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ON EXISTENCE AND UNIQUENESS OF
L1-SOLUTIONS FOR QUADRATIC INTEGRAL
EQUATIONS VIA A KRASNOSELSKII-TYPE

FIXED POINT THEOREM

RAVI P. AGARWAL, MOHAMED M.A. METWALI AND DONAL O’REGAN

ABSTRACT. Using a Krasnoselskii-type fixed point theo-
rem due to Burton [7], we discuss the existence of integrable
solutions of general quadratic-Urysohn integral equations on
a bounded interval (a, b). Uniqueness of the solution is also
studied. An example to illustrate our theory is also included.

1. Introduction. Quadratic integral equations play an important
role in the theory of radioactive transfer, kinetic theory of gases,
neutron transport theory, and in traffic theory [2, 6, 8]. In this paper,
we study the equation

(1.1) x(t) = g(t, T1x(t)) + T2x(t) ·
∫ b

a

u(t, s, x(s)) ds, t ∈ I = (a, b),

where T1 and T2 are two operators.

Equation (1.1) is very general and includes the following equations
as special cases:

(1) T1x = x, T2x = 1, u(t, s, x) = K(t, s)f(s, x), and the integral
equation is of Hammerstein type [15];

(2) g(t, T1x) = h(t), and T2x = x is the functional-integral equation
[14];

(3) g(t, T1x) = h(t), u(t, s, x) = K(t, s)f(s, x), and the quadratic
integral equation was discussed in Orlicz spaces [9, 10];
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(4) for continuous solutions with T1x = x, T2x = f(t, x) and

u(t, s, x) =
u1(t, s, x)

Γ(α) · (t− s)1−α
, see [5];

(5) T1x = x, T2x = λ is the functional Urysohn integral equation
(for continuous solutions see [3]);

(6) T1x = x, T2x = x is the quadratic (functional) Urysohn integral
equation (see, for example, [4]);

(7) T1x =
∫ 1

0
u(t, s, x(s)) ds, T2x(t) = 0 and was discussed in [12].

In this paper, we discuss the existence of integrable solutions of (1.1).
We will distinguish between two different cases: when an operator takes
its values in the Lebesgue spaces Lp(I) or in a space of essentially
bounded functions L∞(I). Uniqueness of the solution is also discussed
in each case.

2. Notation and auxiliary facts. Let R be the field of real num-
bers, I an interval (a, b) and L1(I) the space of Lebesgue integrable
functions (equivalence classes of functions) on a measurable subset I of
R, with the standard norm

∥x∥L1(I) =

∫
I

|x(t)| dt.

Recall that, by Lp, 1 ≤ p < ∞, we will denote the space of (equivalences
classes of) functions x, satisfying∫

I

|x(t)|p < ∞.

By ∥·∥p, we will denote the norm in Lp(I). In addition, L∞(I) denotes
the Banach space of essentially bounded measurable functions together
with the essential supremum norm (denoted by ∥.∥L∞). We will write
L1, Lp and L∞ instead of L1(I), Lp(I) and L∞(I), respectively. Denote
by B(x, r) the closed ball with the center at x and with radius r and
Br for the ball B(θ, r) centered at zero element θ.

Now, let I ⊂ R be a given interval.

Definition 2.1. Assume that a function f(t, x) = f : I × R → R
satisfies the Carathéodory condition, i.e., it is measurable in t for any



ON EXISTENCE AND UNIQUENESS OF L1-SOLUTIONS 1745

x ∈ R and continuous in x for almost all t ∈ I. Then, to every
measurable function x on I, we shall define the operator

Ff (x)(t) = f(t, x(t)), t ∈ I.

The operator Ff , defined in such a way, is called the superposition
(Nemytskii) operator generated by the function f [1].

Theorem 2.2 ([1]). Suppose that f satisfies Carathéodory conditions.
The superposition operator Ff maps the space Lp into Lq, p, q ≥ 1, if
and only if :

(2.1) |f(t, x)| ≤ a(t) + b|x|p/q,

for all t ∈ I and x ∈ R, where a ∈ Lq and b ≥ 0. Moreover, this
operator is continuous.

For Nemytiskii operators, we have the following theorem.

Theorem 2.3 ([1, Theorem 3.17]). The superposition operator Ff

maps Lp into L∞ if and only if

|f(t, x)| ≤ a(t), x ∈ R

for some a ∈ L∞, i.e., f is independent of x.

We now recall some basic facts concerning the Urysohn operators

Ux(t) =
∫ b

a
u(t, s, x(s)) ds.

