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CONTINUOUS-TRACE k-GRAPH C∗-ALGEBRAS

DANNY CRYTSER

ABSTRACT. A characterization is given for directed
graphs that yield graph C∗-algebras with continuous trace.
This is established for row-finite graphs with no sources first
using a groupoid approach, and extended to the general case
via the Drinen-Tomforde desingularization. A characteriza-
tion of continuous-trace AF C∗-algebras is obtained. Par-
tial results are given to characterize higher-rank graphs that
yield C∗-algebras with continuous trace.

1. Introduction. From a directed graph E, one can construct a
graph C∗-algebra C∗(E), generated by a universal family of projections
and partial isometries that satisfy certain Cuntz-Krieger relations.
Many important properties of this C∗-algebra, e.g., simplicity and K-
theory, are governed by graph-theoretic properties of E. From E, we
can also construct an étale path groupoid GE that models the shift
dynamics of infinite paths in E; the groupoid C∗-algebra of GE is
canonically isomorphic to C∗(E). This allows for the use of tools from
the theory of groupoid C∗-algebras when studying graph C∗-algebras.
In this paper, we give an example of this approach, applying the main
result of [14] to the path groupoid in order to characterize all graph
C∗-algebras with continuous trace.

The path groupoid is easiest to use if the graph is non-singular, in
the sense that each vertex is the range of a finite non-empty set of
edges. Therefore, we first work in the non-singular case; we then use
the Drinen-Tomforde desingularization to extend our results to graphs
with singular vertices. Desingularization works by taking a graph E and

returning a non-singular graph Ẽ such that C∗(E) sits inside C∗(Ẽ) as
a full corner; this implies that C∗(E) has continuous trace if and only

if C∗(Ẽ) does. As an application, we use a result from [19] to char-
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acterize continuous trace AF algebras in terms of their Bratteli dia-
grams.

In the last section, we consider higher-rank graph C∗-algebras with
continuous trace. Higher-rank graphs are categories which generalize
the category of finite directed paths within a directed graph. They
have C∗-algebras defined along the same lines as graph C∗-algebras.
We include necessary background on the theory of higher-rank graph
algebras. Again, the use of groupoids is crucial. The higher-rank
case is more complicated, and we are only able to give partial results.
In particular, giving a combinatorial description of when the isotropy
groups continuously vary for a k-graph path groupoid seems out of
reach, so we focus instead on the principal case. We note a simple
necessary condition on a higher-rank graph for its associated C∗-algebra
to have continuous trace, a corollary of a result from [5].

While this paper was in preparation, we were made aware of a
related paper of Hazlewood [9] which contains similar results to ours.
In particular, [9, Theorems 6.2.13, 6.4.11, 6.5.22] are in some sense
cycle-free/principal versions of Theorems 3.8 and 5.15. (In particular,
our finite sets of ancestry pairs play a role similar to that of F × F in
the statement of [9, Theorem 6.2.13].) The results in [9] also show that
some desingularization as in Section 4 in the present paper is possible
for the k-graph case (although it seems that resolving infinite receivers
is somewhat more difficult). The desingularization results of [6, 20] are
also of much interest in the k-graph case, although we have not applied
them here and instead have focused on non-singular k-graphs. Some
related results regarding type theory for the groupoid C∗-algebra were
obtained in [2], and the interested reader should refer to that paper for
a more general, groupoid-theoretic approach.

2. Continuous-trace C∗-algebras, graph algebras, groupoids.
In this section, we review prerequisite material on continuous-trace C∗-
algebras, graph C∗-algebras and groupoids.

Let A be a C∗-algebra, and let Â denote its spectrum of unitary
equivalence classes of irreducible representations. There is a canonical

map Â→ PrimA, given by [π] 7→ kerπ, and this map is used to define

the topology on Â as in [17]. If Â is Hausdorff in this topology, then the

map [π] → kerπ is a bijection. In this case, for a ∈ A and s = [π] ∈ Â,
we denote by a(s) the element a + kerπ ∈ A/ kerπ; in this way, A
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is fibered over Â. For an element a in a C∗-algebra A and a unitary

equivalence class s = [π] ∈ Â, the element we define the rank of a(s)
to be the rank of π(a), and we say that a(s) is a projection if and only
if π(a) is a projection. (Both of these notions are well defined up to
unitary equivalence.)

Definition 2.1 ([17, Definition 5.13]). Let A be a C∗-algebra with

Hausdorff spectrum Â. Then, A is said to have continuous trace (or be

continuous trace) if, for each t ∈ Â, there exist an open set U ⊂ Â
containing t and an element a ∈ A such that a(s) is a rank one
projection for every s ∈ U .

For an introduction to graph C∗- algebras, see [16]. The reader who
is already familiar with graph C∗-algebras may disregard the following,
standard definitions.

Definition 2.2. A (directed) graph E is an ordered quadruple E =
(E0, E1, r, s), where the E0 and E1 are countable sets, called the
vertices and edges, and r, s : E1 → E0 are maps, called the range
and source maps.

A vertex v is called an infinite receiver if there are infinitely many
edges in E1 with range v; a vertex is called a source if it receives no
sources. A vertex is regular if it is neither an infinite receiver or a
source; otherwise, it is called singular. A graph is row-finite if it has no
infinite receivers and has no sources if every vertex receives an edge.

The finite path space E∗ consists of all finite sequences e1 · · · en in
E1 such that s(ei) = r(ei+1) for i = 1, . . . , n−1. The range of the path
e1 · · · en is defined to be r(e1), and its source is s(en). If µ = e1 · · · en is
a finite path, then we define the length to be n and write |µ| = n. The
vertices are included in the finite path space as the paths of length zero.
If λ = e1 · · · en and µ = f1 · · · fm are finite paths with s(λ) = r(µ), we
can concatenate them to form λµ = e1 · · · enf1 · · · fm ∈ E∗. A path
λ contains the path ν if there are paths µ, π (possibly of length zero)
with λ = µνπ.

A cycle in a directed graph is a path λ ∈ E∗ \E0 with r(λ) = s(λ).
An entrance to the cycle λ = e1 · · · en is an edge e such that r(e) = ek
and e ̸= ek for some k ∈ {1, . . . , n}. A simple cycle is a cycle λ such
that there do not exist cycles µ, ν with λ = µν (in [12], called loops).
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A graph E is said to satisfy Condition (L) if every cycle in E has
an entrance, and E satisfies Condition (K) if there is no vertex in E
which is the range of exactly one simple cycle. A path is cycle-free if
it contains no cycles.

