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THE LOCAL S-CLASS GROUP
OF AN INTEGRAL DOMAIN

AHMED HAMED

ABSTRACT. In this paper, we define the local S-class
group of an integral domain D. A nonzero fractional ideal I
of D is said to be S-invertible if there exist an s ∈ S and
a fractional ideal J of D such that sD ⊆ I, J ⊆ D. The
local S-class group of D, denoted S-G(D), is the group
of fractional t-invertible t-ideals of D under t-multiplication
modulo its subgroup of S-invertible t-invertible t-ideals of D.
We study the case S-G(D) = 0, and we generalize some
known results developed for the classic contexts of Krull
and PυMD domains. Moreover, we investigate the case of
isomorphism S-G(D) ≃ S-G(D[[X]]). In particular, we give
with an additional condition an answer to the question of
Bouvier [7], that is, when is G(D) isomorphic to G(D[[X]])?

1. Introduction. LetD be an integral domain with quotient fieldK.
Let F(D) be the set of nonzero fractional ideals of D. For an I ∈
F(D), set I−1 = {x ∈ K/xI ⊆ A}. The mapping on F(D), defined by
I 7→ Iυ = (I−1)−1, is called the υ-operation on D. A nonzero fractional
ideal I is said to be a υ-ideal or divisorial if I = Iυ, and I is said to be
of υ-finite type if I = Jυ for some finitely generated ideal J of D. For
properties of the υ-operation, the reader is referred to [11, Section 34].

The mapping on F(D), defined by

I 7−→ It = ∪ {Jυ, J is a nonzero finitely generated

fractional subideal of I},

is called the t-operation (for properties of the t-operation, the reader
may consult [3]). A fractional ideal I of D is called a t-ideal if I = It,
and I is said to be t-invertible (respectively, invertible) if (II−1)t = D
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(respectively, II−1 = D). The set T (D) of t-invertible fractional t-
ideals of D is a group under the t-multiplication I⋆J := (IJ)t, and the
set of invertible fractional ideals of D is a subgroup of T (D), denoted
Inv(D). Let P(D) be the set of nonzero principal fractional ideals of
D. Then, P(D) is a subgroup of both T (D) and Inv(D).

Following [9], the quotient groups Cl(D) = T (D)/P(D) and G(D) =
T (D)/ Inv(D) are, respectively, called the class group and the local class
group of D [7, 8, 9]. Let S be a multiplicative subset of D and I an
ideal of D. Recall from [4] that I is S-finite (respectively, S-principal)
if sI ⊆ J ⊆ I for some finitely generated (respectively, principal) ideal
J of D and some s ∈ S. Let S-P(D) be the set of S-principal t-
invertible t-ideals of D. Then, S-P(D) is a subgroup of T (D) under
the t-multiplication. Note that, if S consists of units of D, then S-
P(D) =P(D). In [12], the authors showed that the set of S-principal
ideals of D is not included in T (D), and the inclusion P(D) ⊆ S-P(D)
may be strict.

Following [12], the S-class group of D, denoted S-Cl(D), is the
group of fractional t-invertible t-ideals of D under t-multiplication
modulo its subgroup of S-principal t-invertible t-ideals of D, that is,
S-Cl(D) = T (D)/S-P(D). Inspired by this definition, we define the
local S-class group of D, denoted S-G(D), as follows: let I be a
fractional ideal of D; we say that I is S-invertible if there exist an s ∈ S
and a fractional ideal J of D such that sD ⊆ I, J ⊆ D. Let S-I(D)
be the set of fractional S-invertible t-invertible t-ideals of D. Then,
quotient group S-G(D) = T (D)/S-I(D) is called the local S-class group
of D. Note that, if S consists of units of D, then S-G(D) = G(D).

In this paper, we study the case S-G(D) = 0, and we generalize some
known results developed for the classic contexts of Krull domains and
PvMDs. Moreover, we investigate the case of isomorphism S-G(D) ≃
S-G(D[[X]]). In the particular case where S consists of units of D, we
give with an additional condition an answer for the question of Bouvier
[8], that is, when is G(D) isomorphic to G(D[[X]])?

In order to prove these results, we need to give an S-version of the
well-known results regarding invertible ideals.

In Section 2, we study many properties of an S-invertible ideal.
We give an example of an S-invertible ideal which is not invertible.
Among other things, we show that every S-invertible ideal is S-finite.
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We also give a necessary and sufficient condition for an ideal of D to
be S-invertible. We prove that I is S-invertible if and only if IS is
invertible in DS and I is S-finite. Moreover, we say that D is an S-
generalized GCD domain (S-G-GCD domain) if every finite intersection
of invertible ideals of D is S-invertible. Note that, if S is included in the
set of units of D, then D is an S-G-GCD domain if and only if D is a G-
GCD domain (an integral domain in which every finite intersection of
integral invertible ideals is invertible [1]). Thus, the S-G-GCD property
generalizes both the GCD and G-GCD properties. We show that D is
an S-G-GCD domain if and only if every υ-finite type ideal of D is
S-invertible. In addition, if D is an S-G-GCD domain, then DS is a
G-GCD domain.

In Section 3, we prove that, if D is an integral domain and S is a
multiplicative subset of D, then the following are equivalent:

(a) S-G(D) = 0;
(b) for each I, J ∈ T (D), (IJ)S ∈ T (DS);
(c) for each I, J ∈ T (D), if (IJ)t = D, then (IJ)S = DS ;
(d) for each I, J ∈ T (D), ((IJ)S)

−1 = (I−1J−1)S .