Theorem 2.4 ([17, Theorem 10.1.10]). Let u : I × I × R satisfy the
Carathéodory condition, i.e., it is measurable in (t, s) for any x ∈ R
and continuous in x for almost all (t, s) ∈ I × I. Assume that the
operator U maps Lp into Lq(q < ∞) and, for each h > 0, the function

Rh(t, s) = max
|x|≤h

|u(t, s, x)|

is integrable with respect to s for almost every t ∈ I. If, moreover, for
each h > 0 and D ⊂ I, we have

lim
measD→0

sup
|x|≤h

∥∥∥∥∫
D

u(t, s, x) ds

∥∥∥∥
Lq

= 0
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and, for any nonnegative z ∈ Lq,

lim
measD→0

sup
|x|≤z

∥∥∥∥∫
D

u(t, s, x) ds

∥∥∥∥
Lq

= 0,

then U is a continuous operator. The first two conditions are satisfied
when

∫
I
Rh(t, s) ds ∈ Lq.

Theorem 2.5. [17] Let u : I × I × R → R satisfy the Carathéodory
condition, i.e., it is measurable in (t, s) for any x ∈ R and continuous
in x for almost all (t, s). Assume that

|u(t, s, x)| ≤ k(t, s),

where the nonnegative function k is measurable in (t, s) such that the
linear integral operator K0 with the kernel k(t, s) maps L1 into L∞.
Then, the operator U maps L1 into L∞. Moreover, if, for arbitrary
h > 0, xi ∈ R, i = 1, 2,

lim
δ→0

∥∥∥∥∥∥∥
∫
I

max
|xi|≤h

|x1−x2|≤δ

|u(t, s, x1)− u(t, s, x2)| ds

∥∥∥∥∥∥∥
L∞

= 0,

then U is a continuous operator.

We note that some particular conditions ensuring the continuity of
the operator U may be found in [16, 17].

Next, we state the compactness criteria due to Kolmogorov, see [11].

Theorem 2.6 ([13]). Let Ω ⊆ Lp[0, 1], 1 ≤ p < ∞. If

(i) Ω is bounded in Lp[0, 1],
(ii) vh → v (converges in Lp[0, 1]) as h → 0 uniformly with respect

to v ∈ Ω, then Ω is relatively compact in Lp[0, 1]; here,

vh(t) =
1

h

∫ t+h

t

v(s) ds.

Finally, we state a Krasnoselskii-type fixed point theorem due to
Burton [7].
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Theorem 2.7. Let S be a nonempty, closed, convex and bounded subset
of the Banach space E, and let A : E → E and B : S → E be two
operators such that :

(a) A is contraction;
(b) B is completely continuous;
(c) x = Ax+By ⇒ x ∈ S for all y ∈ S.

Then, the equation Ax+Bx = x has a solution in S.

3. Main result. Rewrite (1.1) as

x = Ax+Bx,

where

(Ax)(t) = Fg(T1x)(t), (Bx)(t) = (T2x)(t) · (Ux)(t),

Fg(T1x) = g(t, T1x), and (Ux)(t) =

∫ b

a

u(t, s, x(s)) ds.

3.1. The case when the operator U has values in L∞. We con-
sider (1.1) and the following assumptions.

(i) g : I×R → R satisfies the Carathéodory condition. The operators
Ti : L1 → L1, i = 1, 2, are continuous. There are positive functions
ai ∈ L1, i = 1, 2, 3, such that

|g(t, 0)| ≤ a3(t), |T1(0)| ≤ a1(t)

and
|T2x(t)| ≤ a2(t) + b2|x(t)|, b2 ≥ 0

for almost every t ∈ I and x ∈ L1. Also, there are constants bj ≥ 0,
j = 1, 3, such that, for almost every t ∈ I:

|g(t, x)− g(t, y)| ≤ b3|x− y|, x, y ∈ R

and

|T1(x(t))− T1(y(t))| ≤ b1|x(t)− y(t)|, x, y ∈ L1.



1748 R.P. AGARWAL, M.M.A. METWALI AND D. O’REGAN

(ii) u : I×I×R → R satisfies the Carathéodory condition. Moreover,
for arbitrary fixed s ∈ I and x ∈ R, the function t → u(t, s, x) is
integrable.

(iii) Assume that |u(t, s, x)| ≤ k(t, s), for all t, s ≥ 0 and x ∈
R, where the function k is measurable in (t, s). Assume that the
linear integral operator K0 with the kernel k(t, s) maps L1 into L∞.
Moreover, assume that, for arbitrary h > 0, xi ∈ R, i = 1, 2,

lim
δ→0

∥∥∥∥∥∥∥
∫
I

max
|xi|≤h

|x1−x2|≤δ

|u(t, s, x1)− u(t, s, x2)| ds

∥∥∥∥∥∥∥
L∞

= 0,

and let

(3.1) lim
h→0

∥∥∥∥ 1h
∫ t+h

t

|k(θ, s)− k(t, s)| dθ
∥∥∥∥
L1

= 0.

