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VISCOUS LIMITS FOR A RIEMANNIAN
PROBLEM TO A CLASS OF SYSTEMS

OF CONSERVATION LAWS

YANYAN ZHANG AND YU ZHANG

ABSTRACT. In this paper, by a vanishing viscosity ap-
proach, we investigate Riemannian solutions containing delta
shock waves with Dirac delta functions in both state vari-
ables for a class of non-strictly hyperbolic systems of con-
servation laws. The existence and uniqueness of solutions for
the viscous problem are shown.

1. Introduction. In this paper, by the vanishing viscosity ap-
proach, we consider the system

(1.1)

{
ut + (ϕu)x = 0,

vt + (ϕ v)x = 0,

with initial data

(1.2) (u, v)(0, x) =

{
(u−, v−) x < 0,

(u+, v+) x > 0,

where ϕ = ϕ(r) is a given smooth function of r = au + bv satisfying
a2 + b2 ̸= 0 and a and b are constants. For system (1.1), its shock
curves coincide with the rarefaction curves in a phase plane; therefore,
it belongs to the Temple class [14, 15]. In particular, if ϕ(r) = r,
taking a = 1/2, b = 0, (1.1) is reduced to the system investigated by
Korchinski [9]. While taking a = 1, b = 0, it is the same one dimen-
sional Burger-type equation studied by Tan, Zhang and Zheng [13].
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The delta shock wave with one state variable developing the Dirac
delta function is obtained in [9, 13]. In addition, taking ϕ(r) =
1 + 1/(1 + r) and a = −1, b = 1, it becomes the nonlinear chrom-
atography equation investigated by Cheng and Yang [1]; when taking
ϕ(r) = 1/(1 + r), a = −1, b = 1, it becomes another form of nonlinear
chromatography system considered by Wang [17]. For the delta shock
waves in [1, 17], it is quite different from those in [9, 13], and both
two-state variables simultaneously develop Dirac delta functions. In
addition, there are other respective systems which can be obtained
with the aid of valuations for ϕ(r), a and b. We will not give these
here.

For the general case ϕ = ϕ(u, v) of system (1.1), the propagation of
forward longitudinal and transverse waves in a stretched elastic string
which moves in a plane is modeled. In [10], the existence of global
solutions was proven by Liu and Wang. Furthermore, some of the
behaviors of solutions to the Cauchy problem were also clarified. In [8],
Keyfitz and Kranzer studied system (1.1) where ϕ = ϕ(u, v) is a general
function of u and v. They extended the theory of strictly hyperbolic
conservation laws to the non-strict cases and proved the existence of
a weak solution to the Riemannian problem. Specifically, the elastic
string problem was considered with ϕ = ϕ(s) = 1 + δ(s− 1)2/s and
s2 = u2 + v2. However, delta shock waves were not mentioned in their
work.

In [19], we constructively solved the Riemannian problem (1.1) and
(1.2). System (1.1) has two eigenvalues λ1 = ϕ and λ2 = ϕ+ rϕr with
corresponding right eigenvectors r⃗1 = (b,−a)T , r⃗2 = (u, v)T . Thus, it
is non-strictly hyperbolic and the set of umbilical points, on which the
strictly hyperbolicity fails, is

Σ = {(u, v) | λ1 = λ2} = {(u, v) | rϕr = 0}.

Since ∇λ1 · r⃗1 ≡ 0 and ∇λ2 · r⃗2 = r(rϕ)rr, we know that λ1 is
linearly degenerate, and λ2 is genuinely nonlinear if r(rϕ)rr ̸= 0 and
linearly degenerate if r(rϕ)rr = 0. There are five types of class-
ical Riemannian solutions consisting of rarefaction waves, shocks and
contact discontinuities. When r− > 0 > r+, we proved that the delta
shock waves appear in solutions. The obtained delta shock wave has
a distinctive feature, that is, the Dirac delta functions develop in both
state variables u and v simultaneously.
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Furthermore, in order to study the stability of delta shock waves,
we added viscosity terms to the right-hand side of (1.1) and considered
the Riemannian problem for the following viscous system

(1.3)

{
ut + (ϕ(r)u)x = εtuxx,

vt + (ϕ(r) v)x = εtvxx

with initial data (1.2). This vanishing viscosity approach was first
introduced in [4, 16] to solve the Riemannian problem for a class of
hyperbolic systems of conservation laws. Firstly, we proved that the
viscosity regularized problem (1.2) and (1.3) possessed a smooth self-
similar solution (uε(ξ), vε(ξ)) (ξ = x/t) for every ε > 0. Secondly, when
the solutions (uε(ξ), vε(ξ)) to (1.2) and (1.3) are uniformly bounded in
ε, we proved that they generate a weak solution to (1.1), (1.2). Finally,
we studied the existence of solutions for (1.1) and (1.2) if (uε(ξ), vε(ξ))
(ξ = x/t) tends to infinity. In particular, when r− > 0 > r+, the weak
star limit of (uε(ξ), vε(ξ)) (ξ = x/t) is the delta-shock solution of (1.1)
and (1.2), and the limit functions of uε(x, t) and vε(x, t) are a sum
of the step function and a Dirac delta function matching respective
strengths.