Also, we show that, for a PVMD (Prüfer v-multiplication domain)
S-G(D) = 0 if and only if D is an S-G-GCD domain. Moreover,
we investigate the cases of isomorphisms S-G(D) ≃ S-G(D[[X]]) and
S-G(D) ≃ S-G(D[{Xα}α∈Λ]) where (Xα)α∈Λ is a set of indeterminates
over D. Following [12], the power series ring D[[X]] satisfies property
(∗) if, for all integral υ-invertible υ-ideals I and J of D[[X]] such that
(IJ)0 ̸= (0), we have ((IJ)0)υ = ((IJ)υ)0 where I0 = {f(0), f ∈ I}.
In [13], the class of TV-domains was introduced, domains in which
the t-operation coincides with the v-operation. It was observed in
[13] that the class of TV-domains includes the class of Noetherian
domains. We show that, if D is an integrally closed domain, then
S-G(D) ≃ S-G(D[{Xα}α∈Λ]). In addition, for the power series ring,
we show that, if D is a TV-domain such that D[[X]] satisfies property
(∗) and S is a multiplicative subset of D, then S-G(D) ≃ S-G(D[[X]]).
In the particular case where S consists of units of D, we give, with
an additional condition, an answer to the question of Bouvier [8], that
is, when is G(D) isomorphic to G(D[[X]])? We conclude this paper
by giving a necessary and sufficient condition for the power series ring
to be an S-G-GCD domain in the case of a Krull domain satisfying
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property (∗). We show that, if D is a Krull domain such that D[[X]]
satisfies (∗) and S a multiplicative subset of D, then D is an S-G-GCD
domain if and only if D[[X]] is an S-G-GCD domain.

2. On S-invertible ideals. We begin this section by introducing
the following definition in order to generalize some known results
regarding invertible ideals.

Definition 2.1. LetD be an integral domain, S a multiplicative subset
of D and I a nonzero fractional ideal of D. We say that I is S-
invertible if there exist an s ∈ S and a fractional ideal J of D such
that sD ⊆ IJ ⊆ D.

Remark 2.2. Note that, if S consists of units of D, then I is S-
invertible if and only if I is an invertible ideal of D, i.e., II−1 = D.

Example 2.3. Let D be an integral domain and S a multiplicative
subset of D.

(a) Every invertible ideal of D is S-invertible.

(b) The converse of (a), is not true in general. Indeed, let D =
Z+XZ[i][X], S = {2n , n ∈ N} and I = 2Z+ (1 + i)XZ[i][X]. Since
2 ∈ I, then 2D ⊆ I ·D ⊆ D, which implies that I is S-invertible. On
the other hand, by [6, Lemma 2.1], it is easy to show that

I−1 = Z+X
1− i

2
Z[i][X].

Thus, if II−1 = D, then

1 = P1(0)Q1(0) + · · ·+ Pn(0)Qn(0)

for some P1, . . . , Pn ∈ I and Q1, . . . , Qn ∈ I−1. However, Pi(0) ∈ 2Z
and Qi(0) ∈ Z; thus, 1 = 2m1 + · · · + 2mn, mi ∈ Z, a contradiction.
Hence, I is not invertible.

Remark 2.4. Let I be a fractional S-invertible ideal of D. Then, there
exist an s ∈ S and a fractional ideal J of D such that sD ⊆ IJ ⊆ D.
We have

sJ−1 ⊆ sJ−1D ⊆ J−1(IJ) ⊆ (J−1J)I ⊆ DI ⊆ I.
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On the other hand, since IJ ⊆ D, then I ⊆ J−1. Thus, sJ−1 ⊆ I ⊆
J−1.

Let D be an integral domain and S a multiplicative subset of D.
Recall from [4] that an ideal I of D is said to be S-finite (respectively,
S-principal) if sI ⊆ J ⊆ I for some finitely generated (respectively,
principal) ideal J of D and some s ∈ S.

The next proposition gives an S-version of a classical result for an
invertible ideal, that is, every invertible ideal is of finite type.

Proposition 2.5. Let D be an integral domain, S a multiplicative
subset of D and I a nonzero fractional ideal of D. If I is S-invertible,
then I is S-finite.

Proof. Since I is S-invertible, then there exist an s ∈ S and a
fractional ideal J of D such that sD ⊆ IJ ⊆ D. As s ∈ IJ , so
there exist an α1, . . . , αn ∈ I and a β1, . . . , βn ∈ J such that s =
α1β1+· · ·+αnβn. Set I0 = (α1, . . . , αn) ⊆ I and J0 = (β1, . . . , βn) ⊆ J .
Since sD ⊆ I0J0 ⊆ D, then I0 is an S-invertible ideal of D. From
Remark 2.4, sJ−1

0 ⊆ I0 ⊆ J−1
0 and sJ−1 ⊆ I ⊆ J−1. As J0 ⊆ J , then

J−1 ⊆ J−1
0 . Thus, sI ⊆ sJ−1 ⊆ sJ−1

0 ⊆ I0 ⊆ I, and hence, I is an
S-finite ideal of D. �

Proposition 2.6. Let I be a fractional ideal of D and S a multiplica-
tive subset of D. Then, I is S-invertible if and only if there exists
an s ∈ S such that sD ⊆ II−1 ⊆ D. In particular, I−1 is also an
S-invertible ideal of D.