(iv) b1b3 + b2∥K0∥L∞ < 1.

(v) Let

r =
∥a3∥L1 + b3∥a1∥L1 + ∥K0∥L∞ · ∥a2∥L1

1− (b1b3 + b2∥K0∥L∞)
,

and assume that

(3.2)

∥∥∥∥ 1h
∫ t+h

t

|T2x(θ)− T2x(t)| dθ
∥∥∥∥
L1

−→ 0,

as h → 0 uniformly with respect to x ∈ Br, where Br is the closed ball
with center 0 and radius r, i.e., Br = {x ∈ L1 : ∥x∥L1 ≤ r}.

Theorem 3.1. Suppose that assumptions (i)–(v) hold. Then, (1.1) has
at least one integrable solution x ∈ L1 on I.

Proof. The proof will be given in five steps.

Step 1. The operator A : L1 → L1 is a contraction.

Step 2. The operator B maps the ball Br into L1 and is continuous.

Step 3. B(Br(I)) is relatively compact in L1 using Theorem 2.6.

Step 4. We prove that Theorem 2.7 (c) holds.

Step 5. We apply Theorem 2.7.



ON EXISTENCE AND UNIQUENESS OF L1-SOLUTIONS 1749

Step 1. Let x ∈ L1. From assumption (i), we have, for almost every
t ∈ I, that

||T1(x(t))| − |T1(0)|| ≤ |T1(x(t))− T1(0)| ≤ b1|x(t)|
=⇒ |T1(x(t))| ≤ |T1(0)|+ b1|x(t)| ≤ a1(t) + b1|x(t)|,

and |g(t, T1x(t))| ≤ a3(t) + b3|T1(x(t))|
≤ a3(t) + b3[a1(t) + b1|x(t)|]
≤ [a3(t) + b3a1(t)] + b1b3|x(t)|.

Thus, A maps L1 into itself. In addition,∫
I

|(Ax)(t)− (Ay)(t)| dt =
∫ b

a

|g(t, T1x(t))− g(t, T1y(t))| dt

≤
∫ b

a

b3|T1x(t)− T1y(t)| dt

≤ b3

∫ b

a

b1|x(t)− y(t)| dt

≤ b1b3

∫ b

a

|x(t)− y(t)| dt,

which implies that

(3.3) ∥Ax−Ay∥L1 ≤ b1b3∥x− y∥L1 .

From assumption (iv), we deduce that A is a contraction.

Step 2. From assumptions (ii) and (iii), we deduce that the opera-
tor U maps L1 into L∞ continuously. From assumption (i), the operator
T2 maps L1 into itself continuously, which implies that B transforms
the ball Br(L1) into L1 and is continuous.

Step 3. Now, for x ∈ Br(I), we have

∥B(x)∥L1 =

∫
I

|(Bx)(t)| dt ≤
∫
I

|T2x(t) · U(x)(t)| dt

≤
∫
I

|T2x(t)| ·
∫
I

|u(t, s, x(s))| ds dt

≤
∫
I

[a2(t) + b2|x(t)|] dt ·
∫
I

k(t, s) ds

= ∥K0∥L∞ [∥a2∥L1 + b2∥x∥L1 ];
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thus, B(Br(I)) is bounded in L1, i.e., Theorem 2.6 (i) is satisfied.
Letting x ∈ Br(I), then

|(Bx)h(t)− (Bx)(t)| =
∣∣∣∣ 1h

∫ t+h

t

(Bx)(θ) dθ − (Bx)(t)

∣∣∣∣
≤ 1

h

∫ t+h

t

|(Bx)(θ)− (Bx)(t)| dθ

=
1

h

∫ t+h

t

∣∣∣∣T2x(θ) ·
∫ b

a

u(θ, s, x(s)) ds

− T2x(t) ·
∫ b

a

u(t, s, x(s)) ds

∣∣∣∣ dθ
≤ 1

h

∫ t+h

t

∣∣∣∣T2x(θ) ·
∫ b

a

u(θ, s, x(s)) ds− T2x(t)

