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ON NONLOCAL FRACTIONAL LAPLACIAN
PROBLEMS WITH OSCILLATING POTENTIALS

VINCENZO AMBROSIO, LUIGI D’ONOFRIO

AND GIOVANNI MOLICA BISCI

ABSTRACT. In this paper, we deal with the following
fractional nonlocal p-Laplacian problem:

(−∆)spu = λβ(x)uq + f(u) in Ω,

u ≥ 0, u ̸≡ 0 in Ω,

u = 0 in RN \ Ω,

where Ω ⊂ RN is a bounded domain with a smooth boun-
dary of RN , s ∈ (0, 1), p ∈ (1,∞), N > sp, λ is a
real parameter, β ∈ L∞(Ω) is allowed to be indefinite in
sign, q > 0 and f : [0,+∞) → R is a continuous function
oscillating near the origin or at infinity. By using variational
and topological methods, we obtain the existence of infinitely
many solutions for the problem under consideration. The
main results obtained here represent some new interesting
phenomena in the nonlocal setting.

1. Introduction. Recently, following the seminal paper of Caffarelli
and Silvestre [9], a large number of contributions have appeared on
problems which involve fractional nonlocal operators. Here, the two
different notions are emphasized of fractional Laplacian operators on
bounded domains which were considered in the literature, namely the
spectral Laplacian operator (see, among others, Cabré and Tan [7], Tan
[42] and Barrios, Colorado, de Pablo and Sánchez [3]) and the integral
operator with some of its generalizations (see, for instance, [27] and
the references therein). In [41, Theorem 1], the authors compared
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these two operators by studying their spectral properties and obtained,
as a consequence of this careful analysis, that the two operators are
different. Also, see [29] for an exhaustive study of this comparison.

A recent trend in the fractional framework is to consider a new
nonlocal and nonlinear operator, the so-called fractional p-Laplacian
(−∆)sp. See, for instance, Di Castro, Kuusi and Palatucci [13, 14],
Franzina and Palatucci [17], Kuusi, Mingione and Sire [21], Lindgren
and Lindqvist [22], and the famous work of Caffarelli [8]. Also, see the
papers of Pucci, et al., [32]–[36], where some existence and multiplicity
results for fractional problems involving the p-Laplacian operator were
obtained via variational methods.

In this direction, the aim of the present paper is to deal with the
following problem:

(−∆)spu = λβ(x)uq + f(u) in Ω,

u ≥ 0, u ̸≡ 0 in Ω,

u = 0 in RN \ Ω,
(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary, s ∈ (0, 1),
p ∈ (1,∞), N > sp, q > 0 and λ ∈ R are parameters, while β ∈ L∞(Ω)
and f : [0,+∞) → R is a continuous function.

More precisely, our aim here is to study the number and the behavior
of solutions of problem (1.1), where f oscillates near the origin or
at infinity. This analysis will be carried out using variational and
topological techniques. In the sequel, we state our main results, treating
the two cases separately, that is, when the nonlinearity f oscillates near
the origin or at infinity, respectively.

A special case involving the classical fractional Laplacian operator
(−∆)s is as follows:

Theorem 1.1. Let Ω ⊂ RN be a bounded domain with smooth bound-
ary ∂Ω, with N > 2s and s ∈ (0, 1). Furthermore, let f ∈ C([0,+∞);
R), and suppose that

−∞ < lim inf
t→0+

∫ t

0
f(z) dz

t2
≤ lim sup

t→0+

∫ t

0
f(z) dz

t2
= +∞,

in addition to

−∞ < lim inf
t→0+

f(t)

t
< 0.
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Then, there exists an interval Λ ⊂ (0,∞) such that, for any λ ∈ Λ, the
following nonlocal problem

(−∆)su = λu+ f(u) in Ω,

u ≥ 0, u ̸≡ 0 in Ω,

u = 0 in RN \ Ω,

admits a sequence of weak solutions {uj}j ⊂ Hs(RN ) ∩ L∞(Ω), with
uj = 0 in RN \ Ω, and such that

lim
j→+∞

∫∫
R2N

|uj(x)− uj(y)|2

|x− y|N+2s
dx dy = lim

j→+∞
∥uj∥L∞(Ω) = 0,

where ∥uj∥L∞(Ω) := maxx∈Ω uj(x).

A similar multiplicity result may be proven requiring similar asymp-
totic behavior of the potential at infinity. More precisely, the next
theorem holds.

Theorem 1.2. Let Ω ⊂ RN be a bounded domain with smooth boun-
dary ∂Ω, with N > 2s and s ∈ (0, 1). Furthermore, let f ∈ C([0,+∞);
R), and suppose that

−∞ < lim inf
t→+∞

∫ t

0
f(z) dz

t2
≤ lim sup

t→+∞

∫ t

0
f(z) dz

t2
= +∞,

in addition to

−∞ < lim inf
t→+∞

f(t)

t
< 0.

Then, there exists an interval Λ ⊂ (0,∞) such that, for any λ ∈ Λ, the
problem 

(−∆)su = λu+ f(u) in Ω,

u ≥ 0, u ̸≡ 0 in Ω,

u = 0 in RN \ Ω,

admits a sequence of weak solutions {uj}j ⊂ Hs(RN ), with uj = 0 in
RN \ Ω, such that

lim
j→+∞

∫∫
R2N

|uj(x)− uj(y)|2

|x− y|N+2s
dx dy = +∞.
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Finally, we should emphasize that the coefficient β ∈ L∞(Ω) in
problem (1.1) is allowed to be indefinite in sign, as suggested in several
well-known works (see, for instance, [1, 2, 4, 11, 12] and the references
therein).

Our results are in connection with the existence of infinitely many
weak solutions of the following Dirichlet problem:

(1.2)


−∆pu = λf(u) in Ω,

u ≥ 0, u ̸≡ 0 in Ω,

u = 0 on ∂Ω,

where ∆pu := div(|∇u|p−2∇u), which has been extensively studied in
the literature, assuming that f is odd in order to apply a variant of the
classical Lusternik-Schnirelmann theory.

To the contrary, few papers deal with nonlinearities having no sym-
metry properties. For instance, in [31], Omari and Zanolin proved
that, if

lim inf
t→0+

∫ t

0
f(z) dz

tp
= 0 and lim sup

t→0+

∫ t

0
f(z) dz

tp
= +∞,

then, for every λ > 0, problem (1.2) has a sequence of weak solutions in

W 1,p
0 (Ω) satisfying that ∥uj∥L∞(Ω) → 0 as j → +∞ (also see [31, 39]

for related topics). Successively, in [30, Theorem 2.2], Obersnel
and Omari proved the existence of two sequences of solutions for the
Dirichlet problem (for p = 2) under some constraints on the potential at
infinity. One of their hypotheses implies a sign condition on the non-
linear term f . More precisely, the nonlinearity f is assumed to be
definitively positive on the real half-line.

Inspired by the previous research, Molica Bisci and Pizzimenti
[25, Theorems 5.1, 5.7] studied the existence of infinitely many weak
solutions for the unperturbed Dirichlet problem (1.2) under the crucial
assumption

− lim sup
t→L

∫ t

0
f(z) dz

tp
< κ(p,N) lim inf

t→L

∫ t

0
f(z) dz

tp
,
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where, either L = 0+ or L = +∞ and

κ(p,N) :=

(
2N+pN

∫ 1

1/2

zN−1(1− z)pdz

)
.

The existence of sequences of weak solutions for fractional nonlocal
equations, with no symmetry hypothesis on the nonlinear term f , has
only recently been investigated in the literature. In this sense, the
results presented here may be seen as an extension of some recent
nonlinear analysis theorems to the case of elliptic equations driven by
nonlocal fractional operators.