The infinite path space is E∞ = {e1e2 · · · |s(ei) = r(ei+1) for all i ≥
1}. If λ = e1 · · · en ∈ E∗ and x = f1 · · · ∈ E∞, then λx = e1 · · ·
enf1 · · · ∈ E∞. The range of x = e1e2 · · · ∈ E∞ is defined as
r(x) := r(e1). The shift map σ : E∞ → E∞ removes the first edge
from an infinite path: σ(e1e2 · · · ) = e2e3 · · · . Composing σ with itself
yields additional maps σ2, σ3, . . . , from E∞ to E∞.

Remark 2.3. If λ is a cycle and λ = αβ, where neither α nor β
contains a cycle, then λ is simple.

Definition 2.4. Let E be a directed graph. Then, the graph C∗-
algebra of E, denoted C∗(E), is the universal C∗-algebra generated by
projections {pv : v ∈ E0} and partial isometries {se : e ∈ E1} satisfying
the following Cuntz-Krieger relations:

(i) s∗ese = ps(e) for any e ∈ E1;

(ii) ses
∗
e ≤ pr(e) for any e ∈ E1;

(iii) s∗esf = 0 for distinct e, f ∈ E1;
(iv) if v is regular, then pv =

∑
r(e)=v ses

∗
e.

We also include the basic definitions for groupoids. A concise
definition of a groupoid is a small category with inverses; we include a
more detailed definition.

A groupoid is a set G along with a subset G(2) ⊂ G × G of
composable pairs and two functions: composition ◦ : G(2) → G (written
(α, β) → αβ) and an involution −1 : G → G (written γ → γ−1) such
that the following hold.

(A) (Associativity). If (γ, η), (η, ζ) ∈ G(2), then (γη, ζ), (γ, ηζ) ∈ G(2),
also, and γ(ηζ) = (γη)ζ.

(B) (Inverses). (γ, γ−1) ∈ G(2) for all γ ∈ G, and γ−1(γη) = η and
(γη)η−1 = γ for (γ, η) ∈ G(2).

Elements satisfying g = g2 ∈ G are called units of G, and the set of all
such units is denoted G(0) ⊂ G and called the unit space of G. There
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are maps r, s : G→ G(0), defined by

r(γ) = γγ−1, s(γ) = γ−1γ

that are called, respectively, the range and source maps. These maps
orient G as a category, with units serving as objects: (α, β) ∈ G(2) if
and only if s(α) = r(β). For a given unit u ∈ G(0) there is an associated
group G(u) = {γ ∈ G : r(γ) = s(γ) = u}; this is called the isotropy
or stabilizer group of u. The union of all isotropy groups in G forms a
subgroupoid of G, called Iso(G), the isotropy bundle of G. A groupoid
is called principal (or an equivalence relation) if Iso(G) = G(0), that is,
if no unit has non-trivial stabilizer group.

A topological groupoid is a groupoid G endowed with a topology
so that the composition and inversion operations are continuous (the
domain of ◦ is equipped with the relative product topology). A topolog-
ical groupoid is étale if the topology is locally compact and the range
and source maps are local homeomorphisms. Most of the groupoids
encountered in this paper will be Hausdorff and second countable (the
possible exceptions being the orbit groupoids RG of Definition 2.11).
Note that, if G is étale, then each range fiber r−1(u) is discrete in the
relative topology (likewise for source fibers). Hence, the intersection
of any compact subset of G with a given range fiber or source fiber is
finite.

In order to define a C∗-algebra from an étale groupoid G, it is
necessary to specify a ∗-algebra structure on Cc(G). This is given
by

(f ∗ g)(γ) =
∑

(α,β)∈G(2):αβ=γ

f(α)g(β);

compactness of supports ensures that this sum gives a well defined
element of Cc(G). (The most important notion here is that the counting
measures on range fibers form a Haar system, which is necessary for
any topological groupoid to define a C∗-algebra, see [18].) We do not
include all of the details for how to place a norm on Cc(G); these may
be found in [18]. In brief, there are two distinguished C∗-norms || · ||,
|| · ||r on Cc(G), and completion in these yields the full groupoid C∗-
algebra C∗(G) and the reduced groupoid C∗

r (G), respectively. As in
the group case, when G is amenable, these two C∗-norms coincide and
C∗(G) = C∗

r (G).
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Definition 2.5 ([11]). Let E be a graph, and let E∞ denote its infi-
nite path space. For paths x, y ∈ E∞ and k ∈ Z, we write x ∼n y if
there exist p, q ∈ N such that σpx = σqy and p− q = n. Then, the path
groupoid GE is the set {(x, n, y)∈ E∞×Z×E∞ : x ∼n y} equipped with
operations (x, n, y)(y,m, z) = (x,m+n, z) and (x, n, y)−1 = (y,−n, x).
The unit space is identified with E∞ via the mapping x 7→ (x, 0, x)
so that the range and source maps are given by r(x, n, y) = x and
s(x, n, y) = y.

Remark 2.6. If G = GE , then the isotropy group of an infinite path
x is either trivial (σpx = σqx implies p = q) or infinite cyclic (in which
case x = α(λ∞) for some finite path α and cycle λ).

The topology on GE is generated by basic open sets of the form

Z(α, β) = {(αz, |α| − |β|, βz) ∈ GE : r(z) = s(α)}

where α, β ∈ E∗ with s(α) = s(β). The topology defined above restricts

to the relative product topology on G
(0)
E = E∞ ⊂

∏
NE

1, if we treat
E1 as a discrete space. We will refer to this topology on E∞ using basic
compact-open sets of the form Z(α) = {αx | x ∈ E∞, r(x) = s(α)}.

It is noted in [12] that Z(α, β)∩Z(γ, δ) = ∅ unless (α, β) = (γϵ, δϵ),
or vice versa. This topology makes GE into an étale groupoid ([12,
Proposition 2.6]) since the restriction of the range map to the basic
sets is a homeomorphism, and furthermore, each basic set is compact.
Thus, GE has a canonical Haar system {λx}x∈E∞ consisting of counting
measures on the source fibers. As GE is an étale groupoid, it has a
groupoid C∗-algebra C∗(GE), as described above.

The next theorem has been modified from its original statement to
fit our orientation convention.

Theorem 2.7 ([12, Theorem 4.2]). For any row-finite graph with no
sources E, we have C∗(E) ∼= C∗(GE) via an isomorphism carrying se
to 1Z(e,s(e)) ∈ Cc(G) and pv to 1Z(v,v).