·
∫ b

a

u(θ, s, x(s)) ds

∣∣∣∣ dθ
+

1

h

∫ t+h

t

∣∣∣∣T2x(t) ·
∫ b

a

u(θ, s, x(s)) ds

− T2x(t) ·
∫ b

a

u(t, s, x(s)) ds

∣∣∣∣ dθ
≤ 1

h

∫ t+h

t

|T2x(θ)− T2x(t)|

·
∫ b

a

|u(θ, s, x(s))| ds |dθ + 1

h

∫ t+h

t

|T2x(t)|

·
∫ b

a

|u(θ, s, x(s))− u(t, s, x(s))| ds dθ

≤ 1

h

∫ t+h

t

|T2x(θ)− T2x(t)| ·
∫ b

a

k(θ, s) ds dθ

+

∫ b

a

[a2(t) + b2|x(t)|]

·
(
1

h

∫ t+h

t

|k(θ, s)− k(t, s)| dθ
)
ds,

which implies that
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∥(Bx)h − (Bx)∥L1 =

∫ b

a

|(Bx)h(t)− (Bx)(t)| dt

≤ ∥K0∥L∞

∫ b

a

(
1

h

∫ t+h

t

|T2x(θ)− T2x(t)| dθ
)
dt

+

∫ b

a

∫ b

a

[a2(t) + b2|x(t)|]

·
(
1

h

∫ t+h

t

|k(θ, s)− k(t, s)| dθ
)
ds dt

≤ ∥K0∥L∞

∥∥∥∥ 1h
∫ t+h

t

|T2x(θ)− T2x(t)| dθ
∥∥∥∥
L1

+ [∥a2∥L1+ b2 · r] ·
∥∥∥∥ 1h

∫ t+h

t

|k(θ, s)− k(t, s)| dθ
∥∥∥∥
L1

.

From (3.1) and (3.2), we deduce that (Bx)h → (Bx), (converges in
L1) as h → 0 uniformly with respect to x ∈ Br(I). Now, Theorem 2.6
guarantees that B(Br(I)) is relatively compact in the space L1.

Step 4. Fix x ∈ L1, and assume that the equality x = Ax+By holds
for some y ∈ Br. Then,∫

I

|x(t)| dt ≤
∫
I

|Ax(t) +By(t)| dt

≤
∫
I

(
|g(t, T1x(t))|+ |T2y(t)| · |

∫
I

u(t, s, y(s)) ds|
)
dt

≤
∫
I

(
a3(t) + b3|T1x(t)|+ [a2(t) + b2|y(t)|]

∫
I

k(t, s) ds

)
dt

≤ ∥a3∥L1
+ b3

∫
I

|T1x(t)| dt

+

∫
I

(
[a2(t) + b2|y(t)|] ·

∫
I

k(t, s) ds

)
dt

≤ ∥a3∥L1 + b3

∫ b

a

[a1(t) + b1|x(t)|] dt

+

(∫
I

a2(t)dt+ b2

∫ b

a

|y(t)| dt
)
∥K0∥L∞

≤ ∥a3∥L1 + b3∥a1∥L1 + b1b3∥x∥L1 + [∥a2∥L1 + b2∥y∥L1 ]
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· ∥K0∥L∞

≤ ∥a3∥L1 + b3∥a1∥L1 + b1b3∥x∥L1 + ∥K0∥L∞

· [∥a2∥L1 + b2 · r] .

The above inequality yields

(1− b1b3)∥x∥L1 ≤ ∥a3∥L1 + b3∥a1∥L1 + ∥K0∥L∞ · [∥a2∥L1 + b2 · r] .

Since (1− b1b3) > 0, this implies

∥x∥L1 ≤ ∥a3∥L1 + b3∥a1∥L1 + ∥K0∥L∞ · [∥a2∥L1 + b2 · r]
(1− b1b3)

.

Now, recall that

∥a3∥L1 + b3∥a1∥L1 + ∥K0∥L∞ · [∥a2∥L1 + b2 · r]
(1− b1b3)

= r.

Hence, ∥x∥L1 ≤ r, i.e., x ∈ Br. Thus, Theorem 2.7 (c) is satisfied.

Step 5. From the above steps, we can apply Theorem 2.7. Thus,
(1.1) has at least one integrable solution x ∈ L1 in Br(I). �

3.1.1. Uniqueness of the solution. Consider the next two assump-
tions.

(vi) g : I ×R → R satisfies the Carathéodory condition. The opera-
tors Ti : L1 → L1, i = 1, 2, are continuous. There are positive functions
ai ∈ L1, i = 1, 2, 3, such that

|g(t, 0)| ≤ a3(t), |Tj(0)| ≤ aj(t), j = 1, 2,

for almost every t ∈ I. In addition, there are constants bi ≥ 0,
i = 1, 2, 3, such that, for almost every t ∈ I:

|g(t, x)− g(t, y)| ≤ b3|x− y|, x, y ∈ R,

and

|Tj(x(t))− Tj(y(t))| ≤ bj |x(t)− y(t)|, j = 1, 2, x, y ∈ L1.