More precisely, in our paper there are some computations, mostly
straightforward, similar to those performed by Kristály and Moroşanu
[20] and adapted here to the nonlocal fractional case. However, due to
the presence of the fractional operator (−∆)sp, our abstract approach, as
well as the setting of the main results, is different from the results found
in [20], where the authors studied competition phenomena for elliptic
equations involving the Laplacian operator. A crucial point along the
proof of the main results is that the truncation procedure developed in
[20, Theorem 2.1] can be adapted to the fractional nonlocal setting. Of
course, some technical difficulties naturally appear in this paper due to
the nature of the fractional Gagliardo norm (see, for instance, Theorem
4.1).

Contrary to the classical literature dedicated to boundary value
problems involving the Laplacian operator or some of its generaliza-
tions, up until the present, to our knowledge, only a few papers consider
the existence of infinitely many weak solutions to nonlocal equations
involving fractional nonlinear operators. For instance, Molica Bisci
[24] studied the existence of a sequence of nontrivial weak solutions
for exploiting the classical Z2-symmetric version of the Mountain pass
theorem. In order to make the nonlinear methods work, careful analy-
sis of the fractional spaces involved is necessary. As a particular case,
we derive an existence theorem for the fractional Laplacian, finding
nontrivial solutions of the equation{

(−∆)su = f(x, u) in Ω,

u = 0 in RN \ Ω.

As far as we know, all of these results are new and represent a
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fractional version of classical theorems obtained working with Laplacian
equations.

In [40], Servadei studied the existence of infinitely many solutions for
a nonlocal, nonlinear equation with homogeneous Dirichlet boundary
data. In particular, the main result concerns the following model
problem: {

(−∆)su− λu = |u|q−2u+ h in Ω,

u = 0 in Rn \ Ω,

where s ∈ (0, 1) is a fixed parameter, (−∆)s is the fractional Laplacian
operator, which (up to normalization factors) may be defined as

−(−∆)su(x) =

∫
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy, x ∈ Rn,

while λ is a real parameter, the exponent q ∈ (2, 2∗s), with 2∗s =
2N/(N − 2s), N > 2s, the function h belongs to the space L2(Ω)
and, finally, the set Ω is an open, bounded subset of RN with Lipschitz
boundary.

Adapting the classical variational techniques used in order to study
the standard Laplace equation with subcritical growth nonlinearities
to the nonlocal framework, in the present paper, we prove that this
problem admits infinitely many weak solutions {uk}k, with the pro-
perty that the Sobolev norm goes to infinity as k → +∞, provided the
exponent q < 2∗s − 2s/(N − 2s). In this sense, the results presented
here may be seen as an extension of some classical nonlinear analysis
theorems to the case of fractional operators.

We consider different superlinear growth assumptions on the nonlin-
earity, starting from the well-known Ambrosetti-Rabinowitz condition.
In this framework, we obtain three different results about the existence
of infinitely many weak solutions for the problem under consideration,
by using the Fountain theorem. All of these theorems extend the classi-
cal results for semilinear Laplacian equations to the nonlocal fractional
setting.

This paper is organized as follows. In Section 2, we recall some
preliminary notions and results. In Section 3, we discuss problem (1.1)
under suitable asymptotic behavior of the potential either at zero or at
infinity. Section 4, as well as Sections 5 and 6, will be devoted to the
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variational analysis of a suitable truncated problem (PK
h ) that will be

crucial in order to study the existence of infinitely many solutions of
problem (1.1) given in Theorems 3.1 and 3.2.

2. Preliminaries and functional setting. In this section, we
recall some basic results related to fractional Sobolev spaces. In fact,
the nonlocal analysis that we perform in this paper in order to use
variational methods is quite general and may be suitable for other
goals, too. Our proof will verify that the abstract approach devel-
oped in [20] is respected by the nonlocal framework. For this, we
will develop a functional analytical setting that is inspired by (but not
equivalent to) the fractional Sobolev spaces in order to correctly encode
the Dirichlet boundary datum in the variational formulation. For more
details regarding this topic, the reader is referred to [15, 27].

Let u : RN → R be a measurable function. We say that u belongs
to the space W s,p(RN ) if u ∈ Lp(RN ) and

[u]p
W s,p(RN )

:=

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
dx dy < +∞.

Then, W s,p(RN ) is a Banach space with respect to the norm

∥u∥W s,p(RN ) := [∥u∥p
Lp(RN )

+ [u]p
W s,p(RN )

]1/p.

We will work in the following, closed linear subspace

X(Ω) := {u ∈ W s,p(RN ) : u(x) = 0 almost everwhere in RN \ Ω},

which can be equivalently renormed by setting

∥u∥ = [u]W s,p(RN ).

Now, the following, crucial results are recalled.

Theorem 2.1. (X(Ω), ∥ · ∥) is a uniformly convex Banach space.

Theorem 2.2. Let s ∈ (0, 1) and p ∈ (1,∞) be such that sp < N . The
embedding X(Ω) ⊂ Lr(Ω) is continuous when r ∈ [1, p∗s], and compact
for r ∈ [1, p∗s).
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We denote by (X∗(Ω), ∥ · ∥∗) the dual space of (X(Ω), ∥ · ∥). We
define the nonlinear operator A : X → X∗ by setting

⟨A(u), v⟩ :=
∫∫

R2N

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
(v(x)− v(y)) dx dy

for u, v ∈ X(Ω). Here, ⟨·, ·⟩ denotes the duality pairing between X(Ω)
and its dual X∗(Ω).

Finally, we introduce a special function which will be useful in prov-
ing our main results. Fix x0 ∈ Ω and r > 0 such that B(x0, r) ⊂ Ω,
where B(x0, r) is the open ball of radius R and center x0. For any
t > 0, we define the function zt as follows:

(2.1) zt(x) :=


0 if x ∈ Ω \B(x0, r),
2t
r (r − |x− x0|) if x ∈ B(x0, r) \B(x0, r/2),

t if x ∈ B(x0, r/2).

We set zt = 0 in RN \ Ω. Then, it is clear that zt ≥ 0 in RN and

∥zt∥L∞(Ω) = t. Moreover, zt ∈ W 1,p
0 (Ω) and ∥zt∥pW 1,p

0 (Ω)
= C(r, p,N)tp

for some positive constant C(r, p,N). By using [15, Proposition 2.2],
we can infer that zt ∈ W s,p(Ω).

Since zt = 0 outside the compact B(x0, r), we can use [15, Lem-
ma 5.1] to deduce that zt ∈ X(Ω). In particular, the following holds:

(2.2) ∥zt∥p ≤ C0(r, s, p,N)∥zt∥pW 1,p
0 (Ω)

≤ C(r, s, p,N)tp,

where C(r, s, p,N) is a positive constant depending only upon p, r, s
and N .

3. Main results. This section is devoted to the main results of the
paper, where we prove the existence of infinitely many solutions for
problem (1.1) in these two different contexts:

• f oscillating near the origin and q ≥ p− 1,
• f oscillating at infinity and 0 < q ≤ p− 1;

while, in the remaining cases, that is, when

• f oscillates near the origin and 0 < q < p− 1,
• f oscillates at infinity and q > p− 1;
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we show the existence of at least a finite number of solutions. In all of
these cases, we assume that f : [0,+∞) → R is a continuous function.
Also, we denote by F the function

(3.1) F (t) :=

∫ t

0

f(τ) dτ

for any t > 0.

3.1. Oscillation near the origin. In this framework, we assume that
the following conditions are satisfied:

(3.2) lim inf
t→0+

f(t)

tp−1
=: −ℓ0 ∈ [−∞, 0) ;

(3.3) −∞ < lim inf
t→0+

F (t)

tp
≤ lim sup

t→0+

F (t)

tp
= +∞.

Our main result can be stated as follows.