It is a fact that GE is always an amenable groupoid such that we
have C∗(GE) = C∗

r (GE). In order to describe graph C∗-algebras with
continuous trace, we need to know when the isotropy groups G(u)
continuously vary with respect to the unit u ∈ G(0). First, the topology
on the set of isotropy groups must be defined.
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Definition 2.8 ([17]). Let X be a topological space. Consider the
collection F (X) of all closed subsets of X; the Fell topology on F (X)
is defined by the requirement that a net (Yi)i∈I ⊂ F (X) converges to
Y ∈ F (X) exactly when:

(i) if elements yi are chosen in Yi such that yi → z, then z belongs
to Y ; and

(ii) for any element y ∈ Y , and for any subnet (Yij ) of (Yi), there
exists a subnet (Yijk ) of (Yij ) and elements yijk∈Yijk such that
yijk → y.

We say that the topological groupoid G has continuous isotropy if the
isotropy mapG(0) → F (G) defined by x 7→ G(x) is continuous. By Σ(0),
we denote the space of closed subgroups of G (that is, subsets which
form groups under the inherited operations), equipped with the Fell
topology.

We will not need to handle the Fell topology directly in this paper
due to the following result which describes continuous isotropy for
graph algebras.

Theorem 2.9 ([8]). Let E be a row-finite graph with no sources. Then,
GE has continuous isotropy if and only if no cycle in E has an entrance.

Definition 2.10. A topological groupoid G is proper if the orbit map
ΦG : G → G(0) × G(0) given by g → (r(g), s(g)) is proper (where the
codomain is equipped with the relative product topology).

Definition 2.11. Let G be a groupoid. Let πR : G → G(0) ×G(0) be
given by πR(g) = (r(g), s(g)). Then, the orbit groupoid of G, denoted
by RG = R, is the image of πR, where the groupoid operations are:

(u, v)(v, w) = (u,w)

(u, v)−1 = (v, u).

The unit space of R is identified with the unit space of G. The range
and source maps are naturally identified with the projections onto the
first and second factors.
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Definition 2.12. The topology on R = RG is the quotient topology
induced by the above map πR : G→ R.

Remark 2.13. If the groupoid G is principal, in the sense that G(x)
= {x} for every unit x ∈ G(0), then the map πR is a groupoid iso-
morphism.

The following commutative diagram serves to keep the relevant
groupoids and spaces distinct. Note that, as a set map, ΦR is merely
an inclusion. However, R carries a different topology from the product
topology on G(0) ×G(0); thus, we distinguish between the two.

..

..G .

. ..G(0) ×G(0).

..R .

.π .

ΦG

.

ΦR

Remark 2.14. In some sources, such as [14], the orbit groupoid is
denoted by R = G/A to indicate that it is the quotient of a groupoid
by the (in this case, abelian) isotropy bundle.

The next theorem from [14] allows us to determine whether a group-
oid C∗-algebra C∗(G) is continuous-trace from properties of its groupoid
G.

Theorem 2.15 ([14, Theorem 1.1]). Let G be a second-countable lo-
cally compact Hausdorff groupoid with unit space G(0), abelian isotropy
and Haar system {λu}u∈G(0) . Then, C∗(G,λ) has continuous trace if
and only if :

(i) the stabilizer map u 7→ G(u) is continuous from G(0) to Σ(0);
(ii) the action of R on G(0) is proper.

3. Continuous-trace graph algebras. The path groupoid of a
directed graph E is made of infinite paths, and the open sets are
described by finite path prefixes. It is not surprising, then, that the
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characterization of proper path groupoids is stated in terms of a certain
finiteness condition on paths. For this section, the standing assumption
is that E is a row-finite graph with no sources.

Definition 3.1. Let v, w ∈ E0 be vertices in a directed graph E (where
we allow v = w). An ancestry pair for v and w is a pair of paths (λ, µ)
such that r(λ) = v, r(µ) = w, and s(λ) = s(µ). A minimal ancestry
pair is an ancestry pair (λ, µ) such that, whenever (λ, µ) = (λ′ν, µ′ν)
for some ancestry pair (λ′, µ′) and path ν, then we must necessarily
have ν = s(λ) = s(µ). An ancestry pair (λ, µ) is cycle-free if neither λ
nor µ contains a cycle. The graph E has finite ancestry if every pair
of vertices v, w has at most finitely many cycle-free minimal ancestry
pairs. (We include the possibility that v = w.)

Remark 3.2. Note that it is not necessary that any two vertices of E
have an ancestry pair in order for E to have finite ancestry.

Much of our analysis below hinges on an understanding of the
topology on RG when G = GE is the path groupoid of E. The compact-
open basic sets Z(α, β) ⊂ GE project onto compact-open basic sets
πR(Z(α, β)) when πR : G → RG is the quotient map. The following
lemma describes how the latter sets overlap in the case when (α, β) is
further required to be an ancestry pair. (Recall that a cycle λ is simple
if it cannot be written as the product of two other cycles.)

Lemma 3.3. Let E be a directed graph, and let (α, β) and (γ, δ) be
two distinct cycle-free minimal ancestry pairs in E. If πR(Z(α, β)) ∩
πR(Z(γ, δ)) ̸= ∅, then one of the two must hold :

(i) there are path factorizations α = γα′ and δ = βδ′ such that
λ = α′δ′ is a simple cycle; or

(ii) there are path factorizations γ = αγ′ and β = δβ′ such that
λ = γ′β′ is a simple cycle.

Proof. By the definition of πR, we have πR(Z(α, β)) = {(αw, βw) :
w ∈ E∞, r(w) = s(α)}; thus, if πR(Z(α, β)) ∩ πR(Z(γ, δ)) ̸= ∅, then
there must exist infinite paths w, z ∈ E∞ such that r(w) = s(α) = s(β),
r(z) = s(γ) = s(δ) and (αw, βw) = (γz, δz) (simply as ordered pairs of
infinite paths).
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Claim 3.4. We must have |α| ≥ |γ| and |β| ≤ |δ|, or |α| ≤ |γ| and
|β| ≥ |δ|.