(vii) There exists a positive constant M (which may depend upon r)
such that

|u(t, s, x(s))− u(t, s, y(s))| ≤ M |x(s)− y(s)|,
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for almost every t ∈ I, almost every s ∈ I and x, y ∈ Br (where r is
given in Theorem 3.1).

Theorem 3.2. Suppose that assumptions (ii)–(vii) hold. If

M ≤ [1− (b1b3 + b2∥K0∥L∞)]2

(1− b1b3)∥a2∥L1
+ b2∥a3∥L1

+ b2b3∥a1∥L1

,

then (1.1) has a unique, integrable solution x ∈ L1 in Br(I).

Proof. Let x and y be any two solutions of (1.1) in Br(I). Then, for
almost every t ∈ I,

|x(t)− y(t)| ≤ |g(t, T1x(t))− g(t, T1y(t))|

+

∣∣∣∣T2x(t) ·
∫
I

u(t, s, x(s)) ds− T2y(t) ·
∫
I

u(t, s, y(s)) ds

∣∣∣∣
≤ b3|T1x(t)− T1y(t)|

+

∣∣∣∣T2x(t) ·
∫
I

u(t, s, x(s)) ds− T2x(t) ·
∫
I

u(t, s, y(s)) ds

∣∣∣∣
+

∣∣∣∣T2x(t) ·
∫
I

u(t, s, y(s)) ds− T2y(t) ·
∫
I

u(t, s, y(s)) ds

∣∣∣∣
≤ b1b3|x(t)− y(t)|

+ |T2x(t)| ·
∫
I

|u(t, s, x(s))− u(t, s, y(s))| ds

+ |T2x(t)− T2y(t)|
∫
I

|u(t, s, y(s))| ds

≤ b1b3|x(t)− y(t)|+ [a2(t) + b2|x(t)|]
∫
I

M |x(s)− y(s)| ds

+ b2|x(t)− y(t)|
∫
I

k(t, s) ds;

thus,

∥x− y∥L1 =

∫
I

|x(t)− y(t)| dt ≤ b1b3

∫
I

|x(t)− y(t)| dt

+

∫
I

[a2(t) + b2|x(t)|]
∫
I

M |x(s)− y(s)| ds dt
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+ b2

∫
I

|x(t)− y(t)|
∫
I

k(t, s) ds dt

= b1b3∥x− y∥L1 +M [∥a2∥L1 + b2∥x∥L1 ] · ∥x− y∥L1

+ b2∥K0∥L∞∥x− y∥L1

≤ b1b3∥x− y∥L1
+M [∥a2∥L1

+ b2 · r] · ∥x− y∥L1

+ b2∥K0∥L∞∥x− y∥L1 .

The above inequality yields

[1− (b1b3 + b2∥K0∥L∞ +M [∥a2∥L1 + b2 · r])] · ∥x− y∥L1 ≤ 0,

which implies that

∥x− y∥L1 = 0, =⇒ x = y.

This completes the proof. �

3.2. The existence of solutions when the operator U has values
in Lp. In this section, we use Theorem 2.4 (with 1/p+ 1/q = 1).

We consider (1.1) with the following assumptions:

(i)′ g : I×R → R satisfies the Carathéodory condition. The operator
T1 : L1 → L1 is continuous, and the operator T2 : L1 → Lp is
continuous. There are positive functions a1, a3 ∈ L1 and a2 ∈ Lp

such that
|g(t, 0)| ≤ a3(t), |T1(0)| ≤ a1(t)

and
|T2x(t)| ≤ a2(t) + b2|x(t)|1/p, b2 ≥ 0,

for all t ∈ I and x ∈ L1. In addition, there are constants bj ≥ 0,
j = 1, 3, such that, for almost every t ∈ I:

|g(t, x)− g(t, y)| ≤ b3|x− y|, x, y ∈ R,

and
|T1(x(t)) T1(y(t))| ≤ b1|x(t)− y(t)|, x, y ∈ L1.

(ii)′ u : I×I×R → R satisfies the Carathéodory condition. Suppose
that, for any nonnegative z ∈ Lq and for D ⊂ I,

lim
measD→0

sup
|x|≤z

∥∥∥∥∫
D

u(t, s, x(s)) ds

∥∥∥∥
Lq

= 0,
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and that

|u(t, s, x)| ≤ k(t, s)(a4(s) + b4|x|1/p) for all t, s ≥ 0 and x ∈ R,

where the function k is measurable in (t, s), a4 is a positive function in
Lp and b4 ≥ 0. Assume that the linear integral operator K0 with the
kernel k(t, s) maps Lp into Lq. Moreover, assume that

(3.4) lim
h→0

∥∥∥∥ 1h
∫ t+h

t

∥ k(θ, ·)− k(t, ·)∥Lq dθ

∥∥∥∥
Lq

= 0.