Theorem 3.1. Let Ω ⊂ RN be a bounded domain with smooth bound-
ary, N > sp, λ ∈ R. Assume that β ∈ L∞(Ω) and f ∈ C([0,+∞);R)
satisfy (3.2) and (3.3). If either

(a) q = p − 1, ℓ0 ∈ (0,+∞) and λβ(x) < λ0 almost everywhere
x ∈ Ω for some λ0 ∈ (0, ℓ0), or

(b) q = p− 1, ℓ0 = +∞ and λ ∈ R is arbitrary, or
(c) q > p− 1, and λ ∈ R is arbitrary,

then there exists a sequence {uj}j in X(Ω) ∩ L∞(Ω) of distinct weak
solutions of problem (1.1) such that

(3.4) lim
j→+∞

∥uj∥ = lim
j→+∞

∥uj∥L∞(Ω) = 0.

Assumption (3.2) yields the existence of solutions for problem (1.1),
while (3.3) allows us to deduce some information regarding the number
of the solutions. In addition, we note that assertion (b) also covers the
case when the power q is critical or supercritical, that is, the case when
q ≥ p∗s, where

(3.5) p∗s :=
Np

N − sp
, N > sp,

is the Sobolev critical exponent.
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3.2. Oscillation at infinity. In this framework, we assume that the
following assumptions hold:

(3.6) lim inf
t→+∞

f(t)

tp−1
=: −ℓ∞ ∈ [−∞, 0);

(3.7) −∞ < lim inf
t→+∞

F (t)

tp
≤ lim sup

t→+∞

F (t)

tp
= +∞.

In this setting, the counterpart of Theorem 3.1 may be stated as
follows.

Theorem 3.2. Let Ω ⊂ RN be a bounded domain with smooth
boundary, N > sp, λ ∈ R. Assume that β ∈ L∞(Ω), and that
f ∈ C([0,+∞);R) satisfies (3.6), (3.7) and f(0) = 0. If either

(a) q = p − 1, ℓ∞ ∈ (0,+∞) and λβ(x) < λ∞ almost everywhere
x ∈ Ω for some λ∞ ∈ (0, ℓ∞), or

(b) q = p− 1, ℓ∞ = +∞, and λ ∈ R is arbitrary, or
(c) 0 < q < p− 1, and λ ∈ R is arbitrary,

then there exists a sequence {uj}j in X(Ω) ∩ L∞(Ω) of distinct weak
solutions of problem (1.1) such that

(3.8) lim
j→+∞

∥uj∥L∞(Ω) = +∞.

A special case of the above result is as follows.

Corollary 3.3. Let q ≤ p − 1, and let all of the assumptions of
Theorem 3.2 be satisfied. In addition, assume that

(3.9) sup
t∈[0,+∞)

|f(t)|
1 + tp

∗
s−1

< +∞,

where p∗s is as given in (3.5). Then,

lim
j→+∞

∥uj∥ = +∞,

where {uj}j is the sequence of distinct weak solutions of problem (1.1),
given by Theorem 3.2.
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As in the case when there is oscillation near the origin, here,
assumption (3.6) is used in order to prove the existence of solutions for
problem (1.1), while (3.7) guarantees that these solutions are infinitely
many, when 0 < q ≤ p− 1, and at least one finite number, if q > p− 1.

In all of the situations, that is, when there is an oscillation near zero
or at infinity, and for any value of q, the idea is to prove the existence
of solutions for problem (1.1) using the variational method. More
precisely, we first consider an auxiliary problem and, under suitable
assumptions on the data, we prove the existence of solutions for this
equation studying the associated energy functional and proving that
this functional admits a minimum, using the direct methods of the
calculus of variations (see Theorem 4.1).

Next, we apply Theorem 4.1 to problem (1.1) in order to obtain
Theorems 3.1 and 3.2.

4. An auxiliary nonlocal problem. In this section, we consider
the problem

(PK
h )

{
(−∆)spu+K(x)|u|p−2u = h(x, u) in Ω,

u = 0 in RN \ Ω.

Here, we assume that K : Ω → R is such that

(4.1) K ∈ L∞(Ω) with ess inf
x∈Ω

K(x) > 0,

while h : Ω × [0,+∞) → R is a Carathéodory function satisfying the
following conditions:

(4.2) h(x, 0) = 0 for almost every x ∈ Ω;

(a) there exists an M > 0 such that |h(x, t)| ≤ M for almost every
x ∈ Ω and for any t ≥ 0;

(b) there exist δ and η, with 0 < δ < η such that h(x, t) ≤ 0 for
almost every x ∈ Ω and for any t ∈ [δ, η].

In the sequel, we extend the function h on the whole Ω×R by taking
h(x, t) = 0 for almost every x ∈ Ω and t < 0.

The aim of this section is to prove the existence of a non-negative
weak solution for problem (refauxiliary), that is, a non-negative solu-
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tion to the following problem:
(4.3)

⟨A(u), φ⟩+
∫
Ω
K(x)|u(x)|p−2u(x)φ(x) dx

=
∫
Ω
h(x, u(x))φ(x) dx for any φ ∈ X(Ω),

u ∈ X(Ω).

In order to achieve our aim, we look for critical points of the energy
functional JK,h : X(Ω) → R, defined by setting

(4.4) JK,h(u) =
1

p
∥u∥p + 1

p

∫
Ω

K(x)|u(x)|pdx−
∫
Ω

H(x, u(x)) dx,

where

(4.5) H(x, t) :=

∫ t

0

h(x, τ) dτ for any t ∈ R.

By using (4.1)–(4.2) (a), (b) and Theorem 2.2, we can deduce that
JK,h is well defined, and JK,h is of class C1 on X(Ω).

Now, we introduce the set W η, defined as follows

Wη :=
{
u ∈ X(Ω) : ∥u∥L∞(Ω) ≤ η

}
,

where η is the positive parameter given in (4.2) (b).

The main result of this section is the following:

Theorem 4.1. We assume that K : Ω → R is a function verifying
(4.1) and that h : Ω×[0,+∞) → R is a Carathéodory function satisfying
(4.2) (a), (b). Then, we have:

(i) the functional JK,h is bounded from below on Wη and its
infimum is attained at some uη ∈ Wη;

(ii) uη ∈ [0, δ], where δ is the positive parameter given in (4.2);
(iii) uη is a non-negative weak solution of problem (PK

h ).

Proof.

(i) Firstly, we note that Wη is convex. Moreover, Wη is closed in
X(Ω). In fact, let {uj}j be a sequence in Wη such that uj → u in X(Ω)
as j → +∞. We aim to prove that u ∈ Wη. Clearly, u ∈ X(Ω). Since
{uj}j is bounded in L∞(Ω), and L∞(Ω) is the dual space of L1(Ω),
which is a separable Banach space by [5, Corollary III.26], it follows
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that uj → u in the weak∗ topology of L∞(Ω) as j → +∞. Then, by
using [5, Proposition III.12], we obtain, up to a subsequence,

lim inf
j→+∞

∥uj∥L∞(Ω) ≥ ∥u∥L∞(Ω).

This and
∥uj∥L∞(Ω) ≤ η,

for any j ∈ N, imply that

∥u∥L∞(Ω) ≤ η,

that is, u ∈ Wη. Since we have proved that Wη is convex and closed
in X(Ω), we can deduce that Wη is weakly closed in X(Ω) by [5,
Theorem III.7].

Now, we consider the functional JK,h. It is clear that JK,h is se-
quentially weakly lower semicontinuous. Moreover, JK,h is bounded
from below on Wη. In fact, by using (4.1) and (4.2) (a), we have, for
any u ∈ Wη,

JK,h(u) =
1

p
∥u∥p + 1

p

∫
Ω

K(x)|u(x)|p dx−
∫
Ω

H(x, u(x)) dx

≥ 1

p
∥u∥p −

∫
Ω

H(x, u(x)) dx

≥ −
∫
Ω

H(x, u(x)) dx

≥ −M

∫
Ω

|u(x)| dx

≥ −ηML(Ω),

where, hereon, L(Ω) denotes the Lebesgue measure of Ω.

