{L_{q}} \\
& \leq\left\|K_{0}\right\|\left(\left\|a_{4}\right\|_{L_{p}}+b_{4}\|x\|_{L_{1}}^{1 / p}\right) \\
& \quad \cdot\left\|\frac{1}{h} \int_{t}^{t+h}\left|T_{2} x(\theta)-T_{2} x(t)\right| d \theta\right\|_{L_{p}} \\
& \quad+\left[\left\|a_{2}\right\|_{L_{p}}+b_{2}\|x\|_{L_{1}}^{1 / p}\right]\left(\left\|a_{4}\right\|_{L_{p}}+b_{4}\|x\|_{L_{1}}^{1 / p}\right) \\
& \quad\left\|\frac{1}{h} \int_{t}^{t+h}\right\| k(\theta, \cdot)-k(t, \cdot)\left\|_{L_{q}} d \theta\right\|_{L_{q}} .
\end{aligned}
$$

From (3.4) and (3.5), we deduce that $(B x)_{h} \rightarrow(B x)$, (converges in L_{1}) as $h \rightarrow 0$ uniformly with respect to $x \in B_{r^{\prime}}(I)$. Now, Theorem 2.6 guarantees that $B\left(B_{r^{\prime}}(I)\right)$ is relatively compact in the space L_{1}.

Step 4. Fix $x \in L_{1}$, and assume that the equality $x=A x+B y$ holds for some $y \in B_{r^{\prime}}$. Then

$$
\begin{aligned}
\|x\|_{L_{1}} & \leq\|A x+B y\|_{L_{1}} \\
& \leq\|A x\|_{L_{1}}+\left\|T_{2} y\right\|_{L_{p}}\|U y\|_{L_{q}} \\
& =\left\|g\left(t, T_{1} x\right)\right\|_{L_{1}}+\left\|T_{2} y\right\|_{L_{p}}\left\|\int_{I} u(t, s, y(s)) d s\right\|_{L_{q}} \\
\leq & \left\|a_{3}+b_{3} T_{1} x\right\|_{L_{1}}+\left\|a_{2}+b_{2}|y|^{1 / p}\right\|_{L_{p}} \\
& \cdot\left\|\int_{I} k(t, s)\left(a_{4}(s)+b_{4}|y(s)|^{1 / p}\right) d s\right\|_{L_{q}} \\
\leq & \left\|a_{3}\right\|_{L_{1}}+b_{3}\left\|a_{1}\right\|_{L_{1}}+b_{1} b_{3}\|x\|_{L_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& \quad+\left(\left\|a_{2}\right\|_{L_{p}}+b_{2}\|y\|_{L_{1}}^{1 / p}\right)\| \| k(t, \cdot)\left\|_{L_{q}}\left(\left\|a_{4}\right\|_{L_{p}}+b_{4}\|y\|_{L_{1}}^{1 / p}\right)\right\|_{L_{q}} \\
& \leq\left\|a_{3}\right\|_{L_{1}}+b_{3}\left\|a_{1}\right\|_{L_{1}}+b_{1} b_{3}\|x\|_{L_{1}} \\
& \quad+\left\|K_{0}\right\|\left(\left\|a_{2}\right\|_{L_{p}}+b_{2} \cdot r^{\prime 1 / p}\right)\left(\left\|a_{4}\right\|_{L_{p}}+b_{4} \cdot r^{\prime 1 / p}\right) .
\end{aligned}
$$

The above inequality yields

$$
\begin{aligned}
\left(1-b_{1} b_{3}\right)\|x\|_{L_{1}} \leq & \left\|a_{3}\right\|_{L_{1}}+b_{3}\left\|a_{1}\right\|_{L_{1}} \\
& +\left\|K_{0}\right\|\left(\left\|a_{2}\right\|_{L_{p}}+b_{2} \cdot r^{1 / p}\right)\left(\left\|a_{4}\right\|_{L_{p}}+b_{4} \cdot r^{\prime 1 / p}\right)
\end{aligned}
$$

Since $\left(1-b_{1} b_{3}\right)>0$, this implies that

$$
\begin{aligned}
\|x\|_{L_{1}} \leq & \frac{\left\|a_{3}\right\|_{L_{1}}+b_{3}\left\|a_{1}\right\|_{L_{1}}}{\left(1-b_{1} b_{3}\right)} \\
& \quad+\frac{\left\|K_{0}\right\|\left(\left\|a_{2}\right\|_{L_{p}}+b_{2} \cdot r^{\prime 1 / p}\right)\left(\left\|a_{4}\right\|_{L_{p}}+b_{4} \cdot r^{\prime 1 / p}\right)}{\left(1-b_{1} b_{3}\right)}
\end{aligned}
$$

