
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 48, Number 5, 2018

NEARLY KRULL DOMAINS AND
NEARLY PRÜFER v-MULTIPLICATION DOMAINS

JUNG WOOK LIM

ABSTRACT. In this paper, we introduce some new
concepts of almost factoriality of integral domains. More
precisely, we investigate nearly Krull domains, nearly Prüfer
v-multiplication domains and some related integral domains.

1. Introduction. Throughout this paper, D always denotes an in-
tegral domain with quotient field K and D means the integral closure
of D in K.

1.1. Preliminaries. We first review some preliminaries to facilitate
the reading of this article. Let F(D) be the set of nonzero fractional
ideals of D. For an I ∈ F(D), we denote by I−1 the fractional ideal
{x ∈ K | xI ⊆ D} of D. Recall that the v-operation on D is the
mapping on F(D) defined by I 7→ Iv := (I−1)−1; the t-operation on D
is the mapping on F(D) defined by I 7→ It :=

∪
{Jv | J is a nonzero

finitely generated fractional subideal of I}; and the w-operation on D
is the mapping on F(D) defined by I 7→ Iw := {x ∈ K | xJ ⊆ I for
some finitely generated fractional ideal J of D with Jv = D}. Clearly,
I ⊆ Iw ⊆ It ⊆ Iv for all I ∈ F(D); and, if an I ∈ F(D) is finitely
generated, then It = Iv. An I ∈ F(D) is called a v-ideal (respectively,
t-ideal) if Iv = I (respectively, It = I). A t-ideal I of D is said to
be of v-finite type if I = Jv for some finitely generated ideal J of D.
A t-ideal M of D is called a maximal t-ideal of D if M is maximal
among proper integral t-ideals of D. It is well known that, if D is not a
field, then a maximal t-ideal of D always exists (by Zorn’s lemma) and

2010 AMS Mathematics subject classification. Primary 13A15, 13F05, 13G05.
Keywords and phrases. Nearly Krull domain, nearly Prüfer v-multiplication
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each nonzero nonunit element of D is in a maximal t-ideal of D. We
denote the set of maximal t-ideals of D by t-Max(D). An I ∈ F(D) is
said to be t-locally principal if IDM is principal for all M ∈ t-Max(D).
An I ∈ F(D) is said to be t-invertible if (II−1)t = D; equivalently,
II−1 * M for all M ∈ t-Max(D). It has been shown that an I ∈ F(D)
is t-invertible if and only if I is t-locally principal and It is of v-finite
type [12, Corollary 2.7]. It is also well known that, for all nonzero
ideals I of D, Iw =

∩
M∈t-Max(D) IDM [2, Corollary 2.10].

The t-class group ofD is the abelian group Clt(D) := T(D)/Prin(D),
where T(D) is the group of t-invertible fractional t-ideals of D under
the t-multiplication I ∗J = (IJ)t and Prin(D) is the subgroup of T(D)
of principal fractional ideals of D. Let Inv(D) be the abelian group
of invertible fractional ideals of D. Clearly, Inv(D) is a subgroup
of T(D) containing Prin(D). The Picard group of D is a subgroup
Pic(D) := Inv(D)/Prin(D) of Clt(D). The local t-class group of D is
defined as G(D) := Clt(D)/Pic(D).

Recall thatD is an almost Prüfer v-multiplication domain (APvMD)
(respectively, an almost GCD-domain (AGCD-domain), almost gener-
alized GCD-domain (AGGCD-domain)) if, for each nonzero finitely
generated ideal (a1, . . . , ak) of D, there exists an integer n = n(a1, . . . ,
ak) ≥ 1 such that (an1 , . . . , a

n
k ) is t-invertible (respectively, principal,

invertible); and D is an almost Krull domain (AK-domain) (respec-
tively, an almost unique factorization domain (AUF-domain), almost
π-domain) if, for each nonzero ideal ({aα}) of D, there exists a positive
integer n = n({aα}) such that ({anα})t is t-invertible (respectively, prin-
cipal, invertible). For the sake of convenience, we will use the notation
{aα} instead of {aα}α∈Λ, where Λ is an indexed set. Clearly, an AGCD-
domain (respectively, an AUF-domain) is an AGGCD-domain (respec-
tively, an almost π-domain); and an AGGCD-domain (respectively, an
almost π-domain) is an APvMD (respectively, an AK-domain). It has
been shown that D is an AGCD-domain (respectively, an AGGCD-
domain) if and only if D is an APvMD and Clt(D) (respectively, G(D))
is torsion [15, Theorem 3.1] (respectively, [8, Theorem 2.11]); and D is
an AUF-domain (respectively, an almost π-domain) if and only if D is
an AK-domain and Clt(D) (respectively, G(D)) is torsion [9, Theorems
3.1 and 3.15].