Set

(4.6) mη := inf
u∈Wη

JK,h(u) > −∞.

Then, for every k ∈ N, there exists a uk ∈ Wη such that

(4.7) mη ≤ JK,h(uk) ≤ mη +
1

k
.
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By using uk ∈ Wη, (4.2) (a) and (4.7), we can see that

1

p
∥uk∥p +

1

p

∫
Ω

K(x)|uk(x)|p dx =

∫
Ω

H(x, uk(x)) dx+ JK,h(uk)

≤ ηML(Ω) + JK,h(uk)

≤ ηML(Ω) +mη +
1

k
≤ ηML(Ω) +mη + 1,

for every k ∈ N. In view of (4.1), we obtain

(4.8) ∥uk∥p ≤ p(ηML(Ω) + αη + 1),

for every k ∈ N, that is, {uk}k is bounded in X(Ω). Then, up to a
subsequence, we may assume that

(4.9) uk −→ uη weakly in X(Ω)

as k → +∞ for some uη ∈ X(Ω).

Now, our claim is to prove that uη is the minimum of JK,h. Since
Wη is weakly closed in X(Ω), we can see that uη ∈ Wη. Then, we have

(4.10) JK,h(uη) ≥ mη.

Now, by using the sequential weak lower semicontinuity of JK,h, (4.7)
and (4.9), we get

mη ≥ lim inf
k→+∞

JK,h(uk) ≥ JK,h(uη).

This and (4.10) yield
JK,h(uη) = mη.

(ii) Let δ be as in (4.2) (b), and let us define

A := {x ∈ Ω : uη(x) /∈ [0, δ]}.

Our aim is to prove that L(A) = 0. Assume, by contradiction, that
L(A) > 0.

We introduce the map γ : R → R, defined by

γ(t) := min{t+, δ},
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where t+ = max{t, 0}. We also define w := γ ◦ uη, that is,

w(x) =


δ if uη(x) > δ,

uη(x) if 0 ≤ uη(x) ≤ δ,

0 if uη(x) < 0,

for almost every x ∈ Ω, and w(x) = 0 almost everywhere x ∈ RN .

Since γ is a Lipschitz function with Lipschitz constant equals to 1,
we obtain∫∫

R2N

|γ(uη(x))− γ(uη(y))|p

|x− y|N+sp
dx dy ≤

∫∫
R2N

|uη(x)− uη(y)|p

|x− y|N+sp
dx dy,

which implies that w ∈ X(Ω). Moreover, 0 ≤ w(x) ≤ |uη(x)| for almost
every x ∈ RN , 0 6 w(x) 6 δ for almost every Ω, and, by using the fact
that δ < η, in view of (4.2) (b), we can infer that w ∈ Wη.

The following sets are defined as

A1 := {x ∈ Ω : uη(x) < 0}

and
A2 := {x ∈ Ω : uη(x) > δ}.

Thus, it is clear that A = A1 ∪ A2. Moreover, we can see that
w(x) = uη(x) for almost every x ∈ Ω \ A,w(x) = 0 for almost every
x ∈ A1, and w(x) = δ for almost every x ∈ A2.

Now, we aim to show that

(4.11) ∥w∥p − ∥uη∥p ≤ 0.

We note that

∥w∥p − ∥uη∥p =

∫∫
Ω×Ω

|w(x)− w(y)|p

|x− y|N+sp
− |uη(x)− uη(y)|p

|x− y|N+sp
dx dy

(4.12)

+ 2

∫∫
Ω×(RN\Ω)

|w(x)|p

|x− y|N+sp
− |uη(x)|p

|x− y|N+sp
dx dy

≤
∫∫
Ω×Ω

|w(x)− w(y)|p

|x− y|N+sp
− |uη(x)− uη(y)|p

|x− y|N+sp
dx dy
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=

∫∫
A×A

|w(x)− w(y)|p

|x− y|N+sp
− |uη(x)− uη(y)|p

|x− y|N+sp
dx dy

+

∫∫
A×(Ω\A)

|w(x)− w(y)|p

|x− y|N+sp
− |uη(x)− uη(y)|p

|x− y|N+sp
dx dy

+

∫∫
(Ω\A)×A

|w(x)− w(y)|p

|x− y|N+sp
− |uη(x)− uη(y)|p

|x− y|N+sp
dxdy

=: I1 + I2 + I3.

Consider the first term I1, and observe that

(4.13)

I1 =

∫∫
A1×A1

|w(x)− w(y)|p

|x− y|N+sp
− |uη(x)− uη(y)|p

|x− y|N+sp
dx dy

+

∫∫
A2×A2

|w(x)− w(y)|p

|x− y|N+sp
− |uη(x)− uη(y)|p

|x− y|N+sp
dx dy

+

∫∫
A1×A2

|w(x)− w(y)|p

|x− y|N+sp
− |uη(x)− uη(y)|p

|x− y|N+sp
dx dy

+

∫∫
A2×A1

|w(x)− w(y)|p

|x− y|N+sp
− |uη(x)− uη(y)|p

|x− y|N+sp
dx dy.

Since w(x) = 0 for almost every x ∈ A1, and w(x) = δ for almost every
x ∈ A1, it may be seen that

(4.14)

∫∫
A1×A1

|w(x)− w(y)|p

|x− y|N+sp
− |uη(x)− uη(y)|p

|x− y|N+sp
dx dy

= −
∫∫

A1×A1

|uη(x)− uη(y)|p

|x− y|N+sp
dx dy

and

(4.15)

∫∫
A2×A2

|w(x)− w(y)|p

|x− y|N+sp
− |uη(x)− uη(y)|p

|x− y|N+sp
dx dy

= −
∫∫

A2×A2

|uη(x)− uη(y)|p

|x− y|N+sp
dx dy.
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On the other hand, w(x) = δ and uη(x) < 0 for almost every x ∈ A1,
and w(y) = δ and uη(y) > δ for almost every x ∈ A2; thus, we have

|uη(x)− uη(y)|p = (uη(y)− uη(x))
p ≥ δp,

which gives

(4.16)

∫∫
A1×A2

|w(x)− w(y)|p

|x− y|N+sp
− |uη(x)− uη(y)|p

|x− y|N+sp
dx dy

=

∫∫
A1×A2

δp − |uη(x)− uη(y)|p

|x− y|N+sp
dx dy ≤ 0.

A similar argument shows that∫∫
A2×A1

|w(x)− w(y)|p

|x− y|N+sp
− |uη(x)− uη(y)|p

|x− y|N+sp
dx dy ≤ 0.(4.17)

Taking into account (4.13)–(4.17), we can deduce that I1 ≤ 0.

Now, we estimate I2. Then, we can see that

I2 =

∫∫
A1×(Ω\A)

|w(x)− w(y)|p

|x− y|N+sp
− |uη(x)− uη(y)|p

|x− y|N+sp
dx dy(4.18)

+

∫∫
A2×(Ω\A)

|w(x)− w(y)|p

|x− y|N+sp
− |uη(x)− uη(y)|p

|x− y|N+sp
dx dy.