For the vanishing viscosity approach, there are many means of add-
ing viscosity terms. Nevertheless, the proofs of the existence of viscous
solutions are quite different for viscous systems with different viscosity
terms. Thus, this is an interesting question whether the different vis-
cosity approaches have their respective effects on the stability of the
solutions. Therefore, in this paper, we test an alternative approach and
introduce a special type of viscosity term for the right-hand side of the
second equation in (1.1), that is,

(1.4)

ut + (ϕ(r)u)x = 0,

vt + (ϕ(r)v)x = εt

(
a

b
uxx + vxx

)
,

where b ̸= 0. The reason for introducing such a viscosity term is due
to the relationships among r, u and v. By performing the variable
substitution bv = r − au, an ordinary differential equation dependent
upon r can be obtained. Then, the explicit expression of the viscosity
solution uε(ξ) (ξ = x/t) can be achieved technically, which will pave
the way for studying limit behaviors of the viscous solutions.

The main objective of this paper is to investigate how different
viscosity terms influence the stability of delta shock waves. Toward
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this end, we consider the viscosity regularized system (1.4) with the
initial data (1.2). Firstly, with the help of r = au + bv, we can
obtain a decoupled ordinary differential equation with the unknown
function of r. Using the results in [3, 4], the existence of the self-
similar solution rε(ξ) (ξ = x/t) and a series of its properties such
as smoothness, uniqueness and monotonicity are obtained. Then,
combining rε(ξ) with the first equation in (1.4), we obtain the explicit
formulae of the self-similar solution uε(ξ) (ξ = x/t) by solving a two-
point boundary value problem of the first order degenerate ordinary
equation. Furthermore, the existence of solutions for (1.2) and (1.4)
are shown. Next, we investigate the limit functions of viscous solutions
(uε(ξ), vε(ξ)) (ξ = x/t). For this process, we first discuss the limit
function r(ξ) of rε(ξ), the result that is stated in Lemma 4.1. Based
on Lemma 4.1, we can solve the limit function u(ξ) of uε(ξ) as ε → 0
from its explicit formulae. The limit function v(ξ) of vε(ξ) can also be
obtained by the relationships among r, u and v. When r− > 0 > r+,
we study in more detail the limit behavior of uε(ξ) and vε(ξ) in the
neighborhood of σ as ε→ 0, where

σ =
r+ϕ(r+)− r−ϕ(r−)

r+ − r−
.

Currently, the weak star limit of (uε(ξ), vε(ξ)) (ξ = x/t) is the delta-
shock solution of (1.1) and (1.2), both u(ξ) and v(ξ) are a sum of
step function and a Dirac δ-function matching, respectively, strength
with the discontinuity line x = σt as their support, u(ξ) and v(ξ) are
required to take certain values satisfying ϕ(r(σ)) = σ on x = σt. In
addition, the function r(ξ) is a step function.

Comparing these two types of viscosity terms, the viscous system
(1.4) is very distinct from (1.3). For the viscous system (1.2) and (1.3),
the main technique is a priori estimates for the existence of the viscous
solutions (uε(ξ), vε(ξ)) (ξ = x/t). For the viscous system (1.2) and
(1.4), the outstanding characteristic is that we can obtain the explicit
formulae of the solution uε(ξ), which greatly facilitates studying the
limit function of the viscous solution. From the solution itself, we in-
vestigate the properties of the viscous solutions and prove that uε(ξ) is
the unique weak solution of (1.4). Here, we adopt a simple and efficient
method for investigating the stability of a delta shock wave. This shows
that a delta shock wave remains stable in the form of (1.4).
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The paper is organized as follows. In Section 2, we restate the
Riemannian solutions to (1.1) and (1.2). In Section 3, we show the
existence of solutions to the viscosity regularized problem (1.2) and
(1.4). In Section 4, letting ε→ 0, we prove that the limit of the viscosity
regularized solution is the corresponding Riemannian solution to (1.1)
and (1.2).

2. Riemannian solutions of (1.1), (1.2). This section briefly re-
views the Riemannian solutions of (1.1) and (1.2) under the condition

ϕr > 0, (rϕ)rr > 0, ϕ(0) = 0,(2.1)

the detailed study of which can be found in [19].

In addition to the constant state solution, self-similar waves (u, v)(ξ)
(ξ = x/t) of the first family are contact discontinuities

J : ξ = ϕ(r−) = ϕ(r+) (r− = r+),

and those of the second family are rarefaction waves

R :


ξ = ϕ+ rϕr

r− < r,
u

v
=
u−
v−

or shock waves

S :


ξ = σ =

r+ϕ(r+)− r−ϕ(r−)
r+ − r−

u+
v+

=
u−
v−

0 < r < r− or r < r− < 0.