1.2. History of almost factoriality of integral domains. In mul-
tiplicative ideal theory, one of the important topics during the past few
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decades was the theory of factorizations in integral domains. Among
various kinds of integral domains, many mathematicians have stud-
ied Bézout, Prüfer, Dedekind and principal ideal domains (PID). In
regards to t-operation analogues, they have also investigated GCD-,
Prüfer v-multiplication (PvMDs), unique factorization (UFD), Krull,
generalized GCD-domains (GGCD-domain) and π-domains.

In [21], almost factorial domains were studied as Krull domains with
torsion divisor class groups. Motivated by this, Zafrullah first began to
study a general theory of almost factoriality and introduced the notion
of an AGCD-domain [22]. Following his research, several types of
almost divisibility of integral domains have been studied. Anderson and
Zafrullah introduced the concepts of almost Bézout domains, almost
Prüfer domains, almost principal ideal domains and almost Dedekind
domains [5]. Recently, the notion of an APvMD was introduced in
[15] and further studied in [8, 10, 14, 18]. The authors of [9, 17]
also introduced and studied the concepts of AK-, AUF- and almost
π-domains.

In [5, Section 6], the authors gave another type of almost factoriality
of integral domains. Given an ideal I, they considered the ideal
generated by all nth powers of elements of I instead of all nth powers
of elements of a generating set of I, where n is a positive integer. By
using these new ideals, they defined the notions of nearly Bézout, nearly
Prüfer, nearly principal ideal and nearly Dedekind domains.

This paper is a continuation of [5, 9, 17]. The purpose of this
article is to study the t-operation analogues of “nearly” types of integral
domains in [5, Section 6], which are also “nearly” versions of Prüfer
v-multiplication domains, GCD-domains, generalized GCD-domains,
Krull domains, unique factorization domains and π-domains. (Relevant
definitions will be reviewed in the sequel.) Among other things, we
show that D is a nearly unique factorization domain (respectively,
a nearly π-domain) if and only if D is a nearly Krull domain and
Clt(D) (respectively, G(D)) is torsion; and D is a nearly GCD-domain
(respectively, a nearly generalized GCD-domain) if and only if D is a
nearly Prüfer v-multiplication domain and Clt(D) (respectively, G(D))
is torsion (Theorem 2.6). We also prove that, if D is integrally closed
or root closed, then the notion of a nearly Krull domain (respectively,
a nearly Prüfer v-multiplication domain) coincides with that of an AK-
domain (respectively, an APvMD) (Theorems 2.12 and 2.14). Finally,
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we give an example of a nearly Prüfer v-multiplication domain which
is neither an APvMD nor a nearly Krull domain (Example 2.19).

A general reference for results from multiplicative ideal theory is
[11].

2. Main results. For an ideal I = ({aα}) of D and a positive in-
teger n, set In := ({in | i ∈ I}). Clearly, ({anα}) ⊆ In ⊆ In for all
integers n ≥ 1. While ({aα}) = I1 = I1, the other inclusions may
be proper. For example, in Z[X,Y ], (X,Y )2 = (X2, 2XY, Y 2) and
(X,Y )2 = (X2, XY, Y 2); thus, (X2, Y 2) ( (X,Y )2 ( (X,Y )2. More-
over, In need not be finitely generated even though I is finitely gener-
ated. For instance, (X,Y )3 is not finitely generated in Z[X,Y, {Zi}i∈N]
[4, Example 4]. Motivated by [5], we define several new “nearly” ver-
sions of almost factoriality.

Definition 2.1. Let D be an integral domain.

(i) D is a nearly Prüfer v-multiplication domain (nearly PvMD)
(respectively, a nearly GCD-domain, nearly generalized GCD-domain
(nearly GGCD-domain)) if, for each nonzero finitely generated ideal
I of D, there exists a positive integer n = n(I) such that (In)t is
t-invertible (respectively, principal, invertible).

(ii) D is a nearly Krull domain (respectively, a nearly unique fac-
torization domain (nearly UFD), nearly π-domain) if, for each nonzero
ideal I of D, there exists an integer n = n(I) ≥ 1 such that (In)t is
t-invertible (respectively, principal, invertible).