Since w(x) = 0 and uη(x) < 0 for almost every x ∈ A1, and w(y) =
uη(y) ∈ [0, δ] for almost every y ∈ Ω \A, we can see that

|uη(x)− uη(y)|p = (uη(y)− uη(x))
p ≥ uη(y)

p = |uη(y)|p,

which implies that∫∫
A1×(Ω\A)

|w(x)− w(y)|p

|x− y|N+sp
− |uη(x)− uη(y)|p

|x− y|N+sp
dx dy(4.19)

=

∫∫
A1×(Ω\A)

|uη(x)|p

|x− y|N+sp
− |uη(x)− uη(y)|p

|x− y|N+sp
dx dy

≤ 0.
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On the other hand, w(x) = δ and uη(x) > δ for almost every x ∈ A2,
and w(y) = uη(y) ∈ [0, δ] for almost every y ∈ Ω \A; thus, we obtain

|δ − uη(y)|p = (δ − uη(y))
p ≤ (uη(x)− uη(y))

p = |uη(x)− uη(y)|p,

which gives ∫∫
A2×(Ω\A)

|w(x)− w(y)|p

|x− y|N+sp
− |uη(x)− uη(y)|p

|x− y|N+sp
dx dy(4.20)

=

∫∫
A2×(Ω\A)

|δ − u(y)|p

|x− y|N+sp
− |uη(x)− uη(y)|p

|x− y|N+sp
dx dy

≤ 0.

Combining (4.18), (4.19) and (4.20), we deduce that I2 ≤ 0.

In a similar fashion, we can prove that I3 ≤ 0. Then, by using (4.12)
and the fact that all terms I1, I2, I3 are nonpositive, we can conclude
that (4.11) holds.

Hence, by using (4.11), we can see that

(4.21)

JK,h(w)− JK,h(uη) =
1

p
∥w∥p − 1

p
∥u∥p

+
1

p

∫
Ω

K(x)(|w(x)|p − |uη(x)|p) dx

−
∫
Ω

(H(x,w(x))−H(x, uη(x))) dx

≤ 1

p

∫
A

K(x)(|w(x)|p − |uη(x)|p) dx

−
∫
A

(H(x,w(x))−H(x, uη(x))) dx.

Recalling that ess infx∈ΩK(x) > 0 by (4.1), uη(x) > δ for almost every
x ∈ A2 and w(x) = 0 for almost every x ∈ A1, we can deduce that
(4.22)∫

A

K(x)(|w(x)|p − |uη(x)|p) dx = −
∫
A1

K(x)|uη(x)|p dx

+

∫
A2

K(x)(δp − |uη(x)|p) dx 6 0.
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Since h(x, t) = 0 for almost every x ∈ Ω and all t ≤ 0, we get

(4.23)

∫
A1

(H(x,w(x))−H(x, uη(x))) dx = 0.

On the other hand, by the mean value theorem, for almost every x ∈ A2,
we can find θ(x) ∈ [δ, uη(x)] ⊆ [δ, η] such that

H(x,w(x))−H(x, uη(x)) = H(x, δ)−H(x, uη(x))

= h(x, θ(x))(δ − uη(x)).

Then, (4.2) (b) and the definition of B2 yield
(4.24)∫

A2

(H(x,w(x))−H(x, uη(x))) dx =

∫
A2

h(x, θ(x))(δ − uη(x)) dx ≥ 0.

By combining (4.23) and (4.4), we can see that

(4.25)

∫
A

(H(x,w(x))−H(x, uη(x))) dx ≥ 0.

Taking into account (4.21), (4.22) and (4.25), we obtain

(4.26) JK,h(w)− JK,h(uη) ≤ 0.

However, w ∈ Wη; thus, JK,h(w) > JK,h(uη), and, by using (4.26), we
obtain that

(4.27) JK,h(w) = JK,h(uη).

Now, taking into account (4.27) and the fact that all of the integrals
on the right hand-side of (4.21) are non-negative, we can deduce that∫

A1

K(x)|uη(x)|p =

∫
A2

K(x)(|uη(x)|p − δp) dx = 0.

From the definition of A1 and A2, and using (4.1), we get L(A1) =
L(A2) = 0, that is, L(A) = 0, which gives a contradiction.

(iii) Take φ ∈ C∞
0 (Ω), and let

ε0 :=
η − δ

∥φ∥L∞(Ω) + 1
> 0,

where δ and η are as given in (4.2) (b). We introduce the functional
I : [−ε0, ε0] → R, defined by setting

I(ε) = JK,h(uη + εφ).
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Using (ii), we can see that, for any ε ∈ [−ε0, ε0],

|uη(x) + εφ(x)| ≤ |uη(x)|+ |ε||φ(x)|

≤ uη(x) +
η − δ

∥φ∥L∞(Ω) + 1
∥φ∥L∞(Ω) ≤ δ + η − δ = η,

for almost every x ∈ Ω, that is uη + εφ ∈ Wη.

Hence, by using Theorem 4.1 (i), we can see that I(ε) ≥ I(0) for
every ε ∈ [−ε0, ε0], which implies that zero is an interior minimum
point for I. Since I is differentiable at zero, we obtain I ′(0) = 0 and
⟨J ′

K,h(uη), φ⟩ = 0. Since C∞
0 (Ω) is dense in X(Ω) (see [16]), we see

that ⟨J ′
K,h(uη), φ⟩ = 0 for any φ ∈ X(Ω), and this gives that uη is a

weak solution of problem (PK
h ) (that is, a solution of (4.3)). Finally,

uη is non-negative in Ω in view of Theorem 4.1 (ii). �

Note that u ≡ 0 is a weak solution of problem (PK
h ), due to the fact

that h(x, 0) = 0 almost everywhere x ∈ Ω by (4.2). This means that
Theorem 4.1 does not guarantee that the solution uη of problem (PK

h )
is not trivial. For this reason, we will choose the nonlinear term f in
a suitable way, and, by using Theorem 4.1, we will be able to deduce
the existence of non-trivial solutions for the original problem (1.1).

Finally, we denote by the truncation function τη : [0,+∞) → R,
defined as

(4.28) τη(t) := min{η, t}

for any t ≥ 0, where η is the positive constant given in assump-
tion (4.2) (b). Clearly, τη is a continuous function in [0,+∞).

5. Oscillatory behavior near the origin. In this section, we
study problem (1.1) in the case where the nonlinear term f oscillates
near the origin. In order to prove Theorem 3.1, we first give an auxiliary
result obtained as a consequence of Theorem 5.1. Precisely, we prove
the existence of infinitely many solutions for problem (PK

h ) under the
following assumptions on the function h:

A. there exists a t > 0 such that supt∈[0,t] |h(·, t)| ∈ L∞(Ω);

B. there exist two sequences {δj}j and {ηj}j , with 0 < ηj+1 < δj <
ηj and limj→+∞ ηj = 0 such that h(x, t) ≤ 0 for almost every x ∈ Ω
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and for every t ∈ [δj , ηj ], j ∈ N;

−∞ < lim inf
t→0+

H(x, t)

tp
≤ lim sup

t→0+

H(x, t)

tp
= +∞(5.1)

uniformly for almost every x ∈ Ω, where H is the function given in
(4.5). More precisely, our result is as follows.

Theorem 5.1. Let us assume that K : Ω → R satisfies (4.1) and
h : Ω × [0,+∞) → R is a Carathéodory function verifying (4.2) and
assumptions A, B and (5.1). Then, there exists a sequence {uj}j ⊂
X(Ω) of distinct nontrivial, non-negative weak solutions of problem
(PK

h ) such that

(5.2) lim
j→+∞

∥uj∥X(Ω) = lim
j→+∞

∥uj∥L∞(Ω) = 0.

Proof. By using assumption B, we know that ηj → 0 as j → +∞;
therefore, without loss of generality, we may assume that

(5.3) δj < ηj < s

for j sufficiently large, where t > 0 is from A.

Now, for every j ∈ N, we introduce the function hj : Ω× [0,+∞) →
R, defined by

(5.4) hj(x, t) = h(x, τηj (t))

and

Hj(x, t) :=

∫ t

0

hj(x, z) dz

for almost every x ∈ Ω and t ≥ 0, where τηj is the function defined in
(4.28) with η = ηj . In order to simplify the notation, in what follows,
we denote by

(5.5) Jj := JK,hj j ∈ N,

where JK,hj is the functional given in (4.4), with h = hj .

