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THE SOLUTION OF A NEW CAPUTO-LIKE
FRACTIONAL h-DIFFERENCE EQUATION

BAOGUO JIA, XIANG LIU, FEIFEI DU AND MEI WANG

ABSTRACT. Consider the Caputo fractional h-difference
equation

a∆
ν
h,∗x(t) = c(t)x(t+ ν), 0 < ν < 1, t ∈ (hN)a+(1−ν)h,

where a∆ν
h,∗x(t) denotes the Caputo-like delta fractional h-

difference of x(t) on sets (hN)a+(1−ν)h. Our main results are
found in Theorems A and B in Section 1. In Section 3, we
show that the proof of a recent result in [5] is incorrect.
Finally, four numerical examples are given to illustrate the
main results.

1. Introduction. Discrete fractional calculus has generated interest
in recent years. Some of the research concerns the forward or delta
difference. The reader is referred to [1, 3, 7], for example, and more
recently, [8, 10]. Possibly more work has been developed for the back-
ward or nabla difference; for this, the reader is also referred to [6, 9].
Some research developing relations between the forward and backward
fractional operators ∆ν and ∇ν may be found in [4], and research on
fractional calculus on time scales may be found in [7].

One of the central tasks in the qualitative theory of difference
systems or equations is stability of solutions. However, due to the
lack of a geometric interpretation of fractional derivatives, there are
few results concerning how to directly analyze fractional order systems
or equations. Some results on stability may be found in [2, 12, 13,
15, 17].
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Consider the following νth order Caputo-like fractional h-difference
equation with an initial condition:

a∆
ν
h,∗x(t) = c(t)x(t+ νh),(1.1)

x(a) = xa, 0 < ν < 1,(1.2)

where t ∈ (hN)a+(1−ν)h := {a+ (1− ν)h, a+ (2− ν)h, . . .}. This work
is motivated by Baleanu, Wu, et al., [5], who obtained monotonicity
of the solution for c(t) = c < 0 and asymptotic stability of (1.1). In
this paper, we will further discuss the solution of (1.1). The following
theorems are obtained.

Theorem A. Assume that 0 < ν < 1 and c(t) = c, |c| < h−ν and
x(a) = 1. Then, the solution of equation (1.1) is

Eh
c,ν(t, a) :=

∞∑
i=0

ci
(t− a+ iνh− h)

(iν)
h

Γ(iν + 1)
, t ∈ (hN)a,

where we use the convention

(t− a+ iνh− h)
(iν)
h

Γ(iν + 1)

∣∣∣∣
t=a

=


(−h)

(0)
h

Γ(1) = 1 i = 0,

hiν

Γ(0)iν = 0 i ≥ 1.

As applications, we obtain that

Theorem B. Assume that 0 < ν < 1, x(a) > 0.

(1) If there exists a constant b1 such that 0 < b1 ≤ c(t) < h−ν , then
the solution of equation (1.1) satisfies limt→∞ x(t) = +∞.

(2) If there exists a constant b2 such that c(t) ≤ b2 < 0, then the
solution of equation (1.1) satisfies limt→∞ x(t) = 0.

In Section 3, we show that the proof of a recent result in [5] is
incorrect. Finally, we provide four numerical examples to illustrate the
main results.

2. The solution of the initial value problem (1.1)–(1.2). We
will be interested in functions defined on sets of the form (hN)a+(1−ν)h,
where a, h ∈ R, h > 0. The next two definitions are from [5].
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Definition 2.1 (Delta fractional sum [5]). Let x : (hN)a → R and
ν > 0 be given, with a the initial point. The νth order h-sum is given
by:

a∆
−ν
h x(t) =

1

Γ(ν)

t−νh+h∫
a

(t− σ(τ))
(ν−1)
h x(τ)∆hτ(2.1)

=
h

Γ(ν)

∑
τ∈[a,t−νh+h)

(t− σ(τ))
(ν−1)
h x(τ)

for t ∈ (hN)a+νh, where σ(τ) := τ + h, [a, b) := {t ∈ (hN)a : a ≤ t < b,
a, b ∈ (hN)a} and the h-falling factorial function is defined as

t
(ν)
h := hν Γ((t/h) + 1)

Γ((t/h) + 1− ν)
, t, ν ∈ R.

Definition 2.2 (Caputo delta difference [5]). For x(t) defined on (hN)a
and m− 1 < µ < m, where m denotes a positive integer, m = ⌈µ⌉, ⌈·⌉
is ceiling of the number. The µth Caputo like fractional difference is
defined as
(2.2)

a∆
µ
h,∗x(t) = a∆

−(m−µ)
h ∆m

h x(t)

=
1

Γ(m− µ)

t−(m−µ)h+h∫
a

(t− σ(τ))
(m−µ−1)
h ∆m

h x(τ)∆hτ

for t ∈ (hN)a+(m−µ)h, where ∆hx(t) = (x(t+ h)− x(t))/h.