Obviously, a nonzero principal ideal is invertible, and an invertible
ideal is t-invertible; so a nearly GCD-domain (respectively, a nearly
UFD) is a nearly GGCD-domain (respectively, a nearly π-domain),
and a nearly GGCD-domain (respectively, a nearly π-domain) is a
nearly PvMD (respectively, a nearly Krull domain). In order to give
the “nearly” analogues of the following facts, we need two lemmas.

Fact 2.2.

(i) [15, Theorem 3.1] (respectively, [9, Theorem 3.1]). D is an
AGCD-domain (respectively, an AUF-domain) if and only if D is an
APvMD (respectively, an AK-domain) and Clt(D) is torsion.

(ii) [8, Theorem 2.11] (respectively, [9, Theorem 3.15]). D is an
AGGCD-domain (respectively, an almost π-domain) if and only if D is
an APvMD (respectively, an AK-domain) and G(D) is torsion.
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Lemma 2.3. Let I be a nonzero ideal of D, and let n be a positive
integer. Then, the following assertions hold.

(i) If I is t-locally principal, then (In)t = (In)t = ((It)n)t.

(ii) If I is t-invertible, then In is t-invertible.

Proof.

(i) Let M be a maximal t-ideal of D. Since I is t-locally principal,
there exists an xM ∈ I such that IDM = xMDM . Let n be a positive
integer, and let A be the ideal of D generated by {xn

N | N is a maximal
t-ideal of D}. Then, we have

InDM = xn
MDM ⊆ ADM ⊆ InDM ;

thus, InDM = ADM for any maximal t-ideal M of D. Therefore, we
obtain

(In)w =
∩

M∈t-Max(D)

InDM =
∩

M∈t-Max(D)

ADM = Aw,

and hence, (In)t = At. Note that A ⊆ In ⊆ In. Thus, (In)t = (In)t.

For the second equality, we note that (It)n ⊆ (It)
n ⊆ (In)t = (In)t.

Hence, ((It)n)t ⊆ (In)t ⊆ ((It)n)t, which completes the proof of (i).

(ii) If I is t-invertible, then so is In, and hence, In is t-invertible
by (i). �

Lemma 2.4. Let I be a nonzero ideal of D. If In is t-invertible for
some integer n ≥ 1, then ((In)k)t = ((In)

k)t = (Ink)t for all integers
k ≥ 1, and hence, (Ink)t is also t-invertible.

Proof. The first equality is an immediate consequence of Lemma 2.3
(i). Next, we show the second equality. Since In is t-invertible, (In)t
= (a1, . . . , am)t for some a1, . . . , am ∈ In [12, Corollary 2.7]; thus, for

each i = 1, . . . ,m, we can write ai =
∑li

j=1 b
n
ijrij , where bij ∈ I and

rij ∈ D. Note that

(In)t = (a1, . . . , am)t ⊆ ({bnij | i=1, . . . ,m and j=1, . . . , li})t ⊆ (In)t;

thus, (In)t = ({bnij | i = 1, . . . ,m and j = 1, . . . , li})t. Hence, we have

((In)
k)t = (({bnij | i = 1, . . . ,m and j = 1, . . . , li})k)t

= ({bnkij | i = 1, . . . ,m and j = 1, . . . , li})t ⊆ (Ink)t ⊆ ((In)
k)t,
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where the second equality follows from [5, Lemma 3.3] since ({bnij | i =
1, . . . ,m and j = 1, . . . , li})t is t-invertible. Thus, ((In)k)t = (Ink)t. �

Remark 2.5.

(i) Clearly, Ink ⊆ (In)k for all integers n, k ≥ 1. However, the
equality does not hold in general. For example, (X,Y )4 ( ((X,Y )2)2
in Z[X,Y ]. In order to see this, we first note that (X,Y )2 =
(X2, 2XY, Y 2); thus, 4X2Y 2 ∈ ((X,Y )2)2. We also note that each ele-
ment of (X,Y )4 is a finite sum of h(Xf+Y g)4 for some f, g, h ∈ Z[X,Y ]
and (Xf+Y g)4 = X4f4+4X3Y f3g+6X2Y 2f2g2+4XY 3fg3+Y 4g4.
Therefore, the coefficients of X2Y 2 of polynomials in (X,Y )4 are mul-
tiples of six, and hence, 4X2Y 2 ̸∈ (X,Y )4.