For the case r− > 0 > r+, the delta shock wave appears. In
order to define the delta shock wave solution of (1.1) in the sense
of distributions, a two-dimensional weighted delta function w(s)δS
supported on a smooth curve S parameterized as t = t(s), x = x(s)
(a 6 s 6 b) can be introduced as

(2.2) ⟨w(·)δS , φ(·, ·)⟩ =
∫ b

a

w(t(s))φ(t(s), x(s))
√
x′(s)2 + t′(s)2 ds

for all test functions φ ∈ C∞
0 ((−∞,+∞)× [0,+∞)).
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With this definition, we introduce a delta-shock solution to construct
the solution of (1.1), which can be expressed as

(2.3) u = U(x, t) + bw(t)δs, v = V (x, t)− aw(t)δs,

where S = {(σt, t) : 0 6 t <∞},

U(x, t) = u+ + [u]H(−x+ σt), V (x, t) = v+ + [v]H(−x+ σt),

(2.4)

w(t) =
1

b
(−σ[u] + [uϕ(r)])t, ϕ(r)|x=σt = σ,

in which [p] = p− − p+ denotes the jump of the function p across the
discontinuity, σ is the velocity of the delta shock wave and H(x) is the
Heaviside function.

In [19], we proved that the solution to (u, v) constructed above
satisfies

(2.5)
⟨u, φt⟩+ ⟨ϕu, φx⟩ = 0,

⟨v, φt⟩+ ⟨ϕv, φx⟩ = 0

for all test functions φ ∈ C∞
0 ((−∞,+∞)× [0,+∞)), where

⟨u, φ⟩ =
∫ +∞

0

∫ +∞

−∞
Uφdx dt+ ⟨bwδS , φ⟩,

⟨ϕu, φ⟩ =
∫ +∞

0

∫ +∞

−∞
ϕ(aU + bV )Uφdx dt+ ⟨σbwδS , φ⟩,

and v has the similar integral identities as above.

Then, a unique solution of (1.1) can be constructed as

(2.6) (u, v)(t, x) =


(u−, v−)(t, x) x < x(t),

(bw(t),−aw(t))δ(x− x(t)) x = x(t),

(u+, v+)(t, x) x > x(t),

in which x(t), w(t) and σ satisfy the following generalized Rankine-
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Hugoniot relation

(2.7)



dx

dt
= σ,

b
d
√
1 + σ2w(t)

dt
= −σ[u] + [uϕ(r)],

−a d
√
1 + σ2w(t)

dt
= −σ[v] + [vϕ(r)],

and

(2.8) ϕ(r)|x=x(t) = σ.

Under the entropy condition

λ2(r−) > λ1(r−) > σ > λ1(r+) > λ2(r+),

we solve the generalized Rankine-Hugoniot relation (2.7) and (2.8) with
initial data x(0) = 0 and w(0) = 0 to obtain that

(2.9)



σ =
r+ϕ(r+)− r−ϕ(r−)

r+ − r−
,

x = σt,

w(t) =
1√

1 + σ2

ϕ(r+)− ϕ(r−)
r+ − r−

(u+v− − u−v+)t,

ϕ(r)|x=σt = σ.

Using classical waves and the delta shock wave, we can construct
the solution of Riemannian problem (1.1) and (1.2) as follows:

(a) when r+ < r− < 0, the solution is
←−
S + J ;

(b) when r− < r+ 6 0, the solution is
←−
R + J ;

(c) when r− < 0 < r+, the solution is
←−
R +

−→
R ;

(d) when r+ > r− > 0, the solution is J +
−→
R ;

(e) when r− > r+ > 0, the solution is J +
−→
S .

(f) when r− > 0 > r+, the solution is a delta shock wave.

3. Existence of solutions for (1.2), (1.4). In this section, we
show the existence of solutions for the viscosity regularized problem
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(1.2), (1.4) when b ̸= 0. Performing a self-similar transformation
ξ = x/t, we obtain the boundary value problem

(3.1)

−ξuξ + (ϕ(r)u)ξ = 0,

−ξvξ + (ϕ(r)v)ξ = ε

(
a

b
uξξ + vξξ

)
and

(u, v)(±∞) = (u±, v±).(3.2)

Considering that r = au + bv, then, the boundary value problem
(3.1) and (3.2) is equivalent to

(3.3)

{
−ξuξ + (ϕ(r)u)ξ = 0,

−ξrξ + (ϕ(r)r)ξ = εrξξ

and

(3.4) (u, r)(±∞) = (u±, r±).

We first solve

(3.5)

{
−ξrξ + (ϕ(r)r)ξ = εrξξ,

r(±∞) = r±.

The existence, smoothness, uniqueness and monotonicity of the solution
for (3.5) can be obtained by using the “Dafermous trick” [2, 3,
4], in which the main idea of existence theory is to establish an
a priori estimate on the solution of a boundary value problem with
two parameters. For more details on the applications of this trick, the
reader is referred to [5, 6, 7, 11, 12].