We show that hj satisfies the assumptions of Theorem 4.1, for j ∈ N
large enough. From the regularity of h, the continuity of τη and (4.2),
the function hj is Carathéodory and such that hj(x, 0) = 0 almost
every x ∈ Ω. By assumption A, (5.3) and (5.4), hj satisfies (4.2) (a).
Finally, condition (4.2) (b) holds in view of assumption B.
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Thus, we are in a position to apply Theorem 4.1, and, for j suffi-
ciently large, we can find uj ∈ Wηj such that

min
u∈Wηj

Jj(u) = Jj(uj)(5.6)

uj(x) ∈ [0, δj ] for almost every x ∈ Ω,(5.7)

and

C. uj is a non-negative weak solution of (PK
hj
).

Taking into account the definition of τη, (5.4) and uj(x) ≤ δj < ηj
almost everywhere x ∈ Ω, we can deduce that

hj(x, uj(x)) = h(x, τηj (uj(x)) = h(x, uj(x))

almost everywhere x ∈ Ω. In particular, by combining this and
assumption C, we can deduce that uj is a non-negative weak solution
for (PK

hj
) and for problem (PK

h ).

Now, our claim is to prove that there are infinitely many distinct
elements in the sequence {uj}j . Firstly, we show that

(5.8) Jj(uj) < 0 for j ∈ N large enough.

By (5.1), we can find ℓ > 0 and ζ ∈ (0, η1) such that

(5.9) ess inf
x∈Ω

H(x, t) ≥ − ℓtp for all t ∈ (0, ζ),

and there exists a sequence {tj}j such that 0 < tj → 0 as j → +∞
(here, we use the definition of H to take tj > 0) such that

(5.10) lim
j→+∞

ess infx∈Ω H(x, tj)

tpj
= +∞,

which gives, for any L > 0,

(5.11) ess inf
x∈Ω

H(x, tj) > Ltpj

for j ∈ N large enough.

Since δj ↘ 0 as j → +∞, up to a subsequence, we may assume that

(5.12) tj ≤ δj for all j ∈ N.

Now, take j ∈ N sufficiently large, and set

zj := ztj ∈ X(Ω),
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where zt is the function defined as in (2.1) with t = tj . Then, zj ∈ X(Ω)
and ∥zj∥L∞(Ω) = tj ≤ δj < ηj by B and (5.12). As a consequence,
zj ∈ Wηj and 0 ≤ zj(x) ≤ tj ≤ δj < ηj almost everywhere x ∈ Ω. In
particular, we obtain

zj(x)∫
0

hj(x, y) dy =

zj(x)∫
0

h(x, τηj (y)) dy =

zj(x)∫
0

h(x, y) dy

for almost every x ∈ Ω. Then, by using (2.2), (4.1), (5.9), (5.11), and
using the fact that zj(x) < ηj < η1 (being {ηj}j decreasing by (5.2)),
we obtain for j sufficiently large
(5.13)

Jj(zj) =
1

p
∥zj∥p +

1

p

∫
Ω

K(x)|zj(x)|pdx−
∫
Ω

Hj(x, zj(x)) dx

=
1

p
∥zj∥p +

1

p

∫
Ω

K(x)|zj(x)|pdx−
∫
Ω

H(x, zj(x)) dx

≤ C(r, s, p,N)
1

p
tpj +

1

p

∫
Ω

K(x)|zj(x)|pdx

−
∫

B(x0,r/2)

H(x, tj) dx−
∫

B(x0,r)\B(x0,r/2)

H(x, zj(x)) dx

≤
(
C(r, s, p,N)

1

p
+ ∥K∥L∞(Ω)

L(Ω)
p

− L(r/2)NωN + ℓL(Ω)
)
tpj .

Taking L > 0 sufficiently large such that

L(r/2)NωN > C(r, s, p,N)
1

p
+ ∥K∥L∞(Ω)

L(Ω)
p

+ ℓL(Ω),

we deduce that, for j large enough,

Jj(zj) < 0.

Therefore, using (5.6), we get

(5.14) Jj(uj) = min
u∈Wηj

Jj(u) ≤ Jj(zj) < 0,

for j sufficiently large. Then, (5.8) holds, and this allows us to infer
that uj ̸≡ 0 since Jj(0) = 0.
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Now, we aim to show that

(5.15) lim
j→+∞

Jj(uj) = 0.

Firstly, we note that, from the definition of Hj , (4.1), A, B, (5.3), (5.4)
and (5.7), we have, for any j ∈ N sufficiently large,

(5.16)

Jj(uj) ≥ −
∫
Ω

Hj(x, uj(x)) dx = −
∫
Ω

∫ uj(x)

0

h(x, t) dt

≥ −
∫
Ω

sup
s∈[0,t]

|h(x, t)|uj(x) dx

≥ −L(Ω)
∥∥∥ sup

t∈[0,t]

|h(·, t)
∥∥∥
L∞(Ω)

δj .

By using B, we know that limj→+∞ δj = 0; thus, the above inequality
and (5.14) imply that (5.15) holds.

Hence, taking into account (5.8) and (5.15), we can see that {uj}j
contains infinitely many distinct elements, which means that prob-
lem (PK

h ) possesses infinitely many distinct weak solutions.

Finally, we prove (5.2). Concerning the first limit, we can observe
that, from (5.7), it follows that ∥uj∥L∞(Ω) ≤ δj for j ∈ N sufficiently
large. Then, recalling that limj→+∞ δj = 0 (see B), we can infer that
∥uj∥L∞(Ω) → 0 as j → +∞.

Now, we prove that the latter limit holds. Combining (4.1), A, (5.7)
and (5.8), we obtain

1

p
∥uj∥p ≤ 1

p
∥uj∥p +

1

p

∫
Ω

K(x)|uj(x)|pdx

<

∫
Ω

Hj(x, uj(x)) dx =

∫
Ω

H(x, uj(x)) dx

≤ L(Ω)
∥∥∥ sup

t∈[0,t]

|h(·, t)|
∥∥∥
L∞(Ω)

δj ,

and, by using B, we have

lim
j→+∞

∥uj∥p = 0. �

Now, we prove Theorem 3.1. In order to do so, we will apply
Theorems 4.1 and 5.1, choosing the functions h and K in a suitable
way.
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5.1. Proof of Theorem 3.1. Firstly, we prove that problem (1.1)
admits infinitely many distinct weak solutions, provided q ≥ p− 1. We
distinguish the cases q = p − 1 and q > p − 1; in both situations, we
will apply Theorem 5.1.

We begin by proving that (a) holds. In this setting, we assume that
q = p − 1, ℓ0 ∈ (0,+∞) and λ ∈ R is such that λβ(x) < λ0 almost

everywhere x ∈ Ω for some λ0 ∈ (0, ℓ0). Take λ̃0 ∈ (λ0, ℓ0), and define

(5.17) K(x) := λ̃0 − λβ(x) and h(x, t) := λ̃0t
p−1 + f(t),

almost everywhere x ∈ Ω and t ≥ 0.

Now, we show that K and h verify the assumptions of Theorem 5.1.
Since β ∈ L∞(Ω), it is clear that K ∈ L∞(Ω) and

ess inf
x∈Ω

K(x) ≥ λ̃0 − λ0 > 0,

that is, (4.1) is satisfied.

Regarding the function h, we can observe that the regularity of f
implies that h is a continuous function in Ω× [0,+∞), and h(x, 0) = 0
for any x ∈ Ω. Hence, (4.2) holds. In addition, the continuity of
t 7→ h(·, t) along with the Weierstrass theorem yield assumption A.
Since, for any x ∈ Ω and t > 0, the following holds

H(x, t)

tp
=

λ̃0

p
+

F (t)

tp
,

and we can deduce (5.1) in view of (3.3).