Proof. Suppose that |α| ≥ |γ| and |β| ≥ |δ|. Then, the equations
αw = γz and βw = δz imply that we can factor α and β, respectively,
as α = γα′ and β = δβ′. Then, we see that γα′w = γz and δβ′w = δz,
from which we see that α′w = β′w. If α′ = β′, then, by minimality
of (α, β), we conclude that (α, β) = (γ, δ), establishing the claim. If
α′ ̸= β′, then the equation α′w = β′w forces one of α′ or β′ to be a
cycle, contradicting the assumption that α and β are cycle-free. The
case where |α| ≤ |γ| and |β| ≤ |δ| follows by symmetry, establishing
the claim. �

Now assume, without loss of generality, that |α| ≥ |γ| and |β| ≤ |δ|,
in addition to the initial assumption that (αw, βw) = (γz, δz). We can
write path factorizations α = γα′ and δ = βδ′. Let λ = α′δ′, which is
indeed a finite path as s(α′) = s(α) = s(β) = r(δ′), and moreover, a
cycle as r(α′) = s(γ) = s(δ) = s(δ′). Since neither α nor δ contains a
cycle, it must be the case that λ is a simple cycle. �

Lemma 3.5. If no cycle of E has an entrance, then, for a fixed cycle-
free minimal ancestry pair (α, β), there are at most finitely many cycle-
free minimal ancestry pairs (γ, δ) such that

πR(Z(α, β)) ∩ πRZ((γ, δ)) ̸= ∅.

Proof. The assumption that no cycle of E has an entrance implies
that any vertex in E is the range of at most one simple cycle. Note that,
in Lemma 3.3, the cycle λ has range and source vertex equal to s(α).
If λ is the unique simple cycle with r(λ) = s(λ) = s(α) = s(β), and,
if (γ, δ) is an ancestry pair such that πR(Z(α, β)) ∩ πRZ((γ, δ)) ̸= ∅,
then it is possible to recover (γ, δ) from the factorization of λ as in
Lemma 3.3. Specifically, if (i) holds in Lemma 3.3, then, knowing
the factorization λ = α′δ′ (that is, the ordered pair of paths (α′, δ′)
such that α′δ′ = λ) immediately yields γ (truncate the first |α′| edges
from α) and δ (= βδ′); the same is true if (ii) holds. Thus, specifying a
factorization of λ is enough to specify the ancestry pair (γ, δ). However,
the cycle λ has only finitely many possible factorizations; thus, there
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are only finitely many cycle-free minimal ancestry pairs (γ, δ) such that
πR(Z(α, β)) ∩ πRZ((γ, δ)) ̸= ∅. �

Lemma 3.6. Let (λ, µ) be an ancestry pair. Then, there is a unique
minimal ancestry pair (α, β) such that Z(λ, µ) ⊂ Z(α, β) in GE. If
(λ, µ) is cycle-free, then so is (α, β).

Proof. First, we prove uniqueness. If Z(λ, µ) ⊂ Z(α, β) ∩ Z(α′, β′)
for minimal ancestry pairs (α, β) and (α′, β′), then, by [12, Lemma
2.5], we must have that (α, β) = (α′ϵ, β′ϵ), or vice versa, for some
choice of path ϵ. By minimality, we see that ϵ must have length zero
so that (α, β) = (α′, β′), proving uniqueness.

Next, we prove existence. If (λ, µ) is not minimal, then choose
ϵ of maximum length such that we can write (λ, µ) = (αϵ, βϵ) for
some α, β. Then, we see that (α, β) is a minimal ancestry pair and
Z(λ, µ) ⊂ Z(α, β). For the final claim, it is clear that, if (λ, µ) is
cycle-free, then (α, β) constructed as above will be as well. �

Lemma 3.7. Let E be a directed graph in which no cycle has an
entrance, and let (λ, µ) be an ancestry pair. Then, there is a cycle-
free minimal ancestry pair (α, β) such that πR(Z(λ, µ)) ⊂ πR(Z(α, β)).

Proof. First, take a minimal ancestry pair (α, β) such that Z(λ, µ) ⊂
Z(α, β) as in Lemma 3.6. Then, πR(Z(α, β) ⊂ πR(Z(λ, µ)); thus, we
focus on the minimal ancestry pair (α, β). If neither α nor β contains a
cycle, then we are finished. Now, assume that τ is the longest cycle that
α contains; then, there exist τ ′, τ ′′ ∈ E∗ such that α can be written
as α = α′ττ ′ and τ = τ ′τ ′′. It is evident that α′τ ′ contain no cycle
and that any infinite path x, which can be written as x = αz, can
also be written as x = α′τ ′z (by the assumption that no cycle has an
entrance). Replacing α with the (cycle-free) path α′τ ′, we see that
(α′τ ′, β) is a minimal ancestry pair whose first coordinate contains no
cycle, and πR(Z(α

′τ ′, β)) = πR(Z(α, β)).

Repeating this process, we can find β′, σ′ such that πR(Z(α, β)) =
πR(Z(α

′τ ′, β′σ′)) and such that (α′τ ′, β′σ′) is a cycle-free minimal
ancestry pair. Since πR(Z(α, β)) contains πR(Z(λ, µ)), this establishes
the lemma. �
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Theorem 3.8. Let E be a row-finite directed graph with no sources.
Then, C∗(E) has continuous trace if and only if both

(i) no cycle of E has an entrance, and
(ii) E has finite ancestry.

Proof. Suppose no cycle of E has an entrance and E has finite
ancestry. We show that ΦR in Definitions 2.10 and 2.11 is proper.
The collection of sets Z(v)× Z(w) ⊂ E∞ × E∞ form a compact-open
cover for E∞ ×E∞. Thus, it suffices to prove that Φ−1

R (Z(v)× Z(w))
is compact for any vertices v and w. It is not difficult to see that

Φ−1
G (Z(v)× Z(w)) =

∪
(α,β)∈M

Z(α, β),

where M is the set of all minimal ancestry pairs for v and w. We can
partition these pairs into two families: C, the set of minimal ancestry
pairs for v and w containing cycles and D, the set of cycle-free minimal
ancestry pairs.

By definition, we have that Φ−1
R (Z(v) × Z(w)) = πR(Φ

−1(Z(v) ×
Z(w))). Thus, we can write

πR(Φ
−1(Z(v)× Z(w))) = πR

( ∪
(α,β)∈C

Z(α, β)

)
∪ πR

( ∪
(λ,µ)∈D

Z(λ, µ)

)
.

However, for each (α, β) ∈ C, we have that πR(Z(α, β))⊂πR(Z(λ, µ))
for some (λ, µ) ∈ D. Thus, Φ−1

R (Z(v)× Z(w)) = ∪(λ,µ)∈DπR(Z(λ, µ)).
Each πR(Z(λ, µ)) is compact by the continuity of πR and compactness
of Z(λ, µ), and D is finite by the assumption that E has finite ancestry.
Hence, ΦR is a proper map, and the C∗-algebra has continuous trace
by [14].