Proof. Assume that I is an S-invertible ideal of D. Then, there exist
an s ∈ S and a fractional ideal J of D such that sD ⊆ IJ ⊆ D. Thus,
J ⊆ I−1, and hence, sD ⊆ IJ ⊆ II−1 ⊆ D. The other implication is
obvious. �

Proposition 2.7. Let D be an integral domain and S a multiplicative
subset of D. Every S-principal ideal of D is S-invertible.

Proof. Let I be a nonzero fractional S-principal ideal of D. Then,
sI ⊆ αD ⊆ I for some α ∈ I and s ∈ S. Then, sI−1 ⊆ (s/α)D ⊆ I−1,
which implies that sI−1I ⊆ (s/α)I ⊆ I−1I; thus, (s/α)I ⊆ I−1I.
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However, αD ⊆ I. Thus, (s/α)αD ⊆ (s/α)I ⊆ II−1; therefore,
sD ⊆ II−1 ⊆ D, and I is S-invertible. �

Let D be an integral domain and S a multiplicative subset of D. It
is well known that, for each finitely generated fractional ideal I of D,
(IS)

−1 = (I−1)S . The next lemma improves this result.

Lemma 2.8. Let D be an integral domain, S a multiplicative subset
of D and I a nonzero fractional ideal of D. If I is an S-finite ideal of
D, then (IS)

−1 = (I−1)S.

Proof. We always have that (I−1)S ⊆ (IS)
−1; thus, we must prove

the converse in order to reach a conclusion. Since I is S-finite, there
exist an s ∈ S and a finitely generated ideal J ⊆ I such that sI ⊆ J ⊆ I.
Thus, J−1 ⊆ (1/s)I−1, and consequently, (J−1)S ⊆ (I−1)S . Since J
is finitely generated, (J−1)S = (JS)

−1. Moreover, JS ⊆ IS . Thus,
(IS)

−1 ⊆ (JS)
−1 = (J−1)S ⊆ (I−1)S , and hence, (I−1)S = (IS)

−1. �

Next, a necessary and sufficient condition is given for an ideal I of
D to be S-invertible.

Theorem 2.9. Let D be an integral domain, S a multiplicative subset
of D and I a nonzero fractional ideal of D. Then, the following asser-
tions are equivalent.

(i) I is an S-invertible ideal of D.
(ii) IS is an invertible ideal of DS, and I is an S-finite ideal of D.

Proof.

(i) ⇒ (ii). By Proposition 2.5, I is an S-finite ideal of D. Moreover,
since I is S-invertible, sD ⊆ II−1 ⊆ D for some s ∈ S. Thus,

DS ⊆ (II−1)S ⊆ DS ,

which implies that DS = IS(I
−1)S . Finally, from Proposition 2.5 and

Lemma 2.8, IS(IS)
−1 = DS .

(ii) ⇒ (i). By hypothesis, sI ⊆ J ⊆ I for some s ∈ S and finitely
generated ideal J of D. Then, IS = JS . Since IS is invertible in
DS , then IS(IS)

−1 = DS . Thus, JS(JS)
−1 = DS ; therefore, (JJ

−1)S
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= JS(J
−1)S = JS(JS)

−1 = DS . Hence, there exist t ∈ S, a1, . . . , an ∈
J and b1, . . . , bn ∈ J−1 such that

1 =
a1b1
t

+ · · ·+ anb1n

t
.

Then, tR ⊆ JJ−1 ⊆ R. However, sI ⊆ J ⊆ I. Then, sI−1 ⊆ sJ−1 ⊆
I−1, which implies that sJJ−1 ⊆ II−1. Thus,

stR ⊆ sJJ−1 ⊆ II−1 ⊆ R.

Hence, I is an S-invertible ideal of D. �

Remark 2.10. Let I be a υ-finite type ideal of D, i.e., I = Jυ for
some finitely generated ideal J of D. If IS is an invertible ideal of DS ,
then I is S-invertible. Indeed, since IS(IS)

−1 = DS , then

(Jυ)S(JS)
−1 = (Jυ)S(((Jυ)S)υ)

−1 = (Jυ)S((Jυ)S)
−1 = IS(IS)

−1 = DS

[14, Lemma 3.4(2)]. Thus, (JυJ
−1)S = DS . In the same manner

as in the proof of Theorem 2.9, there exists a t ∈ S such that tR ⊆
JυJ

−1 ⊆ R. Thus, tR ⊆ II−1 ⊆ R, and hence, I is an S-invertible
ideal of D.

Proposition 2.11. Let D be an integral domain and S a multiplicative
subset of D. Then, the following statements hold.

(i) If I is an S-finite ideal of D, then there exists an s ∈ S such that
s(IT )

−1 ⊆ (I−1)T ⊆ (IT )
−1 for each multiplicative subset T of D.

(ii) If I is an S-finite locally principal ideal of D, then I is S-
invertible.

Proof.

(i) We have sI ⊆ J ⊆ I for some finitely generated ideal J of D
and s ∈ S. Let T be a multiplicative subset of D. We always have
(I−1)T ⊆ (IT )

−1. On the other hand, since sIT ⊆ JT ⊆ IT , then
s(IT )

−1 ⊆ s(JT )
−1 ⊆ (IT )

−1. Moreover, as sI−1 ⊆ sJ−1 ⊆ I−1, then
s(I−1)T ⊆ s(J−1)T ⊆ (I−1)T . Hence,

s(IT )
−1 ⊆ s(JT )

−1 = s(J−1)T ⊆ (I−1)T .