Definition 2.3. For p ∈ R, |p| < h−ν , 0 < ν < 1, the discrete Mittag-
Leffler function is defined as

(2.3) Eh
p,ν(t, a) :=

∞∑
i=0

pi
(t− a+ iνh− h)

(iν)
h

Γ(iν + 1)
, t ∈ (hN)a.

Remark 2.4. Using the ratio test and the following property for the
Gamma function [11, Example 5.6], [16, Proposition 2.1.3]:

lim
t→∞

Γ(t+ α)

Γ(t)tα
= 1, α ∈ C,

it is easy to see that Eh
p,ν(t, a) is (absolutely) convergent if |p| < h−ν .
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The following power rule formula is from [14].

Lemma 2.5. Let a ∈ R, µ > 0, be given. Then:

(2.4) a+ph∆
−µ
h (t− a)

(p)
h =

Γ(p+ 1)

Γ(p+ µ+ 1)
(t− a)

(p+µ)
h ,

for t ∈ (hN)a+ph+µh.

Lemma 2.6. Assume that 0 < ν < 1, p ∈ R, |p| < h−ν . Then:

a∆
ν
h,∗E

h
p,ν(t, a) = pEh

p,ν(t+ hν, a)

for t ∈ (hN)a+(1−ν)h.

Proof. For simplicity, let a = 0. For t ∈ (hN)0, we have

∆hE
h
p,ν(t, 0) = h−1[Eh

p,ν(t+ h, 0)− Eh
p,ν(t, 0)]

(2.5)

= h−1
∞∑
i=0

pi
(t+ h+ iνh− h)

(iν)
h − (t+ iνh− h)

(iν)
h

Γ(iν + 1)

= h−1
∞∑
i=0

pihiν

Γ(iν + 1)

[
Γ((t/h) + iν + 1)

Γ((t/h) + 1)
− Γ((t/h) + iν)

Γ(t/h)

]

= h−1
∞∑
i=1

pihiν

Γ(iν)
· Γ((t/h) + iν)

Γ((t/h) + 1)
,

where we use the convention 1/Γ(0) = 0. From (2.1), we have

0∆
ν
h,∗E

h
p,ν(t, 0) = 0∆

−(1−ν)
h ∆hE

h
p,ν(t, 0)

=
1

Γ(1−ν)

t+νh∫
0

(t−σ(τ))
(−ν)
h ∆hE

h
p,ν(τ, 0)∆hτ

=
h−1

Γ(1−ν)

t+νh∫
0

(t−σ(τ))
(−ν)
h

∞∑
i=1

pihiν

Γ(iν)
· Γ((τ/h)+iν)

Γ((τ/h)+1)
∆hτ.
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In the following, we first prove that the infinite series

(t− σ(τ))
(−ν)
h

Γ(1− ν)

∞∑
i=1

pihiν

Γ(iν)
· Γ((τ/h) + iν)

Γ((τ/h) + 1)

for each fixed t is uniformly convergent for τ ∈ [0, t+ νh).

Taking t = (1 − ν)h + kh, τ = jh, k ∈ N0, j = 0, 1, . . . , k, we will
show that ∣∣∣∣ (t− σ(τ))

(−ν)
h

Γ(1− ν)

∣∣∣∣ ≤ h−ν , τ = jh, j = 0, 1, . . . , k.

For j = k, we have that

∣∣∣∣ (t− σ(τ))
(−ν)
h

Γ(1− ν)

∣∣∣∣ = h−ν .

Now, we assume that j = 0, 1, . . . , k − 1.

∣∣∣∣ (t− σ(τ))
(−ν)
h

Γ(1− ν)

∣∣∣∣ = ∣∣∣∣h−ν Γ(1− ν + k − j)

Γ(1− ν)Γ(k + 1− j)

∣∣∣∣
=

∣∣∣∣h−ν (k − j − v)(k − j − v − 1) · · · (1− v)

(k − j)!

∣∣∣∣
= h−ν

∣∣∣∣k − j − v

k − j

∣∣∣∣∣∣∣∣k − j − v − 1

k − j − 1

∣∣∣∣ · · · ∣∣∣∣1− v

1

∣∣∣∣ < h−ν .

Next, we will show that, for i ∈ N0,∣∣∣∣ Γ((τ/h) + iν)

Γ(iν)Γ((τ/h) + 1)

∣∣∣∣ ≤ (iν + 1)k, τ = jh, j = 0, 1, . . . , k.