Now, suppose that C∗(E) has continuous trace. Then, the isotropy
groups of G must vary continuously so that no cycle of E has an
entrance. Thus, we only need show that E has finite ancestry. Suppose
that v and w are two vertices, and let {(αk, βk) : k ∈ A} be an
enumeration of the cycle-free minimal ancestry pairs for v and w. As
in the proof of the sufficiency, we can write Φ−1

R (Z(v) × Z(w)) =
∪kπR(Z(αk, βk)). By properness of ΦR, we must be able to extract
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a finite subcover. However, for any finite subset B ⊂ A, the set

B′ =

{
k ∈ A : πR(Z(αk, βk)) ∩

( ∪
j∈B

πR(Z(αj , βj))

)
̸= ∅

}
is finite by Lemma 3.5. This implies that A is finite. Thus, E has finite
ancestry. �

4. Arbitrary graphs. The previous theorem is given only in the
context of row-finite graphs with no sources. In this section, we will
remove the requirement that all graphs be row-finite and have no
sources, through the use of the Drinen-Tomforde desingularization.

Definition 4.1. A tail at the vertex v is an infinite path e1e2 · · · with
range v = r(e1).

Briefly, the Drinen-Tomforde desingularization adds a tail to each
singular vertex. If the singular vertex v is an infinite receiver, it takes
all the edges with range v and redirects each to a different vertex on the
infinite tail (the choice of which vertices receive which edges requires

us to use a desingularization). This produces a new graph Ẽ, which
has no singular vertices. For details, see [4, 16]. Note that we have
reversed the edge orientation of [4] to fit with the higher-rank graphs
considered in the next section.

Theorem 4.2 ([4, Theorem 2.11]). Let E be an (arbitrary) directed

graph. Let Ẽ be a desingularization for E. Then, C∗(E) embeds in

C∗(Ẽ) as a full corner so that C∗(E) is Morita equivalent to C∗(Ẽ).

The basic technical lemma necessary for the analysis in this section
is a bijection between finite paths in a singular graph and certain finite
paths in its desingularization. (We have omitted the part about infinite
paths.)

Lemma 4.3 ([4, Lemma 2.6]). Let E be a directed graph, and let Ẽ
be a desingularization. Then, there is a bijection

ϕ : E∗ −→ {β ∈ Ẽ∗ : s(β), r(β) ∈ E0}.

The map ϕ preserves source and range.
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Remark 4.4. The construction of the bijection ϕ in [4] has the
following homomorphism property: for paths α, β, λ ∈ E∗, we have
λ = αβ if and only if ϕ(λ) = ϕ(α)ϕ(β). Furthermore, λ is cycle-free in
the sense of Definition 2.2 if and only if ϕ(λ) is cycle-free.

Lemma 4.5. Let E be a directed graph, and let Ẽ be a desingularization
for E. Then, no cycle of E has an entrance if and only if no cycle of

Ẽ has an entrance.

Proof. Suppose that no cycle of Ẽ has an entrance. Let λ = e1 · · · en
be a cycle in E, and let λ̃ = ϕ(λ) = f1 · · · fm be the corresponding path

in Ẽ, with r(λ̃) = r(λ) and s(λ̃) = s(λ). Suppose that e is an edge in

E with r(e) = r(ek), and yet, e ̸= ek. Then, ẽ = ϕ(e) is a path in Ẽ
with r(ẽ) = r(ϕ(ek)) and ẽ ̸= ẽk (here, we are using the fact that ϕ is

a bijection). Thus, ẽ is an entrance to the cycle λ̃.

Suppose that no cycle of E has an entrance, and let µ = f1f2 · · · fn
be a cycle in Ẽ. If s(µ) belongs to E0, then ϕ−1(µ) is a cycle in E.
Furthermore, we know that no vertex of E0 on ϕ−1(µ) can be singular
since then the cycle ϕ−1(µ) would have an entrance. Thus, µ consists
solely of edges in E and does not meet any singular vertices or tails.

The only edges in Ẽ that meet µ are images under ϕ of edges from E,
and we know that µ has no entrances in E; thus, µ has no entrances.

Now, we show that, under the assumption that no cycle of E has an

entrance, there is no cycle of Ẽ whose source vertex lies on an infinite

tail added in the desingularization. Suppose that µ is a cycle in Ẽ with
source on such an infinite tail. Since no infinite tail contains a cycle,
we can write µ = f1 · · · fkd1 · · · dj , where d1 · · · dj is the largest path
in the infinite tail containing s(µ) such that d1 · · · dj is contained in µ.
Then, r(d1) must be the vertex to which the infinite tail is attached,
i.e., r(d1) ∈ E0. Consider the cycle µ′ = d1 · · · djf1 · · · fk. This begins
and ends in E0; thus, it equals ϕ(λ) for some cycle λ in E. This cy-
cle cannot meet any singular vertices in E (or else it would have an
entrance); hence, it must be the case that λ = ϕ(λ). However, s(µ)
belongs to λ, contradicting our assumption that s(µ) belongs to an
infinite tail. Combining this with the previous part shows that, if no

cycle of E has an entrance, then no cycle of Ẽ has an entrance. �
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In the proof of the next technical lemma, we will sometimes refer to
a pair (α, β) as an ancestry pair in a graph, which means that it is an
ancestry pair for the vertices r(α), r(β).

Lemma 4.6. Let E be a directed graph, and let Ẽ be a desingularization

of E. Then Ẽ has finite ancestry if and only if E has finite ancestry.

Proof.

(If). Suppose that E has finite ancestry, and let v, w ∈ Ẽ0 be two
vertices in the desingularization and Av,w = {αi, βi} the set of all

distinct cycle-free minimal ancestry pairs (in Ẽ) for v and w.

Let σ be the shortest path in Ẽ from v to a vertex in E0, and

likewise, let τ be the shortest path in Ẽ from w to a vertex in E0. Let
(α, β) be a cycle-free minimal ancestry pair for v and w; consider the
ancestry pair (σα, τβ): this is minimal unless either α = v and β = β′σ
or β = w and α = α′τ , in which case the pair (r(σ), τβ′) or (σα′, r(τ))
will be minimal, respectively. Define ψ(α, β) = (σα, τβ), if the latter
ancestry pair is minimal, and define ψ(α, β) to be either (r(σ), τβ′) or
(σα′, r(τ)), depending on the case above. The map ψ is an injection
from the cycle-free minimal ancestry pairs for v and w into the set of
cycle-free minimal ancestry pairs for r(σ) and r(τ). It is easy to see

that any minimal ancestry pair in Ẽ for vertices that are both in E0

must have common source vertex also in E0. Thus, we can consider
the composition

(α, β) 7−→ ψ(α, β) = (λ, µ) 7−→ (ϕ(λ), ϕ(µ)).