(iii)′ Assume that r′ is a positive solution of the equation

∥a3∥L1 + b3∥a1∥L1 + ∥a2∥Lp∥a4∥Lp∥K0∥+ (b1b3 − 1) · w

+ w1/p · ∥K0∥(b2∥a4∥Lp
+ b4∥a2∥Lp

) + b2b4∥K0∥ · w2/p = 0,

where ∥K0∥ = ∥∥k(t, ·)∥Lq∥Lq , and assume that

(3.5)

∥∥∥∥ 1h
∫ t+h

t

|T2x(θ)− T2x(t)| dθ
∥∥∥∥
Lp

−→ 0,

as h → 0 uniformly with respect to x ∈ Br′ .

Theorem 3.3. Suppose that assumptions (i)′–(iii)′ hold. If b1b3 < 1,
then (1.1) has at least one integrable solution x ∈ L1 in Br′(I).

Proof.

Step 1 is the same as in Theorem 3.1.

Step 2. From assumption (ii)′, we deduce that the operator U maps
L1 into Lq continuously. From assumption (i)′, the operator T2 maps L1

into Lp continuously, which implies that B transforms the ball Br′(L1)
into L1 and is continuous.

Step 3. Now, for x ∈ Br′(I), we have

∥B(x)∥L1 = ∥T2x · U(x)∥L1

≤ ∥T2x∥Lp ·
∥∥∥∥∫ b

a

u(t, s, x(s)) ds

∥∥∥∥
Lq

≤ ∥a2 + b2x
1/p∥Lp ·

∥∥∥∥ ∫ b

a

k(t, s)(a4(s) + b4|x(s)|1/p) ds
∥∥∥∥
Lq
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≤ (∥a2∥Lp + b2∥x1/p∥Lp) · ∥∥k(t, ·)∥Lq∥a4 + b4x
1/p∥Lp∥Lq

≤ (∥a2∥Lp
+ b2∥x∥1/pL1

) · ∥K0∥(∥a4∥Lp
+ b4∥x∥1/pL1

);

thus, B(Br′(I)) is bounded in L1, i.e., Theorem 2.6 (i) is satisfied. Let
x ∈ Br′(I). Then,

|(Bx)h(t)− (Bx)(t)|

≤ 1

h

∫ t+h

t

|T2x(θ)− T2x(t)| ·
∫ b

a

k(θ, s)(a4(s) + b4|x(s)|1/p) ds dθ

+
1

h

∫ t+h

t

(
[a2(t) + b2|x(t)|1/p]

·
∫ b

a

|u(θ, s, x(s))− u(t, s, x(s))| ds
)
dθ

≤ 1

h

∫ t+h

t

|T2x(θ)− T2x(t)| · ∥k(θ, ·)∥Lq

· ∥a4 + b4x
1/p∥Lp dθ + [a2(t) + b2|x(t)|1/p]

1

h

·
∫ t+h

t

(∫ b

a

|k(θ, s)− k(t, s)|(a4(s)

+ b4|x(s)|1/p) ds
)
dθ

≤ 1

h

∫ t+h

t

|T2x(θ)− T2x(t)| · ∥k(θ, ·)∥Lq

· (∥a4∥Lp + b4∥x∥1/pL1
) dθ + [a2(t) + b2|x(t)|1/p](∥a4∥Lp + b4∥x∥1/pL1

)

· 1
h

∫ t+h

t

∥k(θ, ·)− k(t, ·)∥Lq dθ,

which implies that

∥(Bx)h − (Bx)∥L1 ≤
∥∥∥∥ 1h

∫ t+h

t

|T2x(θ)− T2x(t)| · ∥k(θ, ·)∥Lq

· (∥a4∥Lp + b4∥x∥1/pL1
) dθ

∥∥∥∥
L1

+

∥∥∥∥[a2 + b2|x|1/p](∥a4∥Lp + b4∥x∥1/pL1
)
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· 1
h