For j = 0, we have that∣∣∣∣ Γ((τ/h) + iν)

Γ(iν)Γ((τ/h) + 1)

∣∣∣∣ = 1 ≤ (iν + 1)k.
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Now, we assume that j = 1, 2, . . . , k. Then,∣∣∣∣ Γ((τ/h) + iν)

Γ(iν)Γ((τ/h) + 1)

∣∣∣∣ = ∣∣∣∣ Γ(j + iν)

Γ(iν)Γ(j + 1)

∣∣∣∣
=

∣∣∣∣ iv + j − 1

j

∣∣∣∣∣∣∣∣ iv + j − 2

j − 1

∣∣∣∣ · · · ∣∣∣∣ iv + 1

2

∣∣∣∣∣∣∣∣ iv1
∣∣∣∣

≤
∣∣∣∣ ivj + 1

∣∣∣∣∣∣∣∣ iv

j − 1
+ 1

∣∣∣∣ · · · ∣∣∣∣ iv2 + 1

∣∣∣∣∣∣∣∣ iv1
∣∣∣∣

≤ (iν + 1)j ≤ (iν + 1)k.

Thus,
(2.6)∣∣∣∣ (t− σ(τ))

(−ν)
h

Γ(1− ν)

∞∑
i=1

pihiν

Γ(iν)
· Γ((τ/h) + iν)

Γ((τ/h) + 1)

∣∣∣∣ ≤ h−ν
∞∑
i=1

|p|ihiν(iν + 1)k.

Using the ratio test, the series
∑∞

i=1 |p|ihiν(iν + 1)k is convergent for
|p| < h−ν . From (2.6), for each fixed t, the infinite function series

(t− σ(τ))
(−ν)
h

Γ(1− ν)

∞∑
i=1

pihiν

Γ(iν)
· Γ((τ/h) + iν)

Γ((τ/h) + 1)

is uniformly convergent on τ ∈ [0, t+ hν). Thus, integrating, term-by-
term, we obtain

0∆ν
h,∗E

h
p,ν(t, 0) =

h−1

Γ(1− ν)

∞∑
i=1

pihiν

Γ(iν)

·
t+νh∫
0

(t− σ(τ))
(−ν)
h · Γ((τ/h) + iν)

Γ((τ/h) + 1)
∆hτ

=
1

Γ(1− ν)

∞∑
i=1

pi

Γ(iν)

·
t+νh∫
0

(t− σ(τ))
(−ν)
h (τ + iνh− h)

(iν−1)
h ∆hτ

(2.1)
=

∞∑
i=1

pi

Γ(iν)
· 0∆−(1−ν)

h (t− (h− ihν))
(iν−1)
h
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(2.4)
=

∞∑
i=1

pi

Γ(iν)

Γ(iν)

Γ(iν + 1− ν)
(t+ ihν − h)

(iν−1+1−ν)
h

= p

∞∑
j=0

pj

Γ((j + 1)ν + 1− ν)
(t+ (j + 1)hν − h)

(jν)
h

= p

∞∑
j=0

pj
(t+ hν + jhν − h)

(jν)
h

Γ(jν + 1)

= pEh
p,ν(t+ hν, 0)

for

t ∈ (hN)a+ph+(1−ν)h = (hN)(h−ihν)+(iν−1)h+(1−ν)h = (hN)(1−ν)h.

This completes the proof. �

From Lemma 2.6, we can get Theorem A.

Remark 2.7. From (2.5), we obtain that, when 0 < c(t) = c < h−ν ,
we have

∆hE
h
c,ν(t, a) > 0.

Thus, the solution of (1.1) with x(a) > 0 is increasing.

3. Asymptotic behavior, 0 < b1 ≤ c(t) < h−ν .

Lemma 3.1. Assume that 0 < ν < 1 and 0 < p < h−ν . Then, we
have:

lim
t→∞

Eh
p,ν(t, a) = +∞.

Proof. Taking t = a+ kh, k ≥ 0. If i = 0, we have

lim
t→∞

(t− a+ iνh− h)
(iν)
h

Γ(iν + 1)
= 1.

If i ≥ 1, we have

lim
t→∞

(t− a+ iνh− h)
(iν)
h

Γ(iν + 1)
= lim

k→∞

(kh+ (iν − 1)h)
(iν)
h

Γ(iν + 1)
(3.1)

= lim
k→∞

hiv Γ(k + iν)

Γ(k)Γ(iν + 1)
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= lim
k→∞

hiv Γ(k + iν)

Γ(k)kiν
· kiν

Γ(iν + 1)

= +∞,

where we use

lim
k→∞

Γ(k + iν)

Γ(k)kiν
= 1.

This completes the proof. �

Letting x(t) = Eh
p,ν(t, a), Figure 1 illustrates the validity of Remark

2.7 and Lemma 3.1.

Figure 1. Asymptotic behavior of Mittag-Leffler function Eh
p,ν(t, a) for

a = 0, ν = 0.5, h = 0.25, p = 1.5.

Next, we will give the delta power rule formulae for the fractional h
difference.

Lemma 3.2. Assume that h > 0 and α ∈ R.

(i) The delta h-difference of the h-falling fractional function (t−τ)
(α)
h

with respect to t is given by

(3.2) t∆h(t− τ)
(α)
h = α(t− τ)

(α−1)
h .
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(ii) The delta h-difference of the h-falling fractional function

(t− τ)
(α)
h with respect to τ is given by

(3.3) τ∆h(t− τ)
(α)
h = −α(t− σ(τ))

(α−1)
h .