This carries the set Av,w injectively into the set of cycle-free minimal
ancestry pairs in E for r(σ), r(τ), according to Remark 4.4. Since the
latter set is finite by our assumptions on E, it must be the case that
Av,w is finite so that E has finite ancestry.

(Only if). Suppose that Ẽ has finite ancestry, let v and w be two
vertices of E and let Av,w = {(αi, βi)} be the set of all cycle-free
minimal ancestry pairs for v and w. Then, {(ϕ(αi), ϕ(βi))} is, again
following Remark 4.4, a set of cycle-free minimal ancestry pairs for
ϕ(v) and ϕ(w), and thus, it must be finite. Then, the fact that ϕ is a
bijection shows that Av,w is finite. �



1526 DANNY CRYTSER

Theorem 4.7. Let E be an arbitrary graph. Then, C∗(E) has contin-
uous trace if and only if both

(i) no cycle of E has an entrance; and
(ii) E has finite ancestry.

Proof. We begin by fixing a desingularization Ẽ of E. If no cycle
of E has an entrance and E has finite ancestry, then Lemmas 4.5 and

4.6 tell us that the same is true of Ẽ. Then, Theorem 3.8 states that

C∗(Ẽ) has continuous trace. Theorem 4.2 and the fact that the class of
continuous-trace C∗-algebras is closed under Morita equivalence then
give that C∗(E) has continuous trace.

Now, suppose that C∗(E) has continuous trace. Then, C∗(Ẽ) has
continuous trace as in the previous part of the proof. By Theorem 3.8,

we see that no cycle of Ẽ has an entrance and Ẽ has finite ancestry.
Lemmas 4.5 and 4.6 again yield that E satisfies the same conditions. �

Corollary 4.8. If E is a graph with no cycles, then C∗(E) has
continuous trace if and only if E has finite ancestry.

Corollary 4.8 can be applied to AF algebras. Drinen showed that
every AF algebra arises as the C∗-algebra of a locally finite pointed
directed graph [3]. Tyler gave a useful complementary result, showing
that, if E is a Bratteli diagram for an AF algebra A, then there is
another Bratteli diagram KE for A such that (treating the diagrams as
directed graphs) C∗(KE) contains A and C∗(E) as complementary full
corners [19]. Thus, in particular, A and C∗(E) are Morita equivalent.

Cautionary note. The paper [19] uses a different edge orientation
convention; therefore, we reverse all edges of Bratteli diagrams when
computing their graph C∗-algebras.

Corollary 4.9. Let A be an AF algebra, and let Erev be a Bratteli
diagram for A with all edges reversed. Then, A has continuous trace if
and only if Erev has finite ancestry.

Example 4.10. Let A =
⊗∞

n=1M2(C) be the UHF algebra of type
2∞. The familiar Bratteli diagram for A (with labels) is
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..... . . . ..
v1
.

v2
.

v3
.

e1

.

f1

.

e2

.

f2

If we treat this diagram as a directed graph E and reverse all of the
edges, then C∗(Erev) is Morita equivalent to A. The graph Erev fails to
have finite ancestry: for each k, we have the cycle-free minimal ancestry
pair (f1e2f3 · · · e2k, e1f2e3 · · · f2k) for v1, v1. Thus, A does not have
continuous trace. (As is well known, we can actually reach a strong-
er conclusion, namely, that A does not have Hausdorff spectrum, see
[8].)

5. Higher-rank graphs. In this section, we partially extend the re-
sults of Section 4 to the realm of higher-rank graphs. We have not com-
pletely described which higher-rank graph C∗-algebras have continuous
trace. However, we do characterize the higher-rank graphs with prin-
cipal path groupoids which yield continuous-trace C∗-algebras. The
jump in combinatorial complexity from the graph to the k-graph case
is noteworthy. In addition, we provide some negative results regarding
the generalized cycles of [5]. In particular, a generalized cycle with
entry leads to an infinite projection, which cannot occur if the algebra
has Hausdorff spectrum.

Remark 5.1. In this section, the semigroup Nk is treated as a category
with a single object, 0.

Definition 5.2 ([10]). A higher-rank graph, or k-graph, consists of
a countable category Λ equipped with a degree functor d : Λ → Nk,
which satisfies the following factorization property: if d(λ) = m+n for
some m,n ∈ Nk, then λ = µν for some unique µ, ν such that d(µ) = m
and d(ν) = n. The vertices Λ0 of Λ are identified with the objects.
The elements of Λ are referred to as paths. For fixed degree n ∈ Nk,
the paths of degree n are denoted by Λn. We refer to paths of degree
0 as vertices in the k-graph. The range and source maps r, s : Λ → Λ0

are defined so that r(λ)λ = λs(λ) = λ for all λ.

We can construct a C∗-algebra from a higher-rank graph much
like the procedure for graph C∗-algebras; however, some additional
hypotheses must be added in order to ensure the result is not trivial.
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The hypotheses used here are not the weakest which define a meaningful
C∗-algebra, but they let us easily use the groupoid machinery.

Definition 5.3 ([10]). For v ∈ Λ0 and n ∈ Nk, let vΛn = r−1(v)∩Λn.
We say that Λ is row-finite if vΛn is finite for all v ∈ Λ0, n ∈ Nk. We
say that Λ has no sources if vΛn is non-empty for all v ∈ Λ0, n ∈ Nk.

Definition 5.4 ([10]). Let Λ be a row-finite k-graph with no sources.
Then, the higher-rank graph C∗-algebra of Λ, denoted C∗(Λ), is the uni-
versal C∗-algebra generated by a family of partial isometries {sλ}λ∈Λ

satisfying:

(i) {sv : v ∈ Λ0} is a family of mutually orthogonal projections;
(ii) if λ, µ ∈ Λ with s(λ) = r(µ), then sλsµ = sλµ;
(iii) s∗λsλ = ss(λ);

(iv) for any v ∈ Λ0 and any degree n ∈ Nk, we have sv =∑
λ∈Λn:r(λ)=v sλs

∗
λ.

Similarly to the graph case, we study continuous-trace higher-rank
graph C∗-algebras by constructing a path groupoid and applying
groupoid results. The following k-graph is used to define infinite paths
in k-graphs.

Definition 5.5. Let Ωk be the category of all pairs {(m,n) : m ≤ n}
⊂ Nk × Nk, where m ≤ n if mi ≤ ni for all i = 1, . . . , k. The
composition is given by (m,n)(n, p) = (m, p). The degree functor is
given by d(m,n) = n−m. The objects are all pairs of the form (m,m).
If Λ is a k-graph, then an infinite path in Λ is a degree preserving
functor x : Ωk → Λ. The collection of infinite paths in Λ is denoted
Λ∞.