(ii) Assume that I is an S-finite locally principal ideal of D. Thus,
by (i), there exists an s ∈ S such that s(IM )−1 ⊆ (I−1)M ⊆ (IM )−1
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for each maximal ideal M of D. Hence,

sD =
∩

M∈Max(D)

sDM

=
∩

M∈Max(D)

sIM (IM )−1

⊆
∩

M∈Max(D)

IM (I−1)M

=
∩

M∈Max(D)

(II−1)M

= II−1 ⊆ D.

Hence, I is an S-invertible ideal of D. �

Recall from [1] that an integral domain D is called a generalized
GCD domain (G-GCD domain) if every finite intersection of (integral)
invertible ideals of D is invertible [1]. Then, it is natural to define the
notion of an S-generalized GCD domain (S-G-GCD domain), which is
a generalization of a G-GCD domain.

Definition 2.12. Let D be an integral domain and S a multiplicative
subset of D. We say that D is an S-generalized GCD domain (S-G-
GCD domain) if every finite intersection of invertible ideals of D is
S-invertible.

Example 2.13. Let S be a multiplicative subset of an integral do-
main D.

(i) If S is included in the set of units of D, then D is an S-G-GCD
domain if and only if D is a G-GCD domain.

(ii) If D is a G-GCD domain, then D is an S-G-GCD domain.

Remark 2.14. Let D be an integral domain and S a multiplicative
subset of D. Then, the following assertions are equivalent.

(i) Every finite intersection of invertible fractional ideals of D is S-
invertible.

(ii) Every finite intersection of invertible integral ideals of D is S-
invertible.
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Indeed, it is obvious to show the implication (i) ⇒ (ii). Conversely, let
I1, . . . , In be a fractional invertible ideal of D. Then, there exist d1,
. . . , dn ∈ D \ (0) such that diIi ⊆ D for each 1 ≤ i ≤ n. Since, for each
1 ≤ i ≤ n, d1 · · · dnIi is an invertible integral ideal of D, by hypothesis,

d1 · · · dn(I1 ∩ · · · ∩ In) = (d1 · · · dnI1) ∩ · · · ∩ (d1 · · · dnIn)

is S-invertible. Thus, (I1 ∩ · · · ∩ In) is S-invertible.

Theorem 2.15. Let D be an integral domain and S a multiplicative
subset of D. Then, the following assertions are equivalent.

(i) D is an S-G-GCD domain.
(ii) Every υ-finite type ideal of D is S-invertible.

Proof.

(i) ⇒ (ii). Let I = (a1, . . . , an)υ be a υ-finite type ideal of D. We
have I = ((a1, . . . , an)

−1)−1 = ((1/a1)D ∩ · · · ∩ (1/an)D)−1. However,
by hypothesis, (1/a1)D ∩ · · · ∩ (1/an)D is an S-invertible ideal of D.
Hence, I is S-invertible.

(ii)⇒ (i). Let I1, . . . , In be an invertible ideal ofD. Then, for each 1
≤ i ≤ n, I−1

i is a finitely generated ideal of D. Let I = (I−1
1 +

· · · + I−1
n )υ. Then, I is of υ-finite type, which implies that I is an

S-invertible ideal of D. Hence, I−1 = (I1)υ ∩ · · · ∩ (In)υ = I1 ∩ · · · ∩ In
is S-invertible. �

Corollary 2.16. Let D be an integral domain. Then, D is a G-GCD
domain if and only if every υ-finite type ideal of D is invertible.

Proof. In the previous theorem, it suffices to take S included in the
set of units of D. �

Corollary 2.17. Let D be an integral domain and S a multiplicative
subset of D. If D is an S-G-GCD domain, then DS is a G-GCD
domain.

Proof. Let IS be a υ-finite type ideal of DS . Then, there exists a
finitely generated ideal J of D such that IS = (JS)υ. Hence, by [14,
Lemma 3.4(2)], IS = (JS)υ = ((Jυ)S)υ. However, Jυ is a υ-finite type
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ideal of D; thus, there exists an s ∈ S such that sD ⊆ Jυ(Jυ)
−1 ⊆ D.

Since (Jυ)
−1 = J−1, then

DS ⊆ (Jυ)S(J
−1)S = (Jυ)S(JS)

−1

⊆ ((Jυ)S)υ((JS)υ)
−1 ⊆ IS(IS)

−1 ⊆ DS .

Hence, IS is invertible. �

Proposition 2.18. Let D be an integral domain and S a multiplicative
subset of D. Let T be a multiplicative subset of D. If D is an S-G-GCD
domain, then DT is an S-G-GCD domain.

Proof. Let IT be a υ-finite type ideal of DS . Then, IT = (JT )υ for
some finitely generated ideal J of D. Since D is an S-G-GCD domain,
there exists an s ∈ S such that sD ⊆ JυJ

−1 ⊆ D. Thus,

sDT ⊆ (Jυ)T (J
−1)T = (Jυ)T (JT )

−1

⊆ ((Jυ)T )υ((JT )υ)
−1 ⊆ IT (IT )

−1 ⊆ DT .

Hence, IT is an S-invertible ideal of DT . �

Lemma 2.19. Let D be an integral domain and S a multiplicative sub-
set of D. Let a, b ∈ D \ (0). Then, aD ∩ bD is S-invertible if and only
if (1/a)D ∩ (1/b)D is S-invertible.

Proof. It is sufficient to remark that, for each a, b ∈ D \ (0),
1

a
D ∩ 1

b
D =

1

ab
(aD ∩ bD).