Proof. In order to see that (i) holds, consider

t∆h(t− τ)
(α)
h =

(t+ h− τ)
(α)
h − (t− τ)

(α)
h

h

= hα−1

[
Γ((t− τ/h) + 2)

Γ((t− τ/h) + 2− α)
− Γ((t− τ/h) + 1)

Γ((t− τ/h) + 1− α)

]
= αhα−1 Γ((t− τ/h) + 1)

Γ((t− τ/h) + 2− α)

= α(t− τ)
(α−1)
h .

Hence, (i) holds. In order to see that (ii) holds, consider

τ∆h(t− τ)
(α)
h =

(t− τ − h)
(α)
h − (t− τ)

(α)
h

h

= hα−1

[
Γ(t− τ/h)

Γ((t− τ/h)− α)
− Γ((t− τ/h) + 1)

Γ((t− τ/h) + 1− α)

]
= −αhα−1 Γ((t− τ/h))

Γ((t− τ/h) + 1− α)

= −α(t− σ(τ))
(α−1)
h .

This completes the proof. �

In the remainder of the paper, we assume ∆h = t∆h, for simplicity,
when we mention the power rule formula.

The next comparison theorem plays an important role in proving
the main results.

Theorem 3.3. Assume that c2(t) ≤ c1(t) < h−ν , 0 < ν < 1, and x(t),
y(t) satisfy

(3.4) a∆
ν
h,∗x(t) ≥ c1(t)x(t+ νh)

and

(3.5) a∆
ν
h,∗y(t) ≤ c2(t)y(t+ νh),
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respectively, for t ∈ (hN)a+(1−ν)h with the initial condition x(a) ≥ y(a).
Then, x(t) ≥ y(t) for t ∈ (hN)a.

Proof. Using integration by parts,

τ∆h(t− τ)
(−ν)
h = ν(t− σ(τ))

(−ν−1)
h

(Lemma 3.2 (ii)),

(−νh)
(−ν)
h = h−νΓ(−ν + 1),

we have, for t ∈ (hN)a+(1−ν)h:

a∆
ν
h,∗x(t) = a∆

−(1−ν)
h ∆hx(t)

=
1

Γ(1− ν)

t+νh∫
a

(t− σ(τ))
(−ν)
h ∆hx(τ)∆hτ

=
1

Γ(1− ν)

[
(t− τ)

(−ν)
h x(τ)|t+νh

τ=a

− ν

t+νh∫
a

(t− σ(τ))
(−ν−1)
h x(τ)∆hτ

]

= h−νx(t+ νh)−
(t− a)

(−ν)
h x(a)

Γ(1− ν)

+
h

Γ(−ν)

∑
τ∈[a,t+νh)

(t− σ(τ))
(−ν−1)
h x(τ).

Take t = a+ (1− ν)h+ kh, k ∈ N0. Then, we have

a∆
ν
h,∗x(t) = h−νx(a+ kh+ h)−

((1− ν)h+ kh)
(−ν)
h x(a)

Γ(1− ν)

+
h

Γ(−ν)

∑
τ∈[a,a+(k+1)h)

(a− τ − νh+ kh)
(−ν−1)
h x(τ)

= h−νx(a+ kh+ h)− νh−νx(a+ kh)

− ν(−ν + 1)

2!
h−νx(a+ kh− h)− · · ·
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− ν(−ν + 1) · · · (−ν + k − 1)

k!
h−νx(a+ h)

− Γ(−ν + k + 1)

Γ(1− ν)k!
h−νx(a).

Using (3.4), we obtain

(h−ν − c1(t))x(a+ kh+ h) ≥ νh−νx(a+ kh)

(3.6)

+
ν(−ν + 1)

2!
h−νx(a+ kh− h) + · · ·

+
ν(−ν+1) · · · (−ν+k−1)

k!
h−νx(a+h)

+
Γ(−ν + k + 1)

Γ(1− ν)k!
h−νx(a).

Similarly, using (3.5), we obtain

(h−ν − c2(t))y(a+ kh+ h) ≤ νh−νy(a+ kh)

(3.7)

+
ν(−ν + 1)

2!
h−νy(a+ kh− h) + · · ·

+
ν(−ν+1) · · · (−ν+k−1)

k!
h−νy(a+h)

+
Γ(−ν + k + 1)

Γ(1− ν)k!
h−νy(a).

Note that the coefficients of x(a + ih), y(a + ih), i = 0, 1, . . . , k + 1,
are positive. Thus, by using the principle of strong induction and c2(t)
≤ c1(t) < h−ν , (3.6) and (3.7), it is simple to prove x(a + kh + h) ≥
y(a+ kh+ h) for k ∈ N0. This completes the proof. �

Remark 3.4. From the proof of Theorem 3.3, it is easy to see the
following result.