(ii) Note that, in Z[X,Y ], ((X,Y )2)t = Z[X,Y ]; thus, (X,Y )2 is t-
invertible. Therefore, by Lemma 2.4, ((X,Y )4)t = (((X,Y )2)2)t. More
generally, ((X,Y )2n)t = (((X,Y )2)n)t for all integers n ≥ 1.

(iii) Let I be a t-invertible ideal. Then, by Lemma 2.3 (ii), In is t-
invertible; thus, ((In)k)t = (Ink)t by Lemma 2.4. This shows that, if I
is t-invertible, then (Ink)t = ((In)k)t for all integers n, k ≥ 1.

Now, we are ready to give the exact relations among some “nearly”
integral domains.

Theorem 2.6. The following statements hold.

(i) D is a nearly UFD (respectively, a nearly π-domain) if and only if
D is a nearly Krull domain and Clt(D) (respectively, G(D)) is torsion.

(ii) D is a nearly GCD-domain (respectively, a nearly GGCD-
domain) if and only if D is a nearly PvMD and Clt(D) (respectively,
G(D)) is torsion.

Proof.

(i) Assume thatD is a nearly UFD (respectively, a nearly π-domain).
Clearly, D is a nearly Krull domain. Let I be a t-invertible t-ideal of
D. Then, there exists a positive integer n = n(I) such that (In)t is
principal (respectively, invertible); thus, (In)t is principal (respectively,
invertible) by Lemma 2.3 (i). Therefore, Clt(D) (respectively, G(D))
is torsion. For the converse, let I be a nonzero ideal of D. Since D is a
nearly Krull domain, (In)t is t-invertible for some integer n = n(I) ≥ 1.
Since Clt(D) (respectively, G(D)) is torsion, there exists an integer
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k ≥ 1 such that ((In)
k)t is principal (respectively, invertible). Note that

((In)
k)t = (Ink)t by Lemma 2.4; thus, (Ink)t is principal (respectively,

invertible). Therefore, D is a nearly UFD (respectively, a nearly π-
domain).

(ii) Assume that D is a nearly GCD-domain (respectively, a nearly
GGCD-domain). Then, obviously, D is a nearly PvMD. Let I be a
t-invertible t-ideal of D. Then I = (a1, . . . , al)t for some a1, . . . , al ∈
I. Also, there exists a positive integer n = n(a1, . . . , al) such that
((a1, . . . , al)n)t is principal (respectively, invertible). Note that (In)t =
(In)t = (((a1, . . . , al)t)n)t = ((a1, . . . , al)n)t by Lemma 2.3 (i); thus,
(In)t is principal (respectively, invertible). Hence, Clt(D) (respectively,
G(D)) is torsion. For the converse, let I be a nonzero finitely generated
ideal ofD. SinceD is a nearly PvMD, In is t-invertible for some positive
integer n = n(I). Since Clt(D) (respectively, G(D)) is torsion, ((In)

k)t
is principal (respectively, invertible) for some integer k ≥ 1. Note that
((In)

k)t = (Ink)t by Lemma 2.4; thus, (Ink)t is principal (respectively,
invertible). Therefore, D is a nearly GCD-domain (respectively, a
nearly GGCD-domain). �

Lemma 2.7. Let I be a nonzero ideal of D. If D contains a field of
characteristic zero, then (In)t = (In)t for all integers n ≥ 1.

Proof. The proof follows directly from [5, Theorem 6.12]. �
Recall that D is a Prüfer v-multiplication domain (PvMD) if every

nonzero finitely generated ideal of D is t-invertible; and D is a Krull
domain if D satisfies the following two conditions:

(a) D =
∩

P∈X1(D) DP and this intersection has finite character and

(b) each DP is a rank-one discrete valuation domain, where X1(D)
is the set of height-one prime ideals of D.

It is well known that D is a Krull domain if and only if every nonzero
ideal of D is t-invertible [13, Theorem 3.6].

Theorem 2.8. If D contains a field of characteristic zero, then D is
a nearly PvMD (respectively, a nearly Krull domain) if and only if D
is a PvMD (respectively, a Krull domain).