Recall from [2] that an ideal I of D is a υ-ideal of type 2 if
I = (aD + bD)υ for some a, b ∈ D \ (0). We conclude this section
with the following equivalent condition for a υ-ideal of type 2 to be
S-invertible. �

Proposition 2.20. Let D be an integral domain and S a multiplicative
subset of D. Then, the following assertions are equivalent.

(i) Every υ-ideal of type 2 is S-invertible.
(ii) For a, b ∈ D \ (0), aD ∩ bD is an S-invertible ideal of D.
(iii) For a, b ∈ D \ (0), aD : bD is an S-invertible ideal of D.
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Proof. We will show that (i) ⇔ (ii) ⇔ (iii).

(i) ⇒ (ii). Let a, b ∈ D \ (0), and let

I =

(
1

a
D +

1

b
D

)
υ

.

Then, I is a υ-ideal of type 2, and, by hypothesis, I is S-invertible.
Thus, I−1 = aD ∩ bD is an S-invertible ideal of D.

(ii) ⇒ (i). Let I = (aD + bD)υ be a υ-ideal of type 2. We have

I = ((aD + bD)−1)−1 =

(
1

a
D ∩ 1

b
D

)−1

.

However, by hypothesis and Lemma 2.19, (1/a)D ∩ (1/b)D is an S-
invertible ideal of D. Hence, I is S-invertible.

(ii) ⇔ (i). It is sufficient to remark that, for each a, b ∈ D, aD
∩ bD = (aD : bD)(bD). �

3. The local S-class group of an integral domain. In this
section, we define the local S-class group of an integral domain D,
denoted by S-G(D), as the group of t-invertible fractional t-ideals of D
under t-multiplication modulo its subgroup of S-invertible t-invertible
t-ideals of D. We investigate the case of isomorphism S-G(D) ≃
S-G(D[[X]]), and we generalize some known results developed for the
classic contexts of Krull domains and PυMDs.

We begin this section by introducing the following definitions in
order to generalize some known results about G(D).

Notation 3.1. Let D be an integral domain and S a multiplicative
subset of D. We note that S-Inv(D) (respectively, S-Prin(D)) is
the set of S-invertible (respectively, S-principal) fractional ideals of
D. It is clear that S-Prin(D) is a subset of S-Inv(D). Moreover,
if S consists of units of D, then S-Inv(D) = Inv(D) (respectively,
S-Prin(D) = Prin(D)) is the set of invertible (respectively, principal)
fractional ideals of D.

Theorem 3.2. Let D be an integral domain and S a multiplicative
subset of D. Then, S-Inv(D) is a monoid under the usual multiplication
I · J = IJ , and S-Prin(D) is a submonoid of S-Inv(D).
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Proof. We show that the usual multiplication “ · ” is a binary
operation on S-Inv(D). Let I and J be two S-invertible fractional
ideals of D. There exist s, t ∈ S such that sD ⊆ II−1 ⊆ D and
tD ⊆ JJ−1 ⊆ D. It is easily seen that I−1J−1 ⊆ (IJ)−1. Thus,

stD ⊆ (II−1)(JJ−1) ⊆ (IJ)(I−1J−1) ⊆ (IJ)(IJ)−1 ⊆ D;

therefore, IJ is S-invertible. Moreover, it is easy to prove that the
multiplication “ · ” is associative, and D ∈ S-Inv(D) is the identity
element. Hence, S-Inv(D) is a monoid.

We show that S-Prin(D) is a submonoid of S-Inv(D). Let I and J
be two S-principal fractional ideals of D. There exist s, t ∈ S, a ∈ I
and b ∈ J such that sI ⊆ aD ⊆ I and tJ ⊆ bD ⊆ J . Then,

st(IJ) ⊆ abD ⊆ IJ ;

therefore, IJ is S-principal. Since D ∈ S-Prin(D), then S-Prin(D) is
a submonoid of S-Inv(D).

Let D be an integral domain with quotient field K. We note that
S-I(D) is the set of fractional S-invertible t-invertible t-ideals of D.
Recall that D is a Prüfer υ-multiplication domain (PυMD) if every
nonzero finitely generated ideal of D is t-invertible. �

Remark 3.3.

(i) The set of S-invertible ideals of D is not included in T (D).
Indeed, let D = Z[X], I = 2Z + XZ[X] and S = {2n, n ∈ N}. Since
2 ∈ I, then I is an S-principal ideal. Thus, by Proposition 2.7, I is
S-invertible. On the other hand, by [6, Lemma 2.1], I−1 = Z[X]. This
implies that Iυ = Z[X]. Thus, I is not a υ-ideal; however, Z[X] is a
Noetherian ring. Therefore, I is not a t-ideal, and hence, I /∈ T (D).

(ii) There exists an S-invertible ideal which is not t-invertible.
Indeed, let D be an integral domain which is not PυMD. Then, there
exists a finitely generated ideal I of D which is not t-invertible. Let
s ∈ I \ (0) and S = {sn, nN}. Then, S is a multiplicative subset of
D. Moreover, I is an S-principal ideal of D(S ∩ I ̸= ∅). Thus, by
Proposition 2.7, I is S-invertible.

(iii) The inclusion Inv(D) ⊆ S-I(D) may be strict. Indeed, let
D = Z+XZ[i][X], I = 2Z+(1+ i)XZ[i][X] and S = {2n, n ∈ N}. By
[6, Remark 3.2], I is a t-invertible t-ideal of D. Hence, by Example 2.3,
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I is a fractional S-invertible t-invertible t-ideal of D which is not
invertible.