Assume that c2(t) ≤ c1(t) < h−ν , 0 < ν < 1, and x(t), y(t) satisfy

(3.8) a∆
ν
h,∗x(t) ≥ c1(t)x(t+ νh)
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and

(3.9) a∆
ν
h,∗y(t) = c2(t)y(t+ νh),

respectively, for t ∈ (hN)a+(1−ν)h with the initial condition x(a) ≥
y(a) > 0. Then, x(t) ≥ y(t) > 0, for t ∈ (hN)a.

Remark 3.5. Theorem 3.3 can be regarded as an extension of [5,
Lemma 2.10].

It should be noted that [5, Lemma 2.10] is correct, but the proof
is incorrect. In the following equations [5, page 523], the authors
obtained:
(3.10)

u(a+ k + 1) =
u(a)

1− λhν
+

λhν

(1− λhν)Γ(ν)

k−1∑
j=0

Γ(k − j + ν)

Γ(k + 1− j)
u(a+ j + 1)

and
(3.11)

g(a+ k + 1) ≤ g(a)

1− λhν
+

λhν

(1− λhν)Γ(ν)

k−1∑
j=0

Γ(k − j + ν)

Γ(k + 1− j)
g(a+ j + 1).

Due to the fact that g(a) = u(a), we can obtain g(a + 1) ≤ u(a + 1).
However, since λ < 0, using (3.10) and (3.11), we do not obtain:

g(a+2) ≤ u(a+2), . . . , g(a+k) ≤ u(a+k), g(a+k+1) ≤ u(a+k+1).

Theorem 3.6. Assume 0 < ν < 1, that there exists a constant b1 such
that 0 < b1 ≤ c(t) < h−ν and x(t) is the solution of the Caputo delta
fractional equation

(3.12) a∆
ν
h,∗x(t) = c(t)x(t+ νh), t ∈ (hN)a+(1−ν)h, x(a) > 0.

Then, x(t) ≥ (x(a)/2)Eh
b1,ν

(t, a) for t ∈ (hN)a.

Proof. From Lemma 2.6, we have

a∆
ν
h,∗E

h
b1,ν(t, a) = b1E

h
b1,ν(t+ hν, a)

and Eh
b1,ν

(a, a) = 1. From Theorem 3.3, take c2(t) = b1. Then, x(t)
and

y(t) =
x(a)

2
Eh

b1,ν(t, a)
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satisfy

a∆
ν
h,∗x(t) = c(t)x(t+ νh)(3.13)

and

(3.14)
a∆

ν
h,∗y(t) = b1y(t+ νh),

respectively, and

x(a) >
x(a)

2
Eh

b1,ν(a, a) = y(a).

From Theorem 3.3, we obtain that

x(t) ≥ x(a)

2
Eh

b1,ν(t, a),

for t ∈ (hN)a. This completes the proof. �
From Lemma 3.1 and Theorem 3.6, we can get the following theorem.

Theorem B1. Assume that 0 < ν < 1, x(a) > 0, and there exists
a constant b1 such that 0 < b1 ≤ c(t) < h−ν . Then, the solution of
equation (1.1) satisfies

lim
t→∞

x(t) = +∞.

Remark 3.7 (see Example 6.2). If c(t) in Theorem B1 is not a cons-
tant, then the solution of equation (1.1) may not be monotonically
increasing.

4. Asymptotic behavior, c(t) ≤ b2 < 0.

Definition 4.1 (Riemann-Liouville delta difference). For x(t) defined
on (hN)a and m − 1 < µ < m, where m denotes a positive integer,
m = ⌈µ⌉, ⌈·⌉ is the ceiling of a number. The µth Riemann-Liouville
fractional difference is defined as

a∆
µ
hx(t) = ∆m

h a∆
−(m−µ)
h x(t)(4.1)

=
1

Γ(m− µ)
∆m

h

t−(m−µ)h+h∫
a

(t− σ(τ))
(m−µ−1)
h x(τ)∆hτ,

for t ∈ (hN)a+(m−µ)h, where ∆hx(t) = (x(t+ h)− x(t))/h.
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Lemma 4.2 (Leibniz rule). Assume that x : (hN)a+νh × (hN)a → R.
Then
(4.2)

∆h

[ t−νh+h∫
a

x(t, τ)∆hτ

]
=

t−νh+2h∫
a

∆hx(t, τ)∆hτ + x(t, t− νh+ h),

for t ∈ (hN)a+νh, where the ∆hx(t, τ) inside the integral means the
(partial) h-difference of x with respect to t.