For convenience, we assume that r− > r+, so r
ε(ξ) is strictly de-

creasing. Now, we consider the existence of solution u(ξ). Putting
rε(ξ) into the first equation of (3.3), we obtain the following boundary
value problem

(3.6)

{
−ξuξ + (ϕ(rε)u)ξ = 0,

u(±∞) = u±.

Since (rε(ξ))′ < 0 and ϕ′(r) > 0, the singularity point of (3.6) is
uniquely given by the solution of
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ξ = ϕ(rε),

denoted by ξεα. Then, the solution of (3.6) can be obtained by pasting
together the two solutions in the regions (−∞, ξεα) and (ξεα, +∞). The
first half is the solution to−ξuξ + (ϕ(rε)u)ξ = 0

−∞ < ξ < ξεα,
u(−∞) = u−

for which the solution is obtained as

uε1(ξ) = u− exp

(∫ ξ

−∞

−ϕs(rε(s))
−s+ ϕ(rε(s))

ds

)
.

The second half is the solution to−ξuξ + (ϕ(rε)u)ξ = 0

ξεα < ξ < +∞.
u(+∞) = u+

Similarly, we have

uε2(ξ) = u+ exp

(∫ +∞

ξ

ϕs(r
ε(s))

−s+ ϕ(rε(s))
ds

)
.

From the expressions of the solution, we know that uε1(ξ) and
uε2(ξ) are monotone functions for ξ < ξεα and ξ > ξεα, respectively.
Furthermore, the following may easily be obtained:

(3.7) lim
ξ→ξεα−

uε1(ξ) = ±∞, lim
ξ→ξεα+

uε2(ξ) = ±∞.

Set

(3.8) uε(ξ) =

{
uε1(ξ) −∞ < ξ < ξεα,

uε2(ξ) ξεα < ξ < +∞.

We now proceed to prove that uε(ξ) is a weak solution of (3.6) and
uε(ξ) ∈ L1[ξ1, ξ2] for any interval [ξ1, ξ2] containing ξ

ε
α. Integrating the

equation in (3.6) on [ξ1, ξ] for ξ1 < ξ < ξεα, we obtain

(3.9) (ϕ(r(ξ))− ξ)u1(ξ)− (ϕ(r(ξ1))− ξ1)u1(ξ1) +
∫ ξ

ξ1

u1(s) ds = 0.
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Denote

p(ξ) =

∫ ξ

ξ1

u1(s) ds,

A1 = (ϕ(r(ξ1))− ξ1)u1(ξ1),
α(ξ) = ϕ(r(ξ))− ξ.

Then, (3.9) can be rewritten as

(3.10)

{
α(ξ)p′(ξ) + p(ξ) = A1,

p(ξ1) = 0.

By direct calculation, we can obtain that

(3.11) p(ξ) = A1

(
1− exp

(
−
∫ ξ

ξ1

ds

α(s)

))
.

In addition, from ϕ′ > 0 and r′ < 0, it follows that

α(ξ) = O(|ξ − ξεα|) > 0 as ξ → ξεα−.

Noting that α(ξ) > 0, we then have

(3.12) lim
ξ→ξεα−

∫ ξ

ξ1

ds

α(s)
= +∞.

Combining this with (3.11), we immediately obtain that

(3.13) lim
ξ→ξεα−

∫ ξ

ξ1

u1(s) ds = A1.

Hence,

(3.14) lim
ξ→ξεα−

(ϕ(rε(ξ))− ξ)u1(ξ) = 0.

Similarly, we have

(3.15) lim
ξ→ξεα+

∫ ξ

ξ2

u2(s) ds = A2,

(3.16) lim
ξ→ξεα+

(ϕ(rε(ξ))− ξ)u2(ξ) = 0,

where ξεα < ξ2 < ξ, A2 = (ϕ(r(ξ2)) − ξ2)u2(ξ2). Equalities (3.13) and
(3.15) imply that uε(ξ) ∈ L1[ξ1, ξ2].
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For arbitrary ψ ∈ C∞
0 [ξ1, ξ2], we can verify that∫ ξ2

ξ1

(ξ − ϕ(r(ξ)))u(ξ)ψ′(ξ) dξ +

∫ ξ2

ξ1

u(ξ)ψ(ξ) dξ = 0.(3.17)

In fact, if we take α1, α2 such that ξ1 < α1 < ξεα < α2 < ξ2, then we
can calculate that

I =

∫ ξ2

ξ1

(ξ − ϕ(r(ξ)))u(ξ)ψ′(ξ) dξ +

∫ ξ2

ξ1

u(ξ)ψ(ξ) dξ

=

(∫ α1

ξ1

+

∫ α2

α1

+

∫ ξ2

α2

)
((ξ − ϕ(r))uψ′ + uψ) dξ

:= I1 + I2 + I3.