Proposition 3.4. Let D be an integral domain with quotient field K
and S a multiplicative subset of D. Then, S-I(D) is a subgroup of
T (D) under the t-multiplication I ⋆ J = (IJ)t.

Proof. We have D ∈ S-I(A). Since T (D) is a group and, by
Proposition 2.6, if I ∈ S-I(D), then I−1 ∈ S-I(D). Let I and J be two
elements of S-I(D). We show that I⋆J = (IJ)t ∈ S-I(D). We have
(IJ)t ∈ T (A). Moreover, since I and J are both S-invertible ideals,
there exist s, s′ ∈ S such that sD ⊆ II−1 ⊆ D and s′D ⊆ JJ−1 ⊆ D.
Thus,

ss′ ∈ II−1JJ−1 = (IJ)(I−1J−1) ⊆ (IJ)tI
−1J−1 ⊆ D.

Therefore, ss′D ⊆ (IJ)tI
−1J−1 ⊆ D. �

Definition 3.5. Let D be an integral domain and S a multiplicative
subset of D. The quotient group S-G(D) = T (D)/S-I(D) is called the
local S-class group of D.

Remark 3.6.

(i) When the multiplicative subset S is included in the set of units
of D, then S-G(D) = G(D)(the local class group of D).

(ii) It follows from Theorem 2.15 that, if D is an S-G-GCD domain,
then S-G(D) = 0.

Our next theorem presents the case when S-G(D) = 0. Note that
the proof is inspired by [9, Theorem 2.1].

Theorem 3.7. Let D be an integral domain and S a multiplicative
subset of D. Then, the following assertions are equivalent.

(i) S-G(D) = 0;
(ii) for each I, J ∈ T (D), (IJ)S ∈ T (DS);
(iii) for each I, J ∈ T (D), if (IJ)t = D, then (IJ)S = DS ;
(iv) for each I, J ∈ T (D), ((IJ)S)

−1 = (I−1J−1)S.



1598 AHMED HAMED

Proof.

(i) ⇒ (ii). If I, J ∈ T (D), then I and J are S-invertible ideals of
D. Thus, by Theorem 3.2, IJ is an S-invertible ideal of D, and, by
Theorem 2.9, (IJ)S is invertible. Hence, (IJ)S ∈ T (DS).

(ii) ⇒ (iii). Let I and J be t-invertible t-ideals of D such that
(IJ)t = D. We always have ((IJ)t)S ⊆ ((IJ)S)t by [14, Lemma
3.4(iii)]. Then, DS ⊆ ((IJ)S)t. As IJ ⊆ (IJ)t = D, then ((IJ)S)t ⊆
DS . Thus, ((IJ)S)t = DS . However, (IJ)S ∈ T (DS). Hence, (IJ)S
= ((IJ)S)t = DS .

(iii) ⇒ (iv). Let I and J be t-invertible t-ideals of D. We have

(IJI−1J−1)t = (II−1JJ−1)t = ((II−1)t(JJ
−1)t)t = D.

Then, by hypothesis,

(IJ)S(I
−1J−1)S = (IJI−1J−1)S = DS .

Hence, ((IJ)S)
−1 = (I−1J−1)S .

(iv) ⇒ (i). Let I be a t-invertible t-ideal of D. We show that I is S-
invertible. Since I−1 is a t-invertible t-ideal of D, then ((II−1)S)

−1 =
(II−1)S . In addition, since (II−1)S ⊆ DS , then

DS ⊆ ((II−1)S)
−1 = (II−1)S ⊆ DS .

Thus, DS = (II−1)S = (IS)(I
−1)S , and hence, IS is an invertible ideal

of DS . Moreover, since I of υ-finite type, from Remark 2.10, I is an
S-invertible ideal of D. �

Recall from [16] that an integral domain D is said to be a ∗-domain
if, for ai, bj ∈ Di = 1, . . . ,m and j = 1, . . . , n,(∩

i

(ai)

)(∩
j

(bj)

)
=

∩
i,j

(aibj).

According to [15], D is a ∗-domain if, and only if, for all finitely
generated fractional ideals I, J of D, (IJ)−1 = I−1J−1. The next
definition generalizes the notion of ∗-domains.

Definition 3.8. Let D be an integral domain and S a multiplicative
subset ofD. We say thatD is an S-∗-domain if, for all finitely generated
fractional ideals I, J of D, ((IJ)S)

−1 = (I−1J−1)S .
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We remark that, if we take S to be included in the set of units of D,
then the notions ∗-domain and S-∗-domain are equivalent. The next
theorem gives an S-version of a well-known result, that is, in a PυMD,
G(D) = 0 if and only if D is a G-GCD domain if and only if D is a
∗-domain [9].

Theorem 3.9. Let D be a PυMD. Then, the following assertions are
equivalent.

(i) S-G(D) = 0
(ii) D is an S-G-GCD domain.
(iii) D is an S-∗-domain.

Proof.

(i) ⇒ (ii). We suppose that S-G(D) = 0. Let I = Jυ be a υ-finite
type ideal of D. We show that I is S-invertible. Since D is a PυMD,
then J is t-invertible. Thus, I = Jt is a t-invertible t-ideal of D. Then,
[I] ∈ S-G(D) = 0. Therefore, I is S-invertible, and hence, D is an
S-G-GCD domain.