Then, we must show that h verifies assumption B. For this purpose,
we note that, by (3.2), there exists a sequence {tj}j such that tj → 0
and

(5.18)
f(tj)

tp−1
j

−→ −ℓ0,

as j → +∞. Since we are assuming that λ̃0 < ℓ0, we can find ε > 0

such that λ̃0 + ε < ℓ0. By combining this and (5.18), we can see that,
for j large enough, say j ≥ j∗ ∈ N,

(5.19)
f(tj)

tp−1
j

< −λ̃0.
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Then, using the continuity of f , it is possible to find a neighborhood
of tj , say (δj , ηj), such that

h(x, t) = λ̃0t
p−1 + f(t) ≤ 0,

for any x ∈ Ω and all t ∈ [δj , ηj ] and j ≥ j∗. As a consequence, B is
satisfied.

Therefore, we can apply Theorem 5.1 to problem (PK
h ) with h andK

given in (5.17), and to obtain the existence of infinitely many distinct
non trivial non-negative solutions {uj}j for problem (PK

h ), satisfying
condition (3.4). From the definitions of h and K, and recalling that
q = p− 1, we can see that uj is a weak solution of problem (1.1). This
concludes the proof of Theorem 3.1 in the case q = p− 1.

Now, let us consider assertion (b). For this purpose, let q = p − 1,

ℓ0 = +∞ and λ ∈ R. We choose λ̃0 ∈ (λ0, ℓ0), and we define

(5.20) K(x) := λ̃0 and h(x, t) := (λβ(x) + λ̃0)t
p−1 + f(t),

almost everywhere x ∈ Ω and t ≥ 0. Then, we can proceed as in
the proof of assertion (a), merely replacing formula (5.19) with the
following one

(5.21)
f(tj)

tp−1
j

< −(|λ|∥β∥L∞(Ω) + λ̃0).

For j large enough, we take into account that

h(x, t) = (λβ(x) + λ̃0)t
p−1 + f(t) ≤ (|λ|∥β∥L∞(Ω) + λ̃0)t

p−1 + f(t).

Finally, we deal with assertion (c). Let q > p − 1 and λ ∈ R. Take

λ̃0 ∈ (0, ℓ0). We introduce the functions

(5.22) K(x) := λ̃0 and h(x, t) := λβ(x)tq + λ̃0t
p−1 + f(t)

for almost every x ∈ Ω and t ≥ 0. Also, in this setting, our claim
is to prove that the functions h and K, defined in (5.22), verify the
conditions required by Theorem 5.1.

It is clear that (4.1) and (4.2) hold. By using β ∈ L∞(Ω), the
continuity of t 7→ h(·, t) and the Weierstrass theorem, we can see that
assumption A is satisfied. Since, for almost every x ∈ Ω and t > 0, we
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have
H(x, t)

tp
= λ

β(x)

q + 1
tq−p+1 +

λ̃0

p
+

F (t)

tp
,

we can use (3.3) and q > p− 1, to deduce that (5.1) holds.

Concerning condition B, we can observe that, for almost every x ∈ Ω
and any t ≥ 0, we have

(5.23) h(x, t) ≤ |λ| ∥β∥L∞(Ω)t
q + λ̃0t

p−1 + f(t).

This, (3.2) and q > p− 1 imply
(5.24)

lim inf
t→0+

h(x, t)

tp−1
≤ lim inf

s→0+

(
λ| ∥β∥L∞(Ω)t

q−p+1+λ̃0+
f(t)

tp−1

)
= λ̃0−ℓ0 < 0

uniformly almost everywhere x ∈ Ω. Hence, we can find a sequence
{tj}j converging to 0 as j → +∞ such that h(x, tj) < 0 for j ∈ N
large enough and uniformly almost everywhere x ∈ Ω. Thus, by using
the continuity of t 7→ h(·, t), there exist two sequences {δj}j and {ηj}j
such that 0 < ηj+1 < δj < tj < ηj , limj→+∞ ηj = 0 and h(x, t) ≤ 0, for
almost every x ∈ Ω, all t ∈ [δj , ηj ] and j large enough. This concludes
the proof of (5.2).

Hence, we can argue as in the proof of assertion (a), and, by applying
Theorem 5.1, we obtain that (c) is satisfied.

Example 5.2. Let us consider problem (1.1), when f is given by

f(t) =

{
αtα−1(1− sin t−σ) + σtα−σ−1 cos t−σ − pγtp−1 if t > 0,

0 if t = 0,

where α, σ and γ are such that 1 < σ + 1 < α < p and γ > 0. Note
that f is continuous in [0,+∞), and F is the following function

F (t) =

∫ t

0

f(τ) dτ = tα(1− sin t−σ)− γtp, t > 0.

Another prototype for f is given by

f(t) =

{
αtα−1 cos2 t−σ − 2σtα−σ−1 cos t−σ sin t−σ − pγtp−1 if t > 0,

0 if t = 0,
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where α, σ and γ are such that 1 < α < p, σ > 0, α−σ > 1 and γ > 0.
Due to these choices of the parameters, f is continuous in [0,+∞). In
addition, F is the following function

F (t) =

∫ t

0

f(τ) dτ = tα cos2 t−σ − γtp, t > 0.

In both examples, we deduce by direct calculation that f and F satisfy
assumptions (3.2) and (3.3).

Remark 5.3. In Theorem 3.1, if 0 < q < p− 1, then, for every k ∈ N,
there exists a Λk > 0 such that problem (1.1) has at least k distinct
weak solutions u1, . . . , uk ∈ X(Ω) such that

(5.25) ∥uj∥ ≤ 1/j and ∥uj∥L∞(Ω) ≤ 1/j,

j = 1, . . . , k, provided that |λ| < Λk.

6. Oscillatory behavior at infinity. This section is devoted to
the study of problem (1.1) in the case where f oscillates at infinity.
In order to prove Theorem 3.2, we use some techniques developed in
the previous section. Now, we again consider problem (PK

h ), under the
following assumptions on function h:

A. for any t ≥ 0, supτ∈[0,t] |h(·, τ)| ∈ L∞(Ω);

B. there exist two sequences {δj}j and {ηj}j with 0 < δj < ηj < δj+1

and limj→+∞ δj = +∞ such that h(x, t) ≤ 0 for almost every x ∈ Ω
and for all t ∈ [δj , ηj ], j ∈ N:

−∞ < lim inf
t→+∞

H(x, t)

tp
≤ lim sup

t→+∞

H(x, t)

tp
= +∞(6.1)

uniformly for almost every x ∈ Ω,

where H is defined as in (4.5).

In this context, our existence result for problem (PK
h ) is given by

the following theorem:

Theorem 6.1. Let us assume that K : Ω → R satisfies (4.1), and
h : Ω× [0,+∞) → R is a Carathéodory function verifying (4.2) and A,
B and (6.1). Then, there exists a sequence {uj}j ⊂ X(Ω) of distinct
non-negative weak solutions of problem (PK

h ) such that

(6.2) lim
j→+∞

∥uj∥L∞(Ω) = +∞.
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Proof. By using assumptions A and B, we can see that, for any
j ∈ N, hj (defined as in (5.4)) verifies the assumptions of Theorem 4.1.
Thus, for every j ∈ N, there is an element uj ∈ Wηj such that

C. uj is the minimum point of the functional Jj on Wηj ,

D. uj(x) ∈ [0, δj ] for almost every x ∈ Ω, and

E. uj is a non-negative weak solution of (PK
hj
).

Here, Jj is the functional defined as in (5.5).

Then, we may argue as in the proof of Theorem 5.1. Recalling the
definition of hj , and using B and D, we can obtain that

hj(x, uj(x)) = h(x, τηj (uj(x))) = h(x, uj(x)).