Proof. Assume thatD is a nearly PvMD (respectively, a nearly Krull
domain), and let I be a nonzero finitely generated ideal (respectively,
a nonzero ideal) of D. Then, In is t-invertible for some integer n =
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n(I) ≥ 1. Since D contains a field of characteristic zero, (In)t = (In)t
by Lemma 2.7. Hence, In, and thus, I is t-invertible. Therefore, D is
a PvMD (respectively, a Krull domain). The reverse implication is an
immediate consequence of Lemma 2.3 (ii). �

Corollary 2.9. If D contains a field of characteristic zero, then the
following assertions hold.

(i) D is a nearly GCD-domain (respectively, a nearly UFD) if and
only if D is integrally closed and D is an AGCD-domain (respectively,
an AUF-domain).

(ii) D is a nearly GGCD-domain (respectively, a nearly π-domain)
if and only if D is integrally closed and D is an AGGCD-domain
(respectively, an almost π-domain).

Proof.

(i) Assume that D is a nearly GCD-domain (respectively, a nearly
UFD). Clearly, D is a nearly PvMD (respectively, a nearly Krull
domain); thus, by Theorem 2.8, D is a PvMD (respectively, a Krull
domain). Hence, D is integrally closed. By Theorem 2.6, Clt(D) is
torsion. Thus, D is an AGCD-domain (respectively, an AUF-domain)
[22, Corollary 3.8] (respectively, [9, Corollary 3.2]). Conversely, if
D is integrally closed and D is an AGCD-domain (respectively, an
AUF-domain), then D is a PvMD (respectively, a Krull domain) [22,
Corollary 3.8] (respectively, [9, Corollary 3.2]); therefore, by Theorem
2.8, D is a nearly PvMD (respectively, a nearly Krull domain). Note
that Clt(D) is torsion. Thus, by Theorem 2.6, D is a nearly GCD-
domain (respectively, a nearly UFD).

(ii) Assume that D is a nearly GGCD-domain (respectively, a nearly
π-domain). Obviously, D is a nearly PvMD (respectively, a nearly
Krull domain), and hence, by Theorem 2.8, D is a PvMD (respectively,
a Krull domain). Therefore, D is integrally closed. By Theorem 2.6,
G(D) is torsion. Thus, D is an AGGCD-domain (respectively, an
almost π-domain) [8, Theorem 2.11], [15, Theorem 2.4], (respectively,
[9, Corollary 3.16]). Conversely, if D is integrally closed and D is an
AGGCD-domain (respectively, an almost π-domain), thenD is a PvMD
(respectively, a Krull domain) [8, Theorem 2.11], [15, Theorem 2.4]
(respectively, [9, Corollary 3.16]); thus, by Theorem 2.8, D is a nearly
PvMD (respectively, a nearly Krull domain). Note that G(D) is torsion.



NEARLY KRULL DOMAINS 1639

Thus, by Theorem 2.6, D is a nearly GGCD-domain (respectively, a
nearly π-domain). �

The next lemma appears in [3, Corollary 3.4].

Lemma 2.10. Let a and b be nonzero elements of D, and let n be
a positive integer. If (a, b)n is t-locally principal, then ((a, b)n)t =
(an, bn)t, and hence, (an, bn) is t-invertible.

Now, we delete the condition that D contains a field of characteristic
zero in Theorem 2.8 and Corollary 2.9. If I is a nonzero ideal of
D, then we can regard I itself as its generating set. Hence, an AK-
domain (respectively, an AUF-domain, almost π-domain) is a nearly
Krull domain (respectively, nearly UFD, nearly π-domain). However,
the next result shows that sometimes nearly type domains imply almost
type domains.

Theorem 2.11. If D is a nearly PvMD (respectively, nearly GCD-
domain, nearly GGCD-domain), then D is an APvMD (respectively,
AGCD-domain, AGGCD-domain).

Proof. Let 0 ̸= a, b ∈ D. Since D is a nearly PvMD (respectively,
a nearly GCD-domain, nearly GGCD-domain), there exists an integer
n = n(a, b) ≥ 1 such that ((a, b)n)t is t-invertible (respectively, princi-
pal, invertible). Note that ((a, b)n)t = (an, bn)t by Lemma 2.10, and
hence, (an, bn)t is t-invertible (respectively, principal, invertible). Thus,
D is an APvMD (respectively, AGCD-domain, AGGCD-domain). �

Recall that D is root closed if, for z ∈ K, zn ∈ D for some integer
n ≥ 1 implies z ∈ D. While an AK-domain must be a nearly Krull
domain, we do not know whether the converse holds; however, as we
now show, these notions are both equivalent to Krull in the root closed
case.