(ii) ⇒ (i). Assume that D is an S-G-GCD domain, and let I be
a fractional t-invertible t-ideal of D. Then, I is υ-finite type, which
implies that I = Jυ for some finitely generated fractional ideal J .
Since D is an S-G-GCD domain, then I = Jυ is S-invertible, and
hence, S-G(D) = 0.

(i) ⇒ (iii). Let I and J be two finitely generated fractional ideals of
D. Since D is a PυMD, then I and J are t-invertible ideals of D. Thus,
Iυ, Jυ ∈ T (D). Then, by Theorem 3.7 (iv) , ((IυJυ)S)

−1 = (I−1J−1)S .
However,

((IυJυ)S)
−1 = (((Iυ)S(Jυ)S)υ)

−1

= ((((Iυ)S)υ((Jυ)S)υ)υ)
−1

= (((IS)υ(JS)υ)υ)
−1

= (ISJS)
−1 = ((IJ)S)

−1.

Thus, ((IJ)S)
−1 = (I−1J−1)S , and hence, D is an S-∗-domain.

(iii) ⇒ (i). Let I and J be two fractional t-invertible t-ideals of
D. Then, I and J are υ-finite types, which implies that I = Aυ and
J = Bυ for some finitely generated fractional ideals A and B of D. We
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have
((IJ)S)

−1 = ((AυBυ)S)
−1 = ((AB)S)

−1.

Since D is an S-∗-domain, ((AB)S)
−1 = (A−1B−1)S = (I−1J−1)S .

Thus, ((IJ)S)
−1 = (I−1J−1)S , and hence, by Theorem 3.7 (iv),

S-G(D) = 0. �

Proposition 3.10. Let D be an integral domain and S a multiplicative
subset of D. If G(D) = 0, then S-G(D) = 0.

Proof. It is sufficient to remark that every invertible ideal is S-
invertible. �

Remark 3.11. The converse of Proposition 3.10 is false, in general.
Indeed, let D be a PυMD which is not a G-GCD domain [2, page 218],
and let S = D\{0}. Then, D is an S-PID (S-principal ideal domain);
in particular, D is S-G-GCD, and, by Theorem 3.9, S-G(D) = 0.
However, D is a PυMD which is not G-GCD. Then, by [9], G(D) ̸= 0.

Let D ⊆ L be an extension of integral domains. Following [5], we
say that T is t-linked over D if, for each finitely generated fractional
ideal I of D with I−1 = D, we have (IL)−1 = L.

Theorem 3.12. Let D ⊆ L be an extension of integral domains such
that L is t-linked over D and S a multiplicative subset of D. Then, the
mapping

φ : S-G(D) −→ S-G(L), [I] 7−→ [(IL)t]

is well defined, and it is a homomorphism.

Proof. By [5, Theorem 2.2], it is sufficient to show that, if I ∈
S-I(D), then (IL)t ∈ S-I(L). Let I ∈ S-I(D). Then, I ∈ T (D). Since
T is t-linked over D, then (IL)t ∈ T (L) [5, Theorem 2.2]. Moreover,
there exists an s ∈ S such that sD ⊆ II−1 ⊆ D. Then,

sL ⊆ (II−1)L = (IL)(I−1L) ⊆ (IL)t(I
−1L) ⊆ L.

Thus, (IL)t is S-invertible, and hence, (IL)t ∈ S-I(L). �
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Let D be an integral domain and (Xα)α∈Λ a set of indeterminates
over D. In [8], the author showed that, if D is a Krull domain, then
G(D) ≃ G(D[{Xα}α∈Λ]) [8, Corollary 7]. Our next theorem shows the
case S-G(D) ≃ S-G(D[{Xα}α∈Λ]).

Theorem 3.13. Let D be an integrally closed domain and S a multi-
plicative subset of D. Then, S-G(D) ≃ S-G(D[{Xα}α∈Λ]).

Proof. Let φ :S-G(D)→S-G(D[{Xα}α∈Λ]), [I] 7→ [(ID[{Xα}α∈Λ])t].
From [10, Lemma 1.6], D[{Xα}α∈Λ] is t-linked over D; thus, by
Theorem 3.13, φ is well defined, and it is a homomorphism. Again,
by [10, Lemma 1.6], it is easy to show that, for every I ∈ T (D), we
have (ID[{Xα}α∈Λ])t = ID[{Xα}α∈Λ]. We show that φ is injective.
Let I be an integral t-invertible t-ideal of D such that φ([I]) = 0.
Then, [ID[{Xα}α∈Λ]] = 0. Thus, ID[{Xα}α∈Λ] is an S-invertible ideal
of D[{Xα}α∈Λ], which implies that there exists an s ∈ S such that

sD[{Xα}α∈Λ] ⊆ (ID[{Xα}α∈Λ])(ID[{Xα}α∈Λ])
−1

= II−1D[{Xα}α∈Λ] ⊆ D[{Xα}α∈Λ].

Thus, sD ⊆ II−1 ⊆ D, and hence, I is S-invertible.

Next, we show that φ is surjective. Let I be a t-invertible t-ideal of
D[{Xα}α∈Λ]. Since D is integrally closed, by [10, Theorem 3.6], the
mapping ψ : Clt(D) → Clt(D[{Xα}α∈Λ]), [I]t 7→ [ID[{Xα}α∈Λ]]t is an
isomorphism, where [I]t is the class of the fractional ideal I of D in
Clt(D). Thus, there exists a fractional t-invertible t-ideal J of D such
that [I]t = [JD[{Xα}α∈Λ]]t. This implies that (I−1JD[{Xα}α∈Λ])t is
a principal ideal of D[{Xα}α∈Λ], in particular, S-invertible. Therefore,
[I] = [JD[{Xα}α∈Λ]], and hence, φ is surjective. �

Corollary 3.14. Let D be an integrally closed domain. Then, G(D) ≃
G(D[{Xα}α∈Λ]).