∫ t+h

t

∥k(θ, ·)− k(t, ·)∥Lq dθ

∥∥∥∥
L1

≤
∥∥∥∥ 1h

∫ t+h

t

|T2x(θ)− T2x(t)| dθ
∥∥∥∥
Lp

·
∥∥∥∥k(θ, ·)∥Lq (∥a4∥Lp + b4∥x∥1/pL1

)
∥∥∥
Lq

+
∥∥∥a2 + b2|x|1/p

∥∥∥
Lp

·
∥∥∥∥(∥a4∥Lp + b4∥x∥1/pL1

)
1

h

·
∫ t+h

t

∥k(θ, ·)− k(t, ·)∥Lq dθ

∥∥∥∥
Lq

≤ ∥K0∥(∥a4∥Lp + b4∥x∥1/pL1
)

·
∥∥∥∥ 1h

∫ t+h

t

|T2x(θ)− T2x(t)| dθ
∥∥∥∥
Lp

+ [∥a2∥Lp + b2∥x∥1/pL1
](∥a4∥Lp + b4∥x∥1/pL1

)

·
∥∥∥∥ 1h

∫ t+h

t

∥k(θ, ·)− k(t, ·)∥Lq dθ

∥∥∥∥
Lq

.

From (3.4) and (3.5), we deduce that (Bx)h → (Bx), (converges in L1)
as h → 0 uniformly with respect to x ∈ Br′(I). Now, Theorem 2.6
guarantees that B(Br′(I)) is relatively compact in the space L1.

Step 4. Fix x ∈ L1, and assume that the equality x = Ax+By holds
for some y ∈ Br′ . Then

∥x∥L1 ≤ ∥Ax+By∥L1

≤ ∥Ax∥L1
+ ∥T2y∥Lp

∥Uy∥Lq

= ∥g(t, T1x)∥L1 + ∥T2y∥Lp

∥∥∥∥∫
I

u(t, s, y(s)) ds

∥∥∥∥
Lq

≤ ∥a3 + b3T1x∥L1 + ∥a2 + b2|y|1/p∥Lp

·
∥∥∥∥∫

I

k(t, s)(a4(s) + b4|y(s)|1/p) ds
∥∥∥∥
Lq

≤ ∥a3∥L1 + b3∥a1∥L1 + b1b3∥x∥L1
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+ (∥a2∥Lp + b2∥y∥1/pL1
)∥∥k(t, ·)∥Lq (∥a4∥Lp + b4∥y∥1/pL1

)∥Lq

≤ ∥a3∥L1 + b3∥a1∥L1 + b1b3∥x∥L1

+ ∥K0∥(∥a2∥Lp + b2 · r′1/p)(∥a4∥Lp + b4 · r′1/p).

The above inequality yields

(1− b1b3)∥x∥L1 ≤ ∥a3∥L1 + b3∥a1∥L1

+ ∥K0∥(∥a2∥Lp + b2 · r′1/p)(∥a4∥Lp + b4 · r′1/p).

Since (1− b1b3) > 0, this implies that

∥x∥L1 ≤ ∥a3∥L1 + b3∥a1∥L1

(1− b1b3)

+
∥K0∥(∥a2∥Lp + b2 · r′1/p)(∥a4∥Lp + b4 · r′1/p)

(1− b1b3)
.

Now, recall that

∥a3∥L1+b3∥a1∥L1+∥K0∥(∥a2∥Lp+b2 · r′1/p)(∥a4∥Lp+b4 · r′1/p)
(1− b1b3)

= r′.

Hence, ∥x∥L1 ≤ r′, i.e., x ∈ Br′ . Thus, Theorem 2.7 (c) is satisfied.

Step 5. From the above steps, we can apply Theorem 2.7. Thus,
(1.1) has at least one integrable solution x ∈ L1 in Br′(I). �

3.2.1. Uniqueness of the solution. Consider the following two as-
sumptions

(iv)′ g : I × R → R satisfies the Carathéodory condition. The
operator T1 : L1 → L1 is continuous, and the operator T2 : L1 → Lp is
continuous. There are positive functions a1, a3 ∈ L1 and a2 ∈ Lp such
that

|g(t, 0)| ≤ a3(t), |Tj(0)| ≤ aj(t), j = 1, 2,

for almost every t ∈ I. In addition, there are positive constants bi ≥ 0,
i = 1, 2, 3, such that, for almost every t ∈ I:

|g(t, x)− g(t, y)| ≤ b3|x− y|, x, y ∈ R,
|T1(x(t))− T1(y(t))| ≤ b1|x(t)− y(t)|, x, y ∈ L1,



ON EXISTENCE AND UNIQUENESS OF L1-SOLUTIONS 1759

and

|T2(x(t))− T2(y(t))| ≤ b2|x(t)− y(t)|1/p, x, y ∈ L1.

(v)′ Assume that

|u(t, s, x(s))− u(t, s, y(s))| ≤ k(t, s)|x(s)− y(s)|1/p,

for almost every t ∈ I, almost every s ∈ I and x, y ∈ Br′ (where r′ is
defined in assumption (iii)′); here, k is a measurable function.