Let Λ be a k-graph, and let x be an infinite path in Λ. For any
p ∈ Nk, we define σpx to be the infinite path given by σpx(m,n) =
x(m + p, n + p). The range of an infinite path x ∈ Λ∞ is defined to
be the vertex x(0, 0) and is denoted by r(x). If λ ∈ Λ and x ∈ Λ∞

with s(λ) = r(x), then there is a unique path y = λx ∈ Λ∞ such that
σd(λ)y = x and y(0, d(λ)) = λ.
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Now, we can define the higher-rank version of the path groupoid.
As noted in [10], the no sources assumption implies that every vertex
v ∈ Λ0 is the range of at least one infinite path x ∈ Λ∞.

Definition 5.6 ([10]). Let Λ be a k-graph. For paths x, y ∈ Λ∞ and
n ∈ Zk, write x ∼n y if there exist p, q ∈ Nk such that σpx = σqy and
p− q = n. The path groupoid of Λ is GΛ = {(x, n, y) ∈ Λ∞×Zk ×Λ∞ :
x ∼n y}, with operations given by (x, n, y)(y,m, z) = (x,m+ n, z) and
(x, n, y)−1 = (y,−n, x).

The topology on GΛ is defined in the same way as the topology on
GE , for E a graph. The basic open sets take the form

Z(α, β) = {(x, d(α)− d(β), y) ∈ GΛ : σd(α)(x) = σd(β)(y)}.

The topology on GΛ generated by these sets transforms it into a
locally compact Hausdroff étale groupoid with unit space Λ∞, see
[10, Proposition 2.8]. The relative topology on the unit space can be
described by open sets of the form Z(α) = {x ∈ Λ∞ : x(0, d(α)) = α}.

Theorem 5.7 ([10, Corollary 3.5]). Let Λ be a row-finite k-graph with
no sources, and let GΛ be its path groupoid. Then, C∗(Λ) ∼= C∗(GΛ).

Recall that, if u ∈ G(0), then G(x) = {γ ∈ G : r(γ) = s(γ) = u} is
the stabilizer subgroup at u.

Definition 5.8. A row-finite k-graph Λ with no sources is called
principal if the path groupoid GΛ is principal, that is, if, for all x ∈ Λ∞

and p, q ∈ Nk, the equation σpx = σqx implies that p = q.

Remark 5.9. As noted in [7], for principal groupoids G, the map onto
the orbit groupoid R is an isomorphism.

We modify our definition of ancestry pair to the k-graph situation.

Definition 5.10. Let Λ be a row-finite k-graph with no sources, and
let v, w ∈ Λ0 be two vertices. Then, an ancestry pair for v, w is a pair
(λ, µ) ∈ Λ×Λ such that r(λ) = v, r(µ) = w, and s(λ) = s(µ) = w. An
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ancestry pair (λ, µ) is minimal if (λ, µ) = (λ′ν, µ′ν) implies ν = s(λ).
We say that Λ has strong finite ancestry if each pair of vertices has at
most finitely many minimal ancestry pairs.

Remark 5.11. Strong finite ancestry implies finite ancestry in the
1-graph case. In fact, a 1-graph E having strong finite ancestry is
equivalent to E having finite ancestry and no directed cycles.

Consider the map p : GΛ → Λ∞ × Λ∞, given by (x, n, y) 7→ (x, y).
The image of this map forms a groupoid under (x, y)(y, z) = (x, z)
and (x, y)−1 = (y, x), and we denote this groupoid by RΛ. We give
RΛ the quotient topology induced by the map p. For the following
lemma, recall that a groupoidH is proper if the map h→ (r(h), s(h)) ∈
H(0) ×H(0) is proper.

Lemma 5.12. Suppose that Λ is a row-finite k-graph with no sources.
If Λ has strong finite ancestry, then RΛ is proper.

Proof. We adopt the notation of Theorem 3.8. As in the proof of
Theorem 3.8, we see that

Φ−1
R (Z(v)× Z(w)) =

∪
(α,β)∈M

πR(Z(α, β)),

whereM is the set of minimal finite ancestry pairs for arbitrary vertices
v and w. Strong finite ancestry then implies that ΦR is proper so that
RΛ is proper. �

The next lemma is used to show that strong finite ancestry is
necessary for a principal k-graph to yield a C∗-algebra with continuous
trace.

Remark 5.13. In the proof of the following lemma, if 1 ≤ j ≤ k, then
ej refers to the jth standard basis vector in Nk. Moreover, if α is a
path and 0 ≤ m ≤ n ≤ d(α), we use α(m,n) to refer to the unique
path of degree n −m such that α = α′α(m,n)α′′ for paths α′ ∈ Λm,
α′′ ∈ Λd(α)−n.
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Lemma 5.14. Let Λ be a principal row-finite k-graph with no sources.
Let (α, β) and (γ, δ) be two distinct minimal ancestry pairs in Λ. Then,
Z(α, β) ∩ Z(γ, δ) = ∅.

Proof. We claim that it suffices to show that, if Z(α, β)∩Z(γ, δ) ̸= ∅,
then either d(α) ≥ d(γ) and d(β) ≥ d(δ), or d(γ) ≥ d(α) and
d(δ) ≥ d(β). For, suppose that (αz, n, βz) = (γw, n, δw), d(α) ≥ d(γ)
and d(β) ≥ d(δ). Then, αz = γα′z = γw so that α′z = w (where α′

= α(d(γ), d(α))). We also have βz = δβ′z = δw so that β′z = w (where
β′ = β(d(δ), d(β))). If d(α′) = d(β′), then this shows that α′ = β′ so
that (α, β) = (γα′, βα′), contradicting minimality of the pair (α, β). If

d(α′) ̸= d(β′), then the equation σd(α′)w = z = σd(β′)w contradicts the
assumption that Λ is principal. The other case follows by symmetry,
establishing the claim.

If the intersection Z(α, β)∩Z(γ, δ) is nonempty, then we must have
(αz, n, βz) = (γw, n, δw) for some z, w ∈ Λ∞, where n = d(α)−d(β) =
d(γ)− d(δ); note that this implies d(α)− d(γ) = d(β)− d(δ). Thus, if
d(α) ≥ d(γ), we also have d(β) ≥ d(δ), reducing to the claim. Hence,
we assume by way of contradiction that there are indices j, ℓ ≤ k such
that

d(α)j − d(γ)j > 0 and d(γ)ℓ − d(α)ℓ > 0.(5.1)

(Note that d(β)j − d(δ)j and d(δ)ℓ − d(β)ℓ are both positive as well.)