Theorem 2.12. The following statements are equivalent.

(i) D is an integrally closed nearly Krull domain.
(ii) D is a root closed nearly Krull domain.
(iii) D is an integrally closed AK-domain.
(iv) D is a root closed AK-domain.
(v) D is a Krull domain.
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Proof.

(ii) ⇒ (v). Let I be a nonzero ideal of a root closed nearly Krull
domain D. Then, there exists an integer n = n(I) ≥ 1 such that (In)t
is t-invertible. Note that (In)t = (In)t [5, Theorem 6.5] since D is root
closed; thus, (In)t, and hence, It is t-invertible. Therefore, D is a Krull
domain.

(v) ⇒ (i) ⇒ (ii). These implications are obvious.

(iv) ⇒ (v). Let ({aα}) be a nonzero ideal of D. Then, there exists a
positive integer n = n({aα}) such that ({anα})t is t-invertible. Since D
is root closed, (({aα})n)t = ({anα})t [5, Corollary 6.4]; thus, (({aα})n)t,
and hence, ({aα})t is t-invertible. Therefore, D is a Krull domain.

(v) ⇒ (iii) ⇒ (iv). These directions are clear. �

Corollary 2.13. The following assertions are equivalent.

(i) D is integrally closed, and D is a nearly UFD (respectively, a
nearly π-domain).

(ii) D is root closed, and D is a nearly UFD (respectively, a nearly
π-domain).

(iii) D is integrally closed, and D is an AUF-domain (respectively, an
almost π-domain).

(iv) D is root closed, and D is an AUF-domain (respectively, an
almost π-domain).

(v) D is a Krull domain, and Clt(D) (respectively, G(D)) is torsion.

Proof.

(i) ⇔ (ii) ⇔ (v). These equivalences are immediate consequences of
Theorems 2.6 and 2.12.

(iii) ⇔ (iv) ⇔ (v). Recall that D is an AUF-domain (respectively,
an almost π-domain) if and only if D is an AK-domain and Clt(D)
(respectively, G(D)) is torsion [9, Theorems 3.1 and 3.15]. Thus, the
result follows from Theorem 2.12. �

Theorem 2.14. The following statements are equivalent.

(i) D is an integrally closed nearly PvMD.

(ii) D is a root closed nearly PvMD.

(iii) D is an integrally closed APvMD.
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(iv) D is a root closed APvMD.

(v) D is integrally closed and, for each 0 ̸= a, b ∈ D, there exists a
positive integer n = n(a, b) such that (a, b)n is t-invertible.

(vi) D is root closed and, for each 0 ̸= a, b ∈ D, there is an integer
n = n(a, b) ≥ 1 such that (a, b)n is t-invertible.

(vii) D is a PvMD.

Proof.

(i) ⇒ (v) and (ii) ⇒ (vi). These directions are obvious.

(v) ⇒ (iii) and (vi) ⇒ (iv). These implications follow from Lemma
2.10.

(iii) ⇔ (iv) ⇔ (vii). These appear in [15, Theorem 2.4].

(i) ⇔ (ii) ⇔ (vii). These equivalences follow from the parallel
argument as in the proof of (i) ⇔ (ii) ⇔ (v) in Theorem 2.12. �

Corollary 2.15. The following assertions are equivalent.

(i) D is integrally closed, and D is a nearly GCD-domain (respectively,
a nearly GGCD-domain).

(ii) D is root closed, and D is a nearly GCD-domain (respectively, a
nearly GGCD-domain).

(iii) D is integrally closed, and D is an AGCD-domain (respectively,
an AGGCD-domain).

(iv) D is root closed, and D is an AGCD-domain (respectively, an
AGGCD-domain).

(v) D is integrally closed and, for each 0 ̸= a, b ∈ D, there exists a
positive integer n = n(a, b) such that ((a, b)n)t is principal (respectively,
invertible).

(vi) D is root closed and, for each 0 ̸= a, b ∈ D, there exists an
integer n = n(a, b) ≥ 1 such that ((a, b)n)t is principal (respectively,
invertible).

(vii) D is a PvMD and Clt(D) (respectively, G(D)) is torsion.

Proof.