Integrating by parts, from (3.14) and (3.16), we have

|I1| = |(ϕ(r(α1))− α1)u(α1)ψ(α1)| −→ 0 as α1 → ξεα−
|I3| = |(ϕ(r(α2))− α2)u(α2)ψ(α2)| −→ 0 as α2 → ξεα+,

and

|I2| 6
∫ α2

α1

|(ξ − ϕ(r))ψ′ + ψ||u| dξ −→ 0 as α1 → ξεα−, α2 → ξεα+

since uε(ξ) ∈ L1[ξ1, ξ2]. Thus, I is independent of α1 and α2, that is,
(3.17) holds. Hence, uε(ξ) defined in (3.8) is the unique weak solution
of (3.6). Noting that r = au+ bv is uniformly bounded on (−∞,+∞),
we can obtain the following theorem.

Theorem 3.1. There exists a weak solution

(u, v) ∈ L1(−∞,+∞)× L1(−∞,+∞)

for the boundary value problem (3.1), (3.2).

4. The limit solution of (1.2) and (1.4) as ε → 0+. In this
section, we discuss the limit solution of (1.2) and (1.4) as ε→ 0+. For
this purpose, we firstly prove the following three lemmas.

Lemma 4.1. Let ξεβ denote the unique point satisfying ξεβ = ϕ(rε(ξεβ))+

rε(ξεβ)ϕ
′(rε(ξεβ)), and let ξβ be the limit of ξεβ as ε → 0+ (pass to a

subsequence, if necessary). Then, ξβ = (r+ϕ(r+)− r−ϕ(r−))/(r+− r−)
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and

(4.1)


lim

ε→0+
rεξ = 0 for |ξ − ξβ | > δ,

lim
ε→0+

rε = r+ for ξ > ξβ + δ,

lim
ε→0+

rε = r− for ξ 6 ξβ − δ

uniformly hold for any δ > 0 in the above intervals.

Proof. Observing (rϕ(r))r = ϕ(r) + rϕ′(r), from (2.1) and the
definition of ξεβ , we know that the limit of sequence ξεβ exists when

ε → 0+. Take ξ0 = ξβ + δ/2, and let ε be sufficiently small so that
ξεβ < ξ0 − δ/4. From the second equation in (3.3), we have

(4.2) (rε(ξ))′ = (rε(ξ0))
′ exp

(∫ ξ

ξ0

ϕ(rε(s)) + rε(s)ϕ′(rε(s))− s
ε

ds

)
.

Integrating (4.2) over [ξ0, ξ], the following may be seen:
(4.3)

rε(ξ0)−rε(ξ)=−(rε(ξ0))′
∫ ξ

ξ0

exp

(∫ ξ

ξ0

ϕ(rε(s))+rε(s)ϕ′(rε(s))−s
ε

ds

)
dξ.

Noting that∫ ξ

ξ0

exp

(∫ ξ

ξ0

ϕ(rε(s)) + rε(s)ϕ′(rε(s))− s
ε

ds

)
dξ

>
∫ ξ

ξ0

exp

(∫ ξ

ξ0

(ϕ(rε) + rεϕ′(rε))|rε=r+ − s
ε

ds

)
dξ

=

∫ ξ

ξ0

exp

(
(ϕ(rε) + rεϕ′(rε))|rε=r+

ε
(ξ − ξ0)−

ξ2 − ξ20
2ε

)
dξ

=

∫ ξ−ξ0

0

exp

(
(ϕ(rε) + rεϕ′(rε))|rε=r+

ε
t− t2

2ε
− ξ0t

ε

)
dt,

and, taking ξ → +∞, we obtain from (4.3) that

r− − r+ > −(rε(ξ0))′
∫ +∞

0

exp

(
2(ϕ(rε)+rεϕ′(rε))|rε=r+t−t2−2ξ0t

2ε

)
dt

> −(rε(ξ0))′
∫ 2ε

0

exp

(
2(ϕ(rε)+rεϕ′(rε))|rε=r+t−t2 − 2ξ0t

2ε

)
dt

> −(rε(ξ0))′εA3,



VISCOUS LIMITS FOR A RIEMANNIAN PROBLEM 1733

where A3 is a constant independent of ε. Then, we have

(4.4) 0 > (rε(ξ0))
′ > r+ − r−

εA3
,

which, combined with (4.2), yields

|(rε(ξ))′| 6 |r+ − r−|
εA3

exp

(∫ ξ

ξ0

ϕ(rε(s)) + rε(s)ϕ′(rε(s))− s
ε

ds

)
.

Now, we show that

ϕ(rε(s)) + rε(s)ϕ′(rε(s))− s
= ϕ(rε(s)) + rε(s)ϕ′(rε(s))− s− ϕ(rε(ξεβ))− rε(ξεβ)ϕ′(rε(ξεβ)) + ξεβ

= (((rεϕ(rε))rr(r
ε)′)|ξ=θ − 1)(s− ξεβ)

6 −δ/4.

Therefore,

(4.5) |(rε(ξ))′| 6 |r+ − r−|
εA3

exp

(
− δ

4ε
(ξ − ξ0)

)
for ξ > ξ0,

which implies that rεξ(ξ)→ 0 uniformly on ξ > ξβ + δ.