Now, recall that

$$
\frac{\left\|a_{3}\right\|_{L_{1}}+b_{3}\left\|a_{1}\right\|_{L_{1}}+\left\|K_{0}\right\|\left(\left\|a_{2}\right\|_{L_{p}}+b_{2} \cdot r^{1 / p}\right)\left(\left\|a_{4}\right\|_{L_{p}}+b_{4} \cdot r^{\prime 1 / p}\right)}{\left(1-b_{1} b_{3}\right)}=r^{\prime}
$$

Hence, $\|x\|_{L_{1}} \leq r^{\prime}$, i.e., $x \in B_{r^{\prime}}$. Thus, Theorem 2.7 (c) is satisfied.
Step 5. From the above steps, we can apply Theorem 2.7. Thus, (1.1) has at least one integrable solution $x \in L_{1}$ in $B_{r^{\prime}}(I)$.
3.2.1. Uniqueness of the solution. Consider the following two assumptions
(iv)' $g: I \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies the Carathéodory condition. The operator $T_{1}: L_{1} \rightarrow L_{1}$ is continuous, and the operator $T_{2}: L_{1} \rightarrow L_{p}$ is continuous. There are positive functions $a_{1}, a_{3} \in L_{1}$ and $a_{2} \in L_{p}$ such that

$$
|g(t, 0)| \leq a_{3}(t), \quad\left|T_{j}(0)\right| \leq a_{j}(t), \quad j=1,2
$$

for almost every $t \in I$. In addition, there are positive constants $b_{i} \geq 0$, $i=1,2,3$, such that, for almost every $t \in I$:

$$
\begin{aligned}
|g(t, x)-g(t, y)| & \leq b_{3}|x-y|, & & x, y \in \mathbb{R} \\
\left|T_{1}(x(t))-T_{1}(y(t))\right| & \leq b_{1}|x(t)-y(t)|, & & x, y \in L_{1}
\end{aligned}
$$

and

$$
\left|T_{2}(x(t))-T_{2}(y(t))\right| \leq b_{2}|x(t)-y(t)|^{1 / p}, \quad x, y \in L_{1} .
$$

(v)' Assume that

$$
|u(t, s, x(s))-u(t, s, y(s))| \leq k(t, s)|x(s)-y(s)|^{1 / p}
$$

for almost every $t \in I$, almost every $s \in I$ and $x, y \in B_{r^{\prime}}$ (where r^{\prime} is defined in assumption (iii)'); here, k is a measurable function.

Theorem 3.4. Suppose that assumptions (ii) ${ }^{\prime}-(\mathrm{v})^{\prime}$ hold. If

$$
\left(b_{1} b_{3}+\left\|K_{0}\right\|\left(2 r^{\prime}\right)^{1 / p-1}\left[\left\|a_{2}\right\|_{L_{p}}+b_{2}\left\|a_{4}\right\|_{L_{p}}+b_{2}\left(1+b_{4}\right) \cdot r^{\prime 1 / p}\right]\right) \leq 1
$$

then (1.1) has a unique integrable solution $x \in L_{1}$ in $B_{r^{\prime}}(I)$.

Proof. Let x and y be any two solutions of (1.1) in $B_{r^{\prime}}(I)$. Then, for almost every $t \in I$,

$$
\begin{aligned}
|x(t)-y(t)| \leq & b_{1} b_{3}|x(t)-y(t)| \\
& +\left|T_{2} x(t)\right| \cdot \int_{I}|u(t, s, x(s))-u(t, s, y(s))| d s \\
& +\left|T_{2} x(t)-T_{2} y(t)\right| \int_{I}|u(t, s, y(s))| d s \\
\leq & b_{1} b_{3}|x(t)-y(t)|+\left[a_{2}(t)+b_{2}|x(t)|^{1 / p}\right] \\
& \cdot \int_{I} k(t, s)|x(s)-y(s)|^{1 / p} d s \\
& +b_{2}|x(t)-y(t)|^{1 / p} \int_{I} k(t, s)\left(a_{4}(s)+b_{4}|x(s)|^{1 / p}\right) d s
\end{aligned}
$$