First, consider the jth coordinate: as d(γ)j ≤ d(α)j , we can factor α
as α(0, d(γ)jej)α(d(γ)jej , d(α)) and γ as γ(0, d(γ)jej)γ(d(γ)jej , d(γ)).
Set α′ = α(d(γ)jej , d(α)) and γ′ = γ(d(γ)jej , d(γ)). Now, observe
that α′z = γ′w; we denote this infinite path by x, and remark that
σd(α′)x = z and σd(γ′)x = w. Subtract d(γ)jej + d(δ)jej on both sides
of d(α) + d(δ) = d(β) + d(γ) to obtain

(5.2) d(α)−d(γ)jej+d(δ)−d(δ)jej = d(β)−d(δ)jej+d(γ)−d(γ)jej .

Now, observe that

σd(δ)−d(δ)jejz = σd(δ)−d(δ)jejσd(α)−d(γ)jejx

= σd(δ)−d(δ)jej+d(α)−d(γ)jejx

= σd(β)−d(δ)jej+d(γ)−d(γ)jejx

= σd(β)−d(δ)jejw,
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where we have used (5.2) in the third equation. A similar calculation
shows that σd(α)−d(α)ℓeℓw = σd(γ)−d(α)ℓeℓz. Applying σd(δ)−d(δ)jej to
both sides of σd(γ)−d(α)ℓeℓz = σd(α)−d(α)ℓeℓw, we obtain

σd(δ)−d(δ)jej+d(γ)−d(γ)ℓeℓz = σd(δ)−d(δ)jej+d(α)−d(α)ℓeℓw

= σd(γ)+d(β)−d(δ)jej−d(α)ℓeℓw

= σd(γ)−d(α)ℓeℓσd(β)−d(δ)jejw

= σd(γ)−d(α)ℓeℓσd(δ)−d(δ)jejz,

where we have used d(α) + d(δ) = d(β) + d(γ) in the second equation.
We have assumed that Λ is principal, so we must have that

d(δ)− d(δ)jej + d(γ)− d(γ)ℓeℓ = d(γ)− d(α)ℓeℓ + d(δ)− d(δ)jej .

Cancelation now yields d(γ)ℓeℓ = d(α)ℓeℓ, contradicting our assump-
tion that d(γ)ℓ > d(α)ℓ in (5.1). �

Theorem 5.15. Let Λ be a principal row-finite k-graph with no
sources. Then, C∗(Λ) has continuous trace if and only if Λ has strong
finite ancestry.

Proof.

(i) Since Λ is principal, the path groupoidGΛ trivially has continuous
isotropy. Lemma 5.12 implies that GΛ = RΛ is proper. Thus, [14,
Theorem 1.1] implies that C∗(Λ) has continuous trace.

(ii) Since Λ is strictly aperiodic, we can identify the groupoids GΛ

and RΛ. Let v and w be two vertices of Λ. Then,

Φ−1(Z(v)× Z(w)) =
∪

(α,β)∈M

Z(α, β)

as in the proof of Theorem 3.8. Lemma 5.14 implies that the sets
Z(α, β) are pairwise disjoint and open. Thus, M must be finite by
compactness of Φ−1(Z(v) × Z(w)), which implies that Λ has strong
finite ancestry. �

Remark 5.16. Theorem 5.15 is not as complete as Theorem 3.8; a
complete description of those k-graphs which define continuous-trace
C∗-algebras as in Theorem 3.8 seems out of reach since it is difficult
to give a condition on k-graphs which is equivalent to continuity of
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stabilizers in the path groupoid. Any such condition used must be at
least as strong as the condition [1, Theorem 4.4] which describes the
k-graphs that have closed interior isotropy.

Desingularization is, in general, much more complicated for higher-
rank graphs, cf., [6], so it seems perhaps unlikely that this could be
easily extended to higher-rank graphs with sources. However, we can
give some necessary conditions for a k-graph to satisfy in order that its
C∗-algebra have continuous trace. The following definition is somewhat
modified from [5].

Definition 5.17 ([5]). Let Λ be a row-finite graph with no sources.
Then, a pair (λ, µ) ∈ Λ × Λ is called a generalized cycle if λ ̸= µ,
r(λ) = r(µ), s(λ) = s(µ) and Z(λ) ⊂ Z(µ). We say that a generalized
cycle (λ, µ) has an entrance if (µ, λ) is not a generalized cycle, that is,
if Z(λ) ( Z(µ).

Recall that a projection p in a C∗-algebra A is infinite if there exists
a v ∈ A with v∗v = p and vv∗ < p, that is, if it is Murray-von Neumann
equivalent to a proper subprojection of itself.

Lemma 5.18 ([5, Corollary 3.8]). If Λ contains a generalized cycle
with entrance, then C∗(Λ) contains an infinite projection.

The following, simple observation is probably not new but is proven
here for ease of reference.

Lemma 5.19. If A is a C∗-algebra containing an infinite projection,
then A does not have continuous trace.

Proof. Let p be a projection in A with a proper subprojection q such
that p ∼ q. Take an irreducible representation π : A→ B(H) such that
π(p − q) ̸= 0. Then, π(q) < π(q) are equivalent projections in B(H).
All compact projections are of finite rank so it cannot be the case
that the range of π lies within the compacts. Since every irreducible
representation of a C∗-algebra with continuous trace has range within
the compact operators [15, Theorem 6.1.11], we see that A does not
have continuous trace. �
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Corollary 5.20. If Λ is a row-finite k-graph with no sources that
contain a generalized cycle with entrance, then C∗(Λ) does not have
continuous trace.

It is somewhat unsatisfactory that the question of when a higher-
rank graph yields a continuous-trace C∗-algebra should have such a
partial answer in comparison with the graph case. The main question
to answer is the following.

Question 5.21. For which (row-finite, source-free) k-graphs is it the
case that the path groupoid GΛ has continuous stabilizer subgroupoid?

It is known (see [13]) that, for an étale groupoid G, the stabilizer
map is continuous at a unit u ∈ G if and only if Iso(G)u = Iso(G)◦u,
where Iso(G)◦ is the interior of the isotropy subgroupoid (itself an étale
groupoid). Therefore, Question 5.21 can be reformulated as follows.

Question 5.22. For which (row-finite, source-free) k-graphs Λ is the
isotropy subgroupoid open in GΛ?
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