Next, we choose ξ and ξ3 such that ξ > ξ3 > ξβ + δ. Since

rε(ξ)−rε(ξ3) = (rε(ξ3))
′
∫ ξ

ξ3

exp

(∫ τ

ξ3

ϕ(rε(s))+rε(s)ϕ′(rε(s))−s
ε

ds

)
dτ,

we have

|rε(ξ)− rε(ξ3)| 6 |(rε(ξ3))′|
∫ ξ

ξ3

exp

(∫ τ

ξ3

−δ
4ε

ds

)
dτ

= |(rε(ξ3))′|
4ε

δ

(
1− exp

(
δ

4ε
(ξ3 − ξ)

))
.

Taking ξ → +∞ leads to

|r+ − rε(ξ3)| 6
4ε

δ
|r′(ξ3)|,

which implies that limε→0+ r
ε(ξ) = r+ uniformly for ξ3 > ξβ + δ.

Analogously, we have similar results for ξ 6 ξβ − δ.
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Finally, we determine the value of ξβ . Taking ψ ∈ C∞
0 (ξ1, ξ2), where

ξ1 < ξβ < ξ2, from the second equation in (3.3), we obtain

ε

∫ ξ2

ξ1

rεψ′′dξ =

∫ ξ2

ξ1

(rε(ψ + ξψ′)− rεϕ(rε)ψ′) dξ.

Letting ε→ 0, we get that∫ ξβ

ξ1

(r−(ψ+ξψ
′)−r−ϕ(r−)ψ′) dξ+

∫ ξ2

ξβ

(r+(ψ+ξψ
′)−r+ϕ(r+)ψ′) dξ=0.

Therefore,

(r− − r+)
(
ξβ −

r−ϕ(r−)− r+ϕ(r+)
r− − r+

)
ψ(ξβ) = 0,(4.6)

which yields that

ξβ =
r−ϕ(r−)− r+ϕ(r+)

r− − r+
since r− > r+, and ψ is arbitrary. This concludes the proof. �

Lemma 4.2. Let ξεα be defined by ξεα = ϕ(rε(ξεα)) and ξα the limit of
ξεα as ε→ 0+ (pass to a subsequence, if necessary). Then:

(i) if r− > r+ > 0, we have ξα = ϕ(r−) and ξα < ξβ ;
(ii) if 0 > r− > r+, we have ξα = ϕ(r+) and ξα > ξβ ;
(iii) if r− > 0 > r+, we have ξα = ξβ = (r−ϕ(r−) − r+ϕ(r+))/(r− −

r+).

Proof. The limit of sequence ξεα exists when ε→ 0+ due to ϕ′(r) > 0
and r′ < 0. We first prove (i). It is clear that ξα 6 ϕ(r−) since
ϕ(rε(ξ)) 6 ϕ(r−) on (−∞,+∞). Suppose that ξα < ϕ(r−). Then, ξα
< (r−ϕ(r−)− r+ϕ(r+))/(r− − r+) = ξβ . From (4.1), we have limε→0+

ϕ(rε(ξεα)) = ϕ(r−), a contradiction. Thus, (i) holds and (ii) can be
similarly treated.

For (iii), suppose that r− > 0 > r+. Furthermore, suppose that ξα
< (r−ϕ(r−)− r+ϕ(r+))/(r− − r+) = ξβ . Then, we obtain

ξα = lim
ε→0+

ϕ(rε(ξεα)) = ϕ(r−)

by Lemma 4.1, which contradicts r+ < 0. By a similar method, we
know that ξα cannot be greater than (r−ϕ(r−)− r+ϕ(r+))/(r− − r+).
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Hence, ξα = ξβ = (r−ϕ(r−)− r+ϕ(r+))/(r−− r+). The cases r+ = 0 <
r− and r+ < 0 = r− are treated similarly and lead to the same results.
The proof is complete. �

Lemma 4.3. For r− > r+ > 0 and any δ > 0, we have

lim
ε→0+

uε(ξ) = u− uniformly for ξ < ξα − δ,

lim
ε→0+

uε(ξ) = u1 uniformly for ξα + δ < ξ < ξβ − δ,

lim
ε→0+

uε(ξ) = u+ uniformly for ξ > ξβ + δ,

where u1 = r−u+/r+.

Proof. Take ε small enough such that |ξεα−ξα| < δ/2 and |ξεβ−ξβ | <
δ/2. For any ξ1 6 ξα − δ, we have ξ1 < ξεα − δ/2.

Integrating the first equation of (3.3) over (−∞, ξ1), we have

(4.7) uε(ξ1) = u− exp

(∫ ξ1

−∞

−ϕs(rε(s))
−s+ ϕ(rε(s))

ds

)
.

For s ∈ (−∞, ξ1], the following holds:

−s+ ϕ(rε(s)) > −ξ1 + ϕ(rε(ξ1))

= ϕ(rε(ξ1))− ϕ(rε(ξεα)) + ξεα − ξ1
= (1− ϕs(rε(θ)))(ξεα − ξ1)

> δ

2
.