(i) ⇔ (ii) ⇔ (vii). These equivalences are immediate consequences
of Theorems 2.6 and 2.14.
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(iii) ⇔ (iv) ⇔ (vii). Note that D is an AGCD-domain (respectively,
an AGGCD-domain) if and only if D is an APvMD and Clt(D)
(respectively, G(D)) is torsion [15, Theorem 3.1] (respectively, [8,
Theorem 2.11]). Thus, these equivalences directly follow from Theorem
2.14.

(i) ⇒ (v) ⇒ (vi). These implications are clear.

(vi) ⇒ (iv). This comes from Lemma 2.10. �
Recall that D is a π-domain if every principal ideal is a product

of prime ideals. It is well known that D is a π-domain if and only
if, for every nonzero ideal I of D, It is invertible [13, Theorem 4.4].
Also, it was mentioned in [13, page 284] that D is a UFD if and only
if, for every nonzero ideal I of D, It is principal. Clearly, π-domain
(respectively, UFD) ⇒ integrally closed nearly π-domain (respectively,
integrally closed nearly UFD). Unlike the nearly Krull domain case,
“nearly” properties for UFDs and π-domains do not carry over.

Example 2.16.

(i) [9, Remark before Corollary 3.2]. Z[
√
−5] is an integrally closed

nearly UFD which is not a UFD.

(ii) [9, Example 3.17]. Z[
√
−5][X2, XY, Y 2] is an integrally closed

nearly π-domain which is not a π-domain.

For an extension F ⊆ L of fields and an indeterminate X over L,
L[X] denotes the polynomial ring over L, (F : L) := {a ∈ F | aL ⊆ F}
and F +XL[X] := {f ∈ L[X] | f(0) ∈ F}.

Lemma 2.17. Let F ( L be an extension of fields, X an indeterminate
over L and let D := F +XL[X]. Then, the following assertions hold.

(i) (F : L) = (0).
(ii) XL[X] is a t-ideal of D.

Proof.

(i) If (F : L) contains a nonzero element a, then aL ⊆ F ; thus,
L ⊆ (1/a)F = F , a contradiction. Therefore, (F : L) = (0).

(ii) This follows directly from [7, Proposition 2.1(3)]. �

Recall thatD is a nearly Bézout domain if, for each finitely generated
ideal I of D, there exists a positive integer n = n(I) such that In is
principal; and D has t-dimension one, abbreviated t-dim(D) = 1, if
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each prime t-ideal of D is a maximal t-ideal. Let D be the integral
closure of D in K. We say that D is t-linked under D if, for I a
nonzero finitely generated ideal of D, (ID)−1 = D implies I−1 = D.
It is well known that, if t-dim(D) = 1, then D is t-linked under D
[5, Proof of Theorem 5.11]. Let D1 ⊆ D2 be an extension of integral
domains. Then, D1 ⊆ D2 is called a root extension if, for each d ∈ D2,
dm ∈ D1 for some m = m(d) ≥ 1; and D1 ⊆ D2 is said to be a bounded
root extension if there exists an integer n ≥ 1 such that dn ∈ D1 for all
d ∈ D2.

Proposition 2.18. Let F ⊆ L be a field extension, X an indeterminate
over L and D := F +XL[X]. Then, the following hold.

(i) The following assertions are equivalent.
(a) D is an AGCD-domain.
(b) D is an APvMD.
(c) F ⊆ L is a root extension.

(ii) The following conditions are equivalent.
(a) D is a nearly GCD-domain.
(b) D is a nearly PvMD.
(c) F ⊆ L is a root extension and, for each intermediate field E

between F and L with [E : F ] < ∞, F ⊆ E is a bounded ex-
tension.

(iii) The following statements are equivalent.
(a) D is an AUF-domain.
(b) D is an almost π-domain.
(c) D is an AK-domain.
(d) D is a nearly UFD.
(e) D is a nearly π-domain.
(f) D is a nearly Krull domain.
(g) F ⊆ L is a bounded root extension.

Proof. If F = L, then D = L[X] and L[X] is a PID; thus, the results
are obvious. Therefore, we may assume that F ( L.

(i)

(a) ⇒ (b). This implication is obvious.

(b) ⇒ (c). Assume that D is an APvMD. Then, D ( D is a
root extension, and D is a PvMD [15, Theorem 3.6]. Note that
D = F ′ + XL[X] [19, Lemma 3.1.1] (or, cf., [1, Theorem 2.7(1)]),
where F ′ is the algebraic closure of F in L. Hence, F ′ = L [6, Lemma
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2.1] (or [18, Lemma 1.1 (i)]). Thus, F ( L is a root extension [3,
Proposition 2.4].