thus,

$$
\begin{aligned}
\|x-y\|_{L_{1}} \leq & b_{1} b_{3}\|x-y\|_{L_{1}} \\
& +\left\|a_{2}+b_{2}|x|^{1 / p}\right\|_{L_{p}}\left\|\int_{I} k(t, s)|x(s)-y(s)|^{1 / p} d s\right\|_{L_{q}} \\
& +b_{2}\left\|(x-y)^{1 / p}\right\|_{L_{p}}\left\|\int_{I} k(t, s)\left(a_{4}(s)+b_{4}|x(s)|^{1 / p}\right) d s\right\|_{L_{q}} \\
\leq & b_{1} b_{3}\|x-y\|_{L_{1}}+\left(\left\|a_{2}\right\|_{L_{p}}+b_{2}\|x\|_{L_{1}}^{1 / p}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \quad \cdot\left\|\|k(t, \cdot)\|_{L_{q}}\right\|(x-y)^{1 / p}\left\|_{L_{p}}\right\|_{L_{q}} \\
& \quad+b_{2}\|x-y\|_{L_{1}}^{1 / p}\| \| k(t, \cdot)\left\|_{L_{q}}\right\| a_{4}+b_{4}|x|^{1 / p}\left\|_{L_{p}}\right\|_{L_{q}} \\
& \leq b_{1} b_{3}\|x-y\|_{L_{1}}+\left(\left\|a_{2}\right\|_{L_{p}}+b_{2}\|x\|_{L_{1}}^{1 / p}\right)\left\|K_{0}\right\| \cdot\|x-y\|_{L_{1}}^{1 / p} \\
& \quad+b_{2}\|x-y\|_{L_{1}}^{1 / p}\left\|K_{0}\right\|\left(\left\|a_{4}\right\|_{L_{p}}+b_{4}\|x\|_{L_{1}}^{1 / p}\right) \\
& \leq b_{1} b_{3}\|x-y\|_{L_{1}}+\left\|K_{0}\right\|\left(2 r^{\prime}\right)^{1 / p-1}\left(\left\|a_{2}\right\|_{L_{p}}+b_{2} \cdot r^{\prime 1 / p}\right) \\
& \quad \cdot\|x-y\|_{L_{1}}+b_{2}\left\|K_{0}\right\|\left(2 r^{\prime}\right)^{1 / p-1}\left(\left\|a_{4}\right\|_{L_{p}}+b_{4} \cdot r^{\prime 1 / p}\right) \\
& \quad \cdot\|x-y\|_{L_{1}} \cdot
\end{aligned}
$$

The above inequality yields

$$
\begin{aligned}
& {\left[1-\left(b_{1} b_{3}+\left\|K_{0}\right\|\left(2 r^{\prime}\right)^{1 / p-1}\left[\left\|a_{2}\right\|_{L_{p}}+b_{2}\left\|a_{4}\right\|_{L_{p}}+b_{2}\left(1+b_{4}\right) \cdot r^{\prime 1 / p}\right]\right)\right] } \\
& \cdot\|x-y\|_{L_{1}} \leq 0
\end{aligned}
$$

which implies that

$$
\|x-y\|_{L_{1}}=0, \quad \Longrightarrow x=y
$$

This completes the proof.

4. Examples.

Example 4.1. For $t \in(0,1)$, consider the following equation

$$
\begin{equation*}
x(t)=\frac{1}{1+t^{2}}+\frac{1}{4}\left[t^{2}+\frac{1}{3} x(t)\right]+\int_{0}^{1} \frac{t \cos (t s)}{1+(x(s))^{2}} d s \tag{4.1}
\end{equation*}
$$

Note that (4.1) is a particular case of (1.1), where

$$
g(t, x)=\frac{1}{1+t^{2}}+\frac{1}{4} x, \quad T_{1} x(t)=t^{2}+\frac{1}{3} x(t), \quad T_{2} x(t)=1
$$

and

$$
u(t, s, x)=\frac{t \cos (t s)}{1+x^{2}}
$$

Also, note that

$$
|u(t, s, x)| \leq 1=k(t, s)
$$

Now,

$$
\int_{0}^{1} k(t, s) d s=1
$$

thus, $\left\|K_{0}\right\|_{L_{\infty}}=1$. Moreover, given arbitrary $h>0$ such that $\left|x_{1}\right| \leq h$, $\left|x_{2}\right| \leq h$ and $\left|x_{2}-x_{1}\right| \leq \delta$, we have

$$
\left|u\left(t, s, x_{1}\right)-u\left(t, s, x_{2}\right)\right| \leq|t \cos (t s)|\left|\frac{x_{1}^{2}-x_{2}^{2}}{\left(1+x_{1}^{2}\right)\left(1+x_{2}^{2}\right)}\right| \leq 2 h \delta t
$$

so assumption (iii) holds.