(4.8)

Since ε → 0, combining (4.8) with Lemma 4.1 and noting that ξ1 <
ξα − δ 6 ξβ − δ, we can obtain that

1 6 exp

(∫ ξ1

−∞

−ϕs(rε(s))
−s+ ϕ(rε(s))

ds

)
6 exp

(
2

δ
(ϕ(r−))−ϕ(rε(ξ1))

)
−→ 1.

Thus, from (4.7), we conclude that

uε(ξ1)→ u− uniformly for ξ1 < ξα − δ.

Next, for any ξ3 > ξβ + δ, when ε is sufficiently small, we similarly
have

ξ3 > ξεβ +
δ

2
and ξ3 > ξεα +

δ

2
.
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Integrating the first equation of (3.3) over (ξ3, +∞) yields that

(4.9)
uε(ξ3)

u+
= exp

(∫ +∞

ξ3

−ϕs(rε(s))
s− ϕ(rε(s))

ds

)
.

And, for s ∈ [ξ3, +∞), we similarly have s− ϕ(rε(s)) > δ/2. Thus,

1 6 exp

(∫ +∞

ξ3

−ϕs(rε(s))
s− ϕ(rε)

ds

)
6 exp

(
2

δ
(ϕ(rε(ξ3)))− ϕ(r+)

)
−→ 1,

which implies that

uε(ξ3)→ u+ uniformly for ξ3 > ξβ + δ.

For ξ ∈ [ξα + δ, ξβ − δ], (4.9) is still valid. For any δ1 > 0, we split
the integral in (4.9) into three parts,

(4.10)

∫ +∞

ξ

−ϕs(rε(s))
s− ϕ(rε)

ds

=

(∫ ξβ−δ1

ξ

+

∫ ξβ+δ1

ξβ−δ1

+

∫ +∞

ξβ+δ1

)
−ϕs(rε(s))
s− ϕ(rε)

ds.

It can easily be observed that the first and third terms on the right
hand side of (4.10) tend to zero as ε → 0. The second term may be
estimated as follows:∫ ξβ+δ1

ξβ−δ1

−ϕs(rε(s))
s− ϕ(rε)

ds =

∫ ξβ+δ1

ξβ−δ1

−ϕs(rε(s)) + 1

s− ϕ(rε)
ds−O(δδ1)

= ln |s− ϕ(rε(s))|ξβ+δ1
ξβ−δ1

−O(δδ1).

Letting ε→ 0 and sending δ1 → 0, we have

lim
ε→0

∫ +∞

ξ

−ϕs(rε(s))
s− ϕ(rε)

ds = lim
δ1→0

ln
ξβ + δ1 − ϕ(r+)
ξβ − δ1 − ϕ(r−)

= ln
r−
r+
.

Therefore,

lim
ε→0

uε(ξ) =
r−u+
r+

uniformly in [ξα + δ, ξβ − δ]. The proof is complete. �

Let U(ξ) = (u(ξ), v(ξ)) be the solution of Riemannian problem (1.1)
and (1.2) and Uε(ξ) = (uε(ξ), vε(ξ)) the solution of (3.1) and (3.2).
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From Lemma 4.1 and r = au+ bv, we have

lim
ε→0+

Uε(ξ) =


(u−, v−) ξ < ξα,

(u1, v1) ξα < ξ < ξβ ,

(u+, v+) ξ > ξβ ,

(4.11)

where v1 = r−v+/r+. This coincides with the Riemannian solution con-
structed in Section 2. Similarly, for 0 > r− > r+, the limit of (uε(ξ),
vε(ξ)) can also be obtained. Thus, we omit it.

Now, we turn to the case r− > 0 > r+ and obtain the following the-
orem.

Theorem 4.4. For any δ > 0, we have

lim
ε→0+

uε(ξ) =

{
u− −∞ < ξ < σ − η,
u+ σ + η < ξ < +∞

(4.12)

uniformly, where

σ =
r+ϕ(r+)− r−ϕ(r−)

r+ − r−
.

Proof. The proof is similar to that of Theorem 4.3; thus, we omit
it. �

In what follows, we need to study in more detail the limiting behavior
of uε(ξ) in the neighborhood [α1, α2] of ξ = ξβ = ξα = σ as ε → 0. In
order to accomplish this, we take ξ1 < σ < ξ2, ψ ∈ C∞

0 [ξ1, ξ2] such that
ψ(ξ) ≡ ψ(σ) for ξ in a small neighborhood [α1, α2] of the point ξ = σ
(ψ is called a sloping test function). From (3.1), we have

(4.13)

∫ ξ2

ξ1

uε(ξ)(ξ − ϕ(rε(ξ)))ψ′(ξ) dξ +

∫ ξ2

ξ1

uε(ξ)ψ(ξ) dξ = 0.