Theorem 3.4. Suppose that assumptions (ii)′–(v)′ hold. If

(b1b3 + ∥K0∥(2r′)1/p−1[∥a2∥Lp + b2∥a4∥Lp + b2(1 + b4) · r′1/p]) ≤ 1,

then (1.1) has a unique integrable solution x ∈ L1 in Br′(I).

Proof. Let x and y be any two solutions of (1.1) in Br′(I). Then,
for almost every t ∈ I,

|x(t)− y(t)| ≤ b1b3|x(t)− y(t)|

+ |T2x(t)| ·
∫
I

|u(t, s, x(s))− u(t, s, y(s))| ds

+ |T2x(t)− T2y(t)|
∫
I

|u(t, s, y(s))| ds

≤ b1b3|x(t)− y(t)|+ [a2(t) + b2|x(t)|1/p]

·
∫
I

k(t, s)|x(s)− y(s)|1/p ds

+ b2|x(t)− y(t)|1/p
∫
I

k(t, s)(a4(s) + b4|x(s)|1/p) ds;

thus,

∥x− y∥L1
≤ b1b3∥x− y∥L1

+ ∥a2 + b2|x|1/p∥Lp

∥∥∥∥∫
I

k(t, s)|x(s)− y(s)|1/p ds
∥∥∥∥
Lq

+ b2∥(x− y)1/p∥Lp

∥∥∥∥∫
I

k(t, s)(a4(s) + b4|x(s)|1/p) ds
∥∥∥∥
Lq

≤ b1b3∥x− y∥L1 + (∥a2∥Lp + b2∥x∥1/pL1
)
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· ∥∥k(t, ·)∥Lq∥(x− y)1/p∥Lp∥Lq

+ b2∥x− y∥1/pL1
∥∥k(t, ·)∥Lq

∥a4 + b4|x|1/p∥Lp
∥Lq

≤ b1b3∥x− y∥L1 + (∥a2∥Lp + b2∥x∥1/pL1
)∥K0∥ · ∥x− y∥1/pL1

+ b2∥x− y∥1/pL1
∥K0∥(∥a4∥Lp

+ b4∥x∥1/pL1
)

≤ b1b3∥x− y∥L1 + ∥K0∥(2r′)1/p−1(∥a2∥Lp + b2 · r′1/p)

· ∥x− y∥L1 + b2∥K0∥(2r′)1/p−1(∥a4∥Lp + b4 · r′1/p)
· ∥x− y∥L1 .

The above inequality yields

[1− (b1b3 + ∥K0∥(2r′)1/p−1[∥a2∥Lp + b2∥a4∥Lp + b2(1 + b4) · r′1/p])]
· ∥x− y∥L1 ≤ 0,

which implies that

∥x− y∥L1 = 0, =⇒ x = y.

This completes the proof. �

4. Examples.

Example 4.1. For t ∈ (0, 1), consider the following equation

(4.1) x(t) =
1

1 + t2
+

1

4

[
t2 +

1

3
x(t)

]
+

∫ 1

0

t cos(ts)

1 + (x(s))2
ds.

Note that (4.1) is a particular case of (1.1), where

g(t, x) =
1

1 + t2
+

1

4
x, T1x(t) = t2 +

1

3
x(t), T2x(t) = 1

and

u(t, s, x) =
t cos(ts)

1 + x2
.

Also, note that
|u(t, s, x)| ≤ 1 = k(t, s).

Now, ∫ 1

0

k(t, s) ds = 1;
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thus, ∥K0∥L∞ = 1. Moreover, given arbitrary h > 0 such that |x1| ≤ h,
|x2| ≤ h and |x2 − x1| ≤ δ, we have

|u(t, s, x1)− u(t, s, x2)| ≤ |t cos(ts)|
∣∣∣∣ x2

1 − x2
2

(1 + x2
1)(1 + x2

2)

∣∣∣∣ ≤ 2hδ t,

so assumption (iii) holds.

Note that

• g and T2 satisfy assumption (i) with a1(t) = t2, a2(t) = 1,
a3(t) = 1/(1 + t2), and with constants b1 = 1/3, b2 = 0,
b3 = 1/4;

• b1b3 + b2∥K0∥L∞ = (1/3) · (1/4) + 0 · 1 = 1/12 < 1;
• Assumption (v) is satisfied with r = (1/11)(3π + 13).

Thus, all of the assumptions of Theorem 3.1 are satisfied so that the
integral equation (4.1) has at least one integrable solution in (0, 1).
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