Proof. In order to see that (4.2) holds for t ∈ (hN)a+νh,

∆h

[ t−νh+h∫
a

x(t, τ)∆hτ

]

=

∫ t−νh+2h

a
x(t+ h, τ)∆hτ −

∫ t−νh+h

a
x(t, τ)∆hτ

h

=

∫ t−νh+2h

a
x(t+ h, τ)∆hτ −

∫ t−νh+2h

a
x(t, τ)∆hτ

h

+

∫ t−νh+2h

t−νh+h
x(t, τ)∆hτ

h

=

t−νh+2h∫
a

∆hx(t, τ)∆hτ + x(t, t− νh+ h),

which is the desired result. �

Consider the fractional difference equation

(4.3) a∆
ν
hx(t) = c(t)x(t+ νh), 0 < ν < 1,

t ∈ (hN)a+(1−ν)h.

Theorem 4.3. Assume that c(t) ≤ 0. Then, the solution of equation
(4.3) with x(a) > 0 is positive.

Proof. Using Leibniz formula (4.2), ∆h(t−a)
(−ν)
h = −ν(t−a)

(−ν−1)
h

and the convention 1/Γ(0) = 0, we have

a∆
ν
hx(t) =

1

Γ(1− ν)
∆h

∫ t−(1−ν)h+h

a

(t− σ(τ))
(−ν)
h x(τ)∆hτ
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= − ν

Γ(1− ν)

∫ t+νh+h

a

(t− σ(τ))
(−ν−1)
h x(τ)∆hτ

=
h

Γ(−ν)

∑
τ∈[a,t+νh+h)

(t− σ(τ))
(−ν−1)
h x(τ).

Take t = a + (1 − ν)h + kh, τ = a + jh, k ∈ N0, j = 0, 1, . . . , k + 1.
Using (4.3), we have

a∆
ν
hx(t) =

h

Γ(−ν)

k+1∑
j=0

((k − j)h− νh)
(−ν−1)
h x(a+ jh)

= h−ν

[
x(a+ kh+ h)− νx(a+ kh)

+
−ν(−ν + 1)

2!
x

(
a+ (k − 1)

h

)
+ · · ·+ −ν(−ν + 1) · · · (−ν + k)

(k + 1)!
x(a)

]
= c(t)x(a+ kh+ h).

Thus,

(1− c(t)hν)x(a+ kh+ h) = νx(a+ kh) +
ν(−ν + 1)

2!
x

(
a+ (k − 1)

h

)
+ · · ·+ ν(−ν + 1) · · · (−ν + k)

(k + 1)!
x(a).

Due to c(t) ≤ 0, x(a) > 0 and 0 < ν < 1, using the principle of strong
induction, we obtain x(a + ih) > 0 for i ∈ N0. This completes the
proof. �

Theorem 4.4. Let

Fh
p,ν(t, a) =

∞∑
i=1

pi−1 (t− a+ iνh− h)
(iν−1)
h

Γ(iν)
,

t ∈ (hN)a, 0 < ν < 1, |p| < h−ν . Then, Fh
p,ν(t, a) is the solution of the

initial value problem:

a∆
ν
hx(t) = px(t+ hν), t ∈ (hN)a+(1−ν)h,

x(a) =
hν−1

1− phν
.
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Proof. For simplicity, let a = 0. It is easy to obtain that

Fh
p,ν(0, 0) =

hν−1

1− phν
> 0

and, similar to the proof of Lemma 2.6, we can interchange the sum
order and get

0∆
ν
hF

h
p,ν(t, 0)

= ∆h0∆
−(1−ν)
h Fh

p,ν(t, 0)

= ∆h0∆
−(1−ν)
h

∞∑
i=1

pi−1 (t+ ihν − h)
(iν−1)
h

Γ(iν)

= ∆h

[
1

Γ(1− ν)

t+νh∫
0

(t− σ(τ))
(−ν)
h

∞∑
i=1

pi−1 (τ + ihν − h)
(iν−1)
h

Γ(iν)
∆hτ

]

= ∆h

[
1

Γ(1− ν)

∞∑
i=1

t+νh∫
0

(t− σ(τ))
(−ν)
h pi−1 (τ + ihν − h)

(iν−1)
h

Γ(iν)
∆hτ

]

= ∆h

∞∑
i=1

pi−1 0∆
−(1−ν)
h (t+ ihν − h)

(iν−1)
h

Γ(iν)
.

Using (2.4) and ∆h(t− a)
(ν)
h = ν(t− a)

(ν−1)
h , we have

0∆
ν
hF

h
p,ν(t, 0) = ∆h

∞∑
i=1

[
pi−1 (t+ ihν − h)

(iν−1+1−ν)
h

Γ(iν)

· Γ(iν)

Γ(iν − 1 + 1 + 1− ν)

]
= ∆h

∞∑
i=1

pi−1 (t+ ihν − h)
(iν−ν)
h

Γ(iν − ν + 1)

=
∞∑
i=1

pi−1 (iν − ν)(t+ ihν − h)
(iν−ν−1)
h

Γ(iν − ν + 1)

= p
∞∑
i=1

pi−2 (t+ ihν − h)
(iν−ν−1)
h

Γ(iν − ν)
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= p
∞∑
j=0

pj−1 (t+ hν + jhν − h)
(jν−1)
h

Γ(jν)

= p
∞∑
j=1

pj−1 (t+ hν + jhν − h)
(jν−1)
h

Γ(jν)

= pFh
p,ν(t+ hν, 0),

for t ∈ (hN)(1−ν)h, where we use the convention 1/Γ(0) = 0. This
completes the proof. �

From Theorem 4.3 and Theorem 4.4, we obtain the following.