(c) ⇒ (a). Assume that F ( L is a root extension. Then, D = L[X];
thus, D is an AGCD-domain and D ( D is a root extension [3, Prop-
osition 2.4]. Note that dim(D) = dim(D) = 1; therefore, t-dim(D) = 1.
Hence, D is t-linked under D. Thus, D is an AGCD-domain [5,
Theorem 5.9].

(ii)

(a) ⇒ (b). This implication is clear.

(b) ⇒ (c). Assume that D is a nearly PvMD. Then, by Theo-
rem 2.11, D is an APvMD; thus, by (i), F ( L is a root extension. Let
E be an intermediate field between F and L with [E : F ] < ∞. Then,
E = e1F + · · ·+ emF for some e1, . . . , em ∈ E; thus,

XE[X] = X(e1F + · · ·+ emF )[X]

= e1XF [X] + · · ·+ emXF [X].

Therefore, (XE[X]) = (e1X, . . . , emX), and hence, (XE[X]) is a
finitely generated ideal of D. Since D is a nearly PvMD, (XE[X])n is
t-invertible for some integer n ≥ 1. Note that F ∼= D/XL[X]; thus,
XL[X] is a maximal ideal D. Hence, by Lemma 2.17 (ii), XL[X] is
a maximal t-ideal of D. Therefore, ((XE[X])n)DXL[X] = fDXL[X]

for some f ∈ (XE[X])n; thus, f = Xnf1 for some f1 ∈ L[X]. Since
Xn ∈ (XE[X])n, X

nh = fd for some d ∈ D and h ∈ D \ XL[X];
thus, h = f1d. Note that h(0) ̸= 0; therefore, d(0) ̸= 0. Hence,
f1(0) = h(0)/d(0) ∈ F . Let e ∈ E. Then, (eX)n ∈ (XE[X])n;
thus, r(eX)n = fz for some r ∈ D \ XL[X] and z ∈ D. Therefore,
en = f1(0)z(0)/r(0) ∈ F , and thus, F ⊆ E is a bounded extension.

(c) ⇒ (a). Let I be a nonzero finitely generated ideal of D. If (c)
holds, then D is a nearly Bézout domain [3, Theorem 3.5(4)]; thus,
In is principal. Hence, (In)t is also principal, and thus, D is a nearly
GCD-domain.

(iii)

(a) ⇒ (b) ⇒ (c) and (d) ⇒ (e) ⇒ (f). These directions are clear.

(a) ⇒ (d) and (c) ⇒ (f). These were previously observed from Theo-
rem 2.11.



NEARLY KRULL DOMAINS 1645

(f) ⇒ (g). Assume that D is a nearly Krull domain. Then, there
exists a positive integer n such that (XL[X])n is t-invertible. Now, a
similar argument as in the proof of (b) ⇒ (c) in (ii) shows that ln ∈ F
for all l ∈ L. Thus, F ( L is a bounded root extension.

(g) ⇒ (a). If F ( L is a bounded root extension, then D = L[X];
thus, D is a Krull domain and Clt(D) = 0. Also, D ( D is a bounded
root extension [3, Proposition 2.4]. Since t-dim(D) = 1, D is t-linked
under D. Thus, D is an AUF-domain [9, Corollary 3.9]. �

We conclude this article with an example of a field extension F ( L
such that F +XL[X] is an APvMD (respectively, an AGCD-domain)
which is neither a nearly PvMD (respectively, a nearly GCD-domain)
nor a nearly Krull domain (respectively, a nearly UFD) (and hence,
neither an AK- nor an AUF-domain).

Example 2.19. This example is due to [3, Example 3.6]. Let p be
a fixed prime, F :=

∪∞
n=1 GF (p2

n

) and L := F (GF (p3)). Then,
[L : F ] < ∞, and F ( L is a root extension which is not bounded.
More precisely, there are no positive integers n satisfying Ln ( F . By
Proposition 2.18, F + XL[X] is an APvMD (respectively, an AGCD-
domain) which is neither a nearly PvMD (respectively, a nearly GCD-
domain) nor a nearly Krull domain (respectively, nearly UFD).
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12. B.G. Kang, Prüfer v-multiplication domains and the ring R[X]Nv , J. Alge-
bra 123 (1989), 151–170.

13. , On the converse of a well-known fact about Krull domains, J.
Algebra 124 (1989), 284–299.
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