Since, for each nonzero fractional ideal I of D, (I · D[[X]])−1 =
I−1[[X]], then it is easy to show that the power series ring D[[X]] is
t-linked over D.
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Lemma 3.15. Let D be an integral domain with quotient field K and
S a multiplicative subset of D. Then:

φ : S-G(D) −→ S-G(D[[X]])

[I] 7−→ [(I ·D[[X]])t]

is an injective homomorphism.

Proof. Since D[[X]] is t-linked over D, by Theorem 3.13, φ is a
homomorphism.

Let I be a fractional t-invertible t-ideal of D such that (I ·D[[X]])t
is S-invertible. We show that I is an S-invertible ideal of D. By [12,
Lemma 3.1], (I ·D[[X]])t = I[[X]]. Thus, there exists an s ∈ S such that
sD[[X]] ⊆ I[[X]](I[[X]])−1 = I[[X]]I−1[[X]] ⊆ D[[X]], which implies
that sD ⊆ II−1 ⊆ D. Hence, I is S-invertible. �

Our next theorem shows the case of the isomorphism S-G(D) ≃
S-G(D[[X]]). First, we recall the following notions. Let D be an
integral domain and S a multiplicative subset of D. The S-class group
of D, S-Cl(D), is the group of fractional t-invertible t-ideals of D under
t-multiplication modulo its subgroup of S-principal t-invertible t-ideals
of D, that is, S-Cl(D) = T (D)/S-P(D) [12]. Also, in [12], the authors
defined the following mapping:

ψ : S-Cl(D) −→ S-Cl(D[[X]])

[J ]S 7−→ [(J ·D[[X]])t]
S ,

where [J ]S is the class of the fractional ideal J of D in S-Cl(D).

Theorem 3.16. Let D be an integral domain with quotient field K and
S a multiplicative subset of D. If the mapping ψ is an isomorphism,
then the mapping φ is an isomorphism. In particular, S-G(D) ≃
S-G(D[[X]]).

Proof. From Lemma 3.15, φ is an injective homomorphism. We
show that φ is surjective. Let I be a nonzero fractional t-invertible
t-ideal of D[[X]]. Since ψ is surjective, [I]S = [(J ·D[[X]])t]

S for some
t-invertible t-ideal J ofD, which implies that (I−1(J ·D[[X]])t)t is an S-
principal ideal of D[[X]]. Then, by Proposition 2.7, (I−1(J ·D[[X]])t)t
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is S-invertible. Therefore, [I] = [(J · D[[X]])t], and hence, φ([J ]) =
[(J ·D[[X]])t] = [I]. �

Recall that D is a TV-domain if the υ- and the t-operation on D
are the same. In addition, the power series ring D[[X]] is said to
satisfy property (∗) if, for all integral υ-invertible υ-ideals I and J
of D[[X]] such that (IJ)0 ̸= (0), we have ((IJ)0)υ = ((IJ)υ)0, where
I0 = {f(0), f ∈ I} [12].

Corollary 3.17. Let D be a TV-domain such that D[[X]] satisfies
property (∗). Then, S-G(D) ≃ S-G(D[[X]]).

Proof. From [12, Theorem 4.4], the mapping ψ is an isomorphism.
Thus, by the previous theorem, S-G(D) ≃ S-G(D[[X]]). �

In the particular case where S consists of units of D, we provide
with an additional condition an answer to the question of Bouvier [8],
that is, when is G(D) isomorphic to G(D[[X]])?

Corollary 3.18. Let D be a TV-domain such that D[[X]] satisfies
property (∗). Then, G(D) ≃ G(D[[X]]).

We conclude this paper with the following results regarding the
power series ring as an S-G-GCD domain (S-∗-domain).

Corollary 3.19. Let D be a Krull domain such that D[[X]] satisfies
(∗) and S a multiplicative subset of D. Then, D is an S-G-GCD do-
main (respectively, S-∗-domain) if and only if D[[X]] is an S-G-GCD
domain (respectively, S-∗-domain).

Proof. By Theorem 3.9, D is an S-G-GCD domain if and only if
S-G(D) = 0 if and only if D is an S-∗-domain. However, by Corollary
3.17, S-G(D) ≃ S-G(D[[X]]). Thus, D is an S-G-GCD domain (S-∗-
domain) if and only if S-G(D[[X]]) = 0, which is equivalent to the fact
that D[[X]] is an S-G-GCD domain (S-∗-domain). �

Example 3.20. It follows from Corollary 3.19 that, if D is a Krull
domain such that D[[X]] satisfies (∗), then D is a G-GCD domain
(respectively, ∗-domain) if and only if D[[X]] is a G-GCD domain
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(respectively, ∗-domain). For example, if we take D = Z[i
√
5], then

D is a Krull domain. Moreover, by [12, Example 3.1], Z[i
√
5][[X]]

satisfies (∗). Since Z[i
√
5] is a G-GCD domain (respectively, ∗-domain)

(Dedekind domain), then Z[i
√
5][[X]] is a G-GCD domain (respectively,

∗-domain).
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