Corollary 4.5. Assume that −h−ν < p < 0. Then,

Fh
p,ν(t, a) =

∞∑
i=1

pi−1 (t− a+ iνh− h)
(iν−1)
h

Γ(iν)
> 0

for t ∈ (hN)a.

Theorem 4.6. Assume that −h−ν < p < 0. Then,

lim
t→∞

Eh
p,ν(t, a) = 0.

Proof. For simplicity, let a = 0. From Corollary 4.5, we have

∆hE
h
p,ν(t, 0) = h−1

∞∑
i=0

pihiν

Γ(iν)
· Γ((t/h) + iν)

Γ((t/h) + 1)
(4.4)

=

∞∑
i=0

pi
(t+ hiν − h)

(iν−1)
h

Γ(iν)
= pFh

p,ν(t, 0) < 0

for t ∈ (hN)a. From Remark 3.4 and Eh
p,ν(0, 0) = 1, we obtain that

Eh
p,ν(t, 0) > 0. Set u(t) := Eh

p,ν(t, 0). From (4.4), we have that
limt→∞ u(t) exists. Arguing by contradiction, we assume that limt→∞
u(t) = l > 0 for t ∈ (hN)0. Using u(t) − u(0) =(1−ν)h ∆−ν

h 0∆
ν
h,∗u(t),

we have

u(t)− u(0) = (1−ν)h∆
−ν
h pu(t+ νh)

=
h

Γ(ν)

∑
τ∈[(1−ν)h,t−νh+h)

(t− σ(τ))
(ν−1)
h pu(τ + νh).
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Due to u(τ + νh) ≥ u(t) > 0, τ = (1 − ν)h, (1 − ν)h + h, . . . , t − νh,

and p < 0, using τ∆h(t− τ)
(ν)
h = −ν(t− σ(τ))

(ν−1)
h , we obtain:

u(t)− u(0) ≤ phu(t)

Γ(ν)

∑
τ∈[(1−ν)h,t−νh+h)

(t− σ(τ))
(ν−1)
h

= −phu(t)

νΓ(ν)
(t− τ)

(ν)
h

∣∣∣t−νh+h

τ=(1−ν)h

=
phu(t)

Γ(ν + 1)
(t− (1− ν)h)

(ν)
h ,

where we use the convention 1/Γ(0) = 0. Taking t = kh, k ∈ N0, we
have

u(t)− u(0) ≤ phu(kh) · hνΓ(k + ν)

Γ(ν + 1)Γ(k)

= phν+1u(kh)
kν

Γ(ν + 1)
· Γ(k + ν)

kνΓ(k)
−→ −∞

as k → ∞, where we use

lim
k→∞

Γ(k + ν)

kνΓ(k)
= 1.

However,

u(t)− u(0) = u(kh)− u(0) −→ l − u(0) < 0

as k → ∞. This yields a contradiction, and we obtain that limt→∞ u(t)
= 0. �

Remark 4.7. From (4.4), we can get that, when −h−ν < c(t) = c < 0,
we have

∆hE
h
c,ν(t, a) < 0.

Thus, the solution of (1.1) with u(a) > 0 is decreasing.

Let x(t) = Eh
p,ν(t, a). Figure 2 illustrates the validity of Theorem

4.6 and Remark 4.7.

Theorem B2. Assume that 0 < ν < 1, x(a) > 0. If there exists a
constant b2 such that c(t) ≤ b2 < 0, then the solution of equation (1.1)
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Figure 2. Asymptotic behavior of Mittag-Leffler function Eh
p,ν(t, a) for

a = 0, ν = 0.5, h = 0.25, p = −0.9.

satisfies
lim
t→∞

x(t) = 0.

Proof. Assume that b2 > −h−ν . Otherwise, we can choose 0 > b′2 >
−h−ν , b′2 > b2 and replace b2 by b′2. From Lemma 2.6, we have

a∆
ν
h,∗E

h
b2,ν(t, a) = b2E

h
b2,ν(t+ hν, a)

for t ∈ (hN)a+(1−ν)h and Eh
b2,ν

(a, a) = 1.

In Theorem 3.3, take c1(t)=b2. Then, x(t) and y(t)=2x(a)Eh
b2,ν

(t, a)
satisfy

a∆
ν
h,∗x(t) = c(t)x(t+ νh)

and

a∆
ν
h,∗y(t) = b2y(t+ νh),

respectively, for t ∈ (hN)a+(1−ν)h and

x(a) < 2x(a) = 2x(a)Eh
b2,ν(a, a) = y(a).