Note that

- g and T_{2} satisfy assumption (i) with $a_{1}(t)=t^{2}, a_{2}(t)=1$, $a_{3}(t)=1 /\left(1+t^{2}\right)$, and with constants $b_{1}=1 / 3, b_{2}=0$, $b_{3}=1 / 4$;
- $b_{1} b_{3}+b_{2}\left\|K_{0}\right\|_{L_{\infty}}=(1 / 3) \cdot(1 / 4)+0 \cdot 1=1 / 12<1$;
- Assumption (v) is satisfied with $r=(1 / 11)(3 \pi+13)$.

Thus, all of the assumptions of Theorem 3.1 are satisfied so that the integral equation (4.1) has at least one integrable solution in $(0,1)$.

REFERENCES

1. J. Appell and P.P. Zabrejko, Nonlinear superposition operators, Cambridge University Press, Cambridge, 1990.
2. I.K. Argyros, On a class of quadratic integral equations with perturbations, Funct. Approx. 20 (1992), 51-63.
3. J. Banaś and B.C. Dhage, Global asymptotic stability of solutions of a functional integral equation, Nonlin. Anal. 69 (2008), 949-952.
4. J. Banaś and A. Martinon, Monotonic solutions of a quadratic integral equation of Volterra type, Comp. Math. Appl. 47 (2004), 271-279.
5. J. Banaś and T. Zaja̧c, Solvability of a functional integral equation of fractional order in the class of functions having limits at infinity, Nonlin. Anal. 71 (2009), 5491-5500.
6. A. Bellour, D. O'Regan and M. Taoudi, On the existence of integrable solutions for a nonlinear quadratic integral equation, J. Appl. Math. Comp. 46 (2014), 67-77.
7. T.A. Burton, A fixed point theorem of Krasnoselskii, Appl. Math. Lett. 11 (1998), 85-88.
8. S. Chandrasekhar, Radiative transfer, Dover Publications, New York, 1960.
9. M. Cichoń and M. Metwali, Existence of monotonic L_{φ}-solutions for quadratic Volterra functional-integral equations, Electron. J. Qual. Th. Diff. Eqs. 13 (2015), 1-16.
10. \qquad , On the existence of solutions for quadratic integral equations in Orlicz spaces, Math. Slov. 66 (2016), 1413-1426.
11. N. Dunford and J.T. Schwartz, Linear operators, Part I: General theory, Interscience Publishers, New York, 1958.
12. I. Ibrahim, On the existence of solutions of functional integral equation of Urysohn type, Comp. Math. Appl. 57 (2009), 1609-1614.
13. A. Kolmogoroff, Uber die Kompaktheit der Funktionenmengen bei der Konvergenz im Mittle, Nachr. Ges. Wiss. (1931), 60-63.
14. K. Maleknejad, K. Nouri and R. Mollapourasl, Investigation on the existence of solutions for some nonlinear functional-integral equations, Nonlin. Anal. 71 (2009), 1575-1578.
15. N. Salhi and M. Taoudi, Existence of integrable solutions of an integral equation of Hammerstein type on an unbounded interval, Mediterr. J. Math. 9 (2012), 729-739.
16. M. Väth, A general theorem on continuity and compactness of the Urysohn operator, J. Int. Eqs. Appl. 8 (1996), 379-389.
17. P.P. Zabrejko, A.I. Koshlev, M.A. Krasnoselskii, S.G. Mikhlin, L.S. Rakovshchik and V.J. Stecenko, Integral equations, Noordhoff, Leyden, 1975.

Department of Mathematics, Texas A \& M University-Kingsville, Kingsville, TX 78363
Email address: ravi.agarwal@tamuk.edu
Department of Mathematics, Faculty of Sciences, Damanhour University, Egypt
Email address: m.metwali@yahoo.com
School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
Email address: donal.oregan@nuigalway.ie

[^0]: 2010 AMS Mathematics subject classification. Primary 45G10, 47H30, 47N20.
 Keywords and phrases. Quadratic-Urysohn integral equations, integrable solutions, Krasnoselskii's fixed point theorem, uniqueness of the solution.

 Received by the editors on October 27, 2017, and in revised form on January 4, 2018.