For α1 and α2 near σ with α1 < σ < α2, from Lemma 4.1, we can
prove that

lim
ε→0

∫ ξ2

ξ1

uε(ξ − ϕ(rε))ψ′dξ

= lim
ε→0

∫ α1

ξ1

uε(ξ − ϕ(rε))ψ′dξ + lim
ε→0

∫ ξ2

α2

uε(ξ − ϕ(rε))ψ′dξ
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=

∫ α1

ξ1

u−(ξ − ϕ(r−))ψ′dξ +

∫ ξ2

α2

u+(ξ − ϕ(r+))ψ′dξ

= (u+ϕ(r+)− u−ϕ(r−)− (u+α2 − u−α1))ψ(σ)

−
∫ α1

ξ1

u−ψ(ξ) dξ −
∫ ξ2

α2

u+ψ(ξ) dξ.

Letting α1 → σ− and α2 → σ+, we have

(4.14) lim
ε→0

∫ ξ2

ξ1

uε(ξ − ϕ(rε))ψ′dξ

= (σ[u]− [ϕ(r)u])ψ(σ)−
∫ ξ2

ξ1

Hu(ξ − σ)ψ(ξ) dξ,

where

Hu(x) =

{
u− x < 0,

u+ x > 0.

Returning to (4.13), we obtain that

(4.15) lim
ε→0

∫ ξ2

ξ1

(uε −Hu(ξ − σ))ψ(ξ) dξ = (−σ[u] + [ϕ(r)u])ψ(σ)

for all sloping test function ψ ∈ C∞
0 [ξ1, ξ2].

For an arbitrary ψ̂(ξ) ∈ C∞
0 [ξ1, ξ2], we take a sloping test function

ψ such that

ψ(σ) = ψ̂(σ) and max
ξ∈[ξ1,ξ2]

|ψ(ξ)− ψ̂(ξ)| < δ.

Since uε ∈ L1[ξ1, ξ2] uniformly, we find that

lim
ε→0

∫ ξ2

ξ1

(uε −Hu(ξ − σ))ψ̂(ξ) dξ

= lim
ε→0

∫ ξ2

ξ1

(uε −Hu(ξ − σ))ψ(ξ) dξ +O(δ)

= (−σ[u] + [ϕ(r)u])ψ(σ) +O(δ)

= (−σ[u] + [ϕ(r)u])ψ̂(σ) +O(δ).
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Sending δ → 0, we find that (4.15) holds for all ψ̂ ∈ C∞
0 [ξ1, ξ2]. Thus,

the limit function of uε(ξ) is the sum of a step function and a Dirac
delta function with strength −σ[u] + [ϕ(r)u].

The next goal is to determine the value of ϕ(r(ξ)) at the discontinuity
point ξ = σ. We can derive from (4.13) that

(4.16)

∫ ξ2

ξ1

u(ψ + ξψ′ − ϕ(r)ψ′) dξ = 0

holds for any ψ(ξ) ∈ C∞
0 [ξ1, ξ2] with ξ1 < σ < ξ2. By (4.15), we obtain

(4.17)∫ ξ2

ξ1

(Hu(ξ − σ) + (−σ[u] + [ϕ(r)u])δ(ξ − σ))(ψ + ξψ′− ϕ(r)ψ′) dξ = 0,

namely,∫ σ−

ξ1

(Hu(ξ − σ))(ψ + ξψ′ − ϕ(r)ψ′) dξ

+

∫ ξ2

σ+

(Hu(ξ − σ))(ψ + ξψ′ − ϕ(r)ψ′) dξ

+

∫ ξ2

ξ1

((−σ[u] + [ϕ(r)u])δ(ξ − σ))ψ dξ

+

∫ ξ2

ξ1

((−σ[u] + [ϕ(r)u])δ(ξ − σ))(ξψ′ − ϕ(r)ψ′) dξ

= u−(ψ(ξ − ϕ(r−)))
∣∣σ−

ξ1
+ u+(ψ(ξ − ϕ(r+)))

∣∣ξ2
σ+

+ (−σ[u] + [ϕ(r)u])ψ(σ)

+ (−σ[u] + [ϕ(r)u])(σ − ϕ(r(σ)))ψ′(σ)

= (−σ[u] + [ϕ(r)u])(σ − ϕ(r(σ)))ψ′(σ)

= 0,

which implies that σ = ϕ(r(σ)) since (−σ[u] + [ϕ(r)u]) ̸= 0 and ψ is
arbitrary.

When r− > 0 > r+, noting bv
ε(ξ) = rε(ξ)− auε(ξ), it can easily be

verified that the limit function of vε(ξ) is the sum of a step function
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Hv(x) and a Dirac delta function with strength −σ[v] + [ϕ(r)v], where

Hv(x) =

{
v− x < 0,

v+ x > 0.

Under condition (2.1), let (uε, vε) be the solution of (3.1)–(3.2) and
r− > 0 > r+. Then, uε and vε converge in the weak star topology
of C∞

0 (R1). The limit functions u(ξ) and v(ξ) of uε(ξ) and vε(ξ) are
all sums of the step function and a Dirac delta function with strengths
−σ[u] + [ϕ(r)u] and −σ[v] + [ϕ(r)v], and ϕ(r(σ)) = σ is reduced on
x = σt, which coincides with the delta-shock solution constructed in
Section 2. This fact shows that the delta shock wave is stable under
viscous perturbation.
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