From Remark 3.4, we obtain

0 < x(t) ≤ 2x(a)Eh
b2,ν(t, a)

for t ∈ (hN)a. From Theorem 4.6, we get that
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lim
t→∞

x(t) = 0.

This completes the proof. �

Remark 4.8 (see Example 6.4). If c(t) in Theorem B2 is not a
constant, then the solution of equation (1.1) may not be monotonically
decreasing.

Remark 4.9. In [5], when c(t) = c < 0 and x(a) > 0, Baleanu, Wu, et
al., using qualitative theory, proved that the solution of equation (1.1)
satisfies limt→∞ x(t) = 0.

5. Asymptotic behavior with initial value, x(a) < 0. Consider
the following νth order Caputo-like fractional h-difference equation
with an initial condition:

a∆
ν
h,∗x(t) = c(t)x(t+ νh),(5.1)

x(a) = xa < 0, 0 < ν < 1,(5.2)

where t ∈ (hN)a+(1−ν)h = {a+ (1− ν)h, a+ (2− ν)h, . . .}. By making
the transformation x(t) = −y(t) and using Theorem A, Theorem B1,
and Theorem B2, we obtain the following results.

Theorem C1. Assume that 0 < ν < 1, x(a) < 0 and there exists
a constant b1 such that 0 < b1 ≤ c(t) < h−ν . Then, the solution of
equation (5.1) satisfies limt→∞ x(t) = −∞.

Theorem C2. Assume that 0 < ν < 1, x(a) < 0. If there exists a
constant b2 such that c(t) ≤ b2 < 0, then the solution of equation (5.1)
satisfies limt→∞ x(t) = 0.

6. Examples. We now consider the numerical solution of equation
(1.1) to show the validity of Theorem B1, Theorem B2, Remark 3.7
and Remark 4.8. Let a = 0 and t = (1− ν)h+ kh, k ≥ 0. We have the
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numerical formula for equation (1.1):

x((k + 1)h) =
h−ν

−h−ν + c((1− ν)h+ kh)

·
[ k∑

i=1

(−ν)ī

i!
x((k + 1− i)h)− (1− ν)k̄

k!
x(0)

]
,

where xk̄ = Γ(x+ k)/Γ(x).

Example 6.1. Consider the linear discrete fractional equation

(6.1) 0∆
0.9
0.5,∗x(t) = 0.3x(t+ 0.45),

x(0) = 0.1, ν = 0.9, h = 0.5,

t ∈ (hN)(1−ν)h = (0.5N)0.05.

Plot the solution x(t) in Figure 3. It is easily seen that x(t) mono-
tonically tends toward ∞ as t → ∞.

0 10 20 30 40 50 60 70 80 90 100

t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x(t)     

×1011

Figure 3. Asymptotic behavior of x(t) for ν = 0.9, h = 0.5, x(0) = 0.1,
c(t) = 0.3.

Example 6.2. Consider the linear discrete fractional equation

(6.2) 0∆
0.9
0.5,∗x(t) =

(
1

2
sin2 t+

1

200

)
x(t+ 0.45),

x(0) = 0.1, ν = 0.9, h = 0.5,

t ∈ (hN)(1−ν)h = (0.5N)0.05.
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Plot the solution x(t) in Figure 4. It is easily seen that x(t) tends
toward ∞ as t → ∞ but is not monotonically increasing.

0 10 20 30 40 50 60 70 80 90 100

t

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x(t)     

×109

Figure 4. Asymptotic behavior of x(t) for ν = 0.9, h = 0.5, x(0) = 0.1,
c(t) = (1/2) sin2 t+ 1/200.

Example 6.3. Consider the linear discrete fractional equation

0∆
0.5
0.5,∗x(t) = −5x(t+ 0.25),(6.3)

x(0) = 0.1, ν = 0.5, h = 0.5,

t ∈ (hN)(1−ν)h = (0.5N)0.25.

Plot the solution x(t) in Figure 5. It is easily seen that x(t) mono-
tonically tends toward 0 as t → ∞.

0 10 20 30 40 50 60 70 80 90 100

t

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

x(t)     

Figure 5. Asymptotic behavior of x(t) for ν = 0.5, h = 0.5, x(0) = 0.1,
c(t) = −5.

Example 6.4. Consider the linear discrete fractional equation

0∆
0.5
0.5,∗x(t) = (−2− sin t)x(t+ 0.25),(6.4)

x(0) = 0.1, ν = 0.5, h = 0.5,

t ∈ (hN)(1−ν)h = (0.5N)0.25.
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0 10 20 30 40 50 60 70 80 90 100

t

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

x(t)     

Figure 6. Asymptotic behavior of x(t) for ν = 0.5, h = 0.5, x(0) = 0.1,
c(t) = −2− sin t.

Plot the solution x(t) in Figure 6. It is easily seen that x(t) tends
to 0 as t → ∞ but is not monotonically decreasing.
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