Hence, by using E, we can infer that uj is a non-negative weak solution
of problem (PK

h ).

Now, we prove that there exist infinitely many distinct elements in
the sequence {uj}j . Firstly, we show that, up to a subsequence,

(6.3) lim
j→+∞

Jj(uj) = −∞.

Due to (6.1), we can find ℓ > 0 and ζ > 0 such that

(6.4) ess inf
x∈Ω

H(x, t) ≥ −ℓtp for all t > ζ,

and there exists a sequence {tj}j such that limj→+∞ tj = +∞ and

lim sup
j→+∞

H(x, tj)

tpj
= +∞,

namely, for any L > 0,

(6.5) ess inf
x∈Ω

H(x, tj) > Ltpj

for j ∈ N sufficiently large.

In view of assumption B, we know that δj ↗ +∞; thus, we can find
a subsequence of {δj}j , still denoted {δj}j , such that, for all j ∈ N,

(6.6) tj ≤ δj .
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Let us fix j ∈ N, and let zj := ztj be the function from (2.1) with
t = tj . Then, zj ∈ X(Ω) and ∥zj∥L∞(Ω) = tj . Moreover, by using B
and (6.6), we obtain 0 ≤ zj(x) ≤ δj < ηj almost everywhere x ∈ Ω.

Combining (2.2), (6.4) and (6.5), we obtain
(6.7)

Jj(zj) =
1

p
∥zj∥p +

1

p

∫
Ω

K(x)|zj(x)|pdx−
∫
Ω

Hj(x, zj(x)) dx

≤ C(r, s, p,N)
1

p
tpj +

1

p

∫
Ω

K(x)|zj(x)|pdx−
∫
B(x0,r/2)

H(x, tj) dx

−
∫
(B(x0,r)\B(x0,r/2))∩{zj>ζ}

H(x, zj(x)) dx

−
∫
(B(x0,r)\B(x0,r/2))∩{zj≤ ζ}

H(x, zj(x)) dx

≤
(
C(r, s, p,N)

1

p
+

∥K∥L∞(Ω)L(Ω)
p

− L(r/2)NωN + ℓL(Ω)
)
tpj

+
∥∥ sup

t∈[0, ζ]

|h(·, t)|
∥∥
L∞(Ω)

L(Ω)ζ.

Then, taking L > 0 sufficiently large, such that

L(r/2)NωN > C(r, s, p,N)
1

p
+

∥K∥L∞(Ω)L(Ω)
p

+ ℓL(Ω),

and exploiting the fact that limj→+∞ tj = +∞, we can see that (6.7)
implies that

(6.8) lim
j→+∞

Jj(zj) = −∞.

Then, by using C and (6.8), we get

Jj(uj) = min
u∈Wηj

Jj(u) ≤ Jj(zj) −→ −∞,

that is, (6.3) is satisfied.

Now, we are ready to show that {uj}j admits infinitely many distinct
elements (and, in particular, uj ̸≡ 0, being Jj(0) = 0). Assume, by
contradiction, that, in {uj}j , there is only a finite number of elements,
say {u1, . . . , uk} for some k ∈ N. Thus, the sequence {Jj(uj)}j reduces
to at most the finite set {J1(u1), . . . ,Jk(uk)}, and this contradicts
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(6.3). As a consequence, problem (PK
h ) has infinitely many distinct

weak solutions.

At this point, we show that (6.2) is true. We argue by contradiction,
and we assume that, up to a subsequence, the following holds

(6.9) ∥uj∥L∞(Ω) ≤ L

for all j ∈ N, and for some L > 0. Since ηj → +∞ as j → +∞, for j
large enough, say j ≥ j∗, with j∗ ∈ N, we have that ηj ≥ L. Then, by
using (6.9) and the fact that the sequence {ηj}j is increasing (see B),
we get

(6.10) uj ∈ Wηj∗ for any j ≥ j∗.

We also note that, from the monotonicity of {ηj}j , it follows that,
for j < k,

(6.11) W ηj ⊆ W ηk .

In particular, (6.11) implies that for any u ∈ Wηj we have

(6.12)

Hj(x, u(x)) =

∫ u(x)

0

h(x, τηj (t)) dt =

∫ u(x)

0

h(x, t) dt

=

∫ u(x)

0

h(x, τηk
(t)) dt = Hk(x, u(x)),

for almost every x ∈ Ω.

Furthermore, we can show that {Jj(uj)}j is non-increasing. In fact,
if j < k, we can see that (6.11) and (6.12) yield

(6.13)

Jj(uj) = min
u∈Wηj

Jj(u) = min
u∈Wηj

Jk(u)

≥ min
u∈Wηk

Jk(u) = Jk(uk).

Hence, by using (6.10)–(6.13), for any j ≥ j∗, we get

Jj∗(uj∗) ≥ Jj(uj) ≥ min
u∈Wηj∗

Jj(u) = min
u∈Wηj∗

Jj∗(u) = Jj∗(uj∗),

which contradicts (6.3) Thus, we can conclude that ∥uj∥L∞(Ω) → +∞
as j → +∞. �
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Requiring the following, extra condition on the function h,

(6.14) sup
t∈[0,+∞)

|h(x, t)|
1 + tp

∗
s−1

< +∞

uniformly almost everywhere x ∈ Ω, where p∗s is the critical Sobolev
exponent given in (3.5), we have the next result:

Corollary 6.2. Let all of the assumptions of Theorem 6.1 be satisfied.
In addition, assume that (6.14) holds true. Then

lim
j→+∞

∥uj∥ = +∞,

where {uj}j is the sequence of distinct weak solutions of problem (PK
h )

given by Theorem 6.1.

Proof. Assume, by contradiction, that, up to a subsequence, there
exists an L > 0 such that, for any j ∈ N,

(6.15) ∥uj∥ ≤ L.

Then, by using (6.14), (6.15), and by applying Theorem 2.2, we can
see that, for any j ∈ N,

|Jj(uj)| ≤
1

p
∥uj∥p + ∥K∥L∞(Ω)∥uj∥pLp(Ω)(6.16)

+ C1

∫
Ω

∫ uj(x)

0

(1 + |t|p
∗
s−1) dt dx

≤ 1

p
∥uj∥p + ∥K∥L∞(Ω)∥uj∥pLp(Ω)

+ C2∥uj∥L1(Ω) + C3∥uj∥ps∗
Lp∗s (Ω)

≤ 1

p
Lp + C4∥K∥L∞(Ω)L

p + C5L+ C6L
ps∗.

Therefore, (6.16) implies that {Jj(uj)}j is a bounded sequence in R,
and this is impossible in view of (6.3). �

As a consequence of Corollary 6.2, we have the following result:

Proof of Corollary 3.3. It is sufficient to apply Corollary 6.2 with
h and K given in (6.17) when q = p − 1, and in (6.19) in the case
0 < q < p− 1.
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Now, we assume that q = p−1. Clearly, q > 0 since p > 1. By using
(3.9), we have, for any t ∈ [0, 1],

|h(x, t)|
1 + tp

∗
s−1

=
λ̃∞tp−1

1 + tp
∗
s−1

+
|f(t)|

1 + tp
∗
s−1

≤ λ̃∞tp−1 +
|f(t)|

1 + tp
∗
s−1

≤ λ̃∞ +
|f(t)|

1 + tp
∗
s−1

≤ λ̃∞ + sup
t∈[0,+∞)

|f(t)|
1 + tp

∗
s−1

< +∞.

For t > 1, we get

|h(x, t)|
1 + tp

∗
s−1

=
λ̃∞tp−1

1 + tp
∗
s−1

+
|f(t)|

1 + tp
∗
s−1

≤ λ̃∞tp−p∗
s +

|f(t)|
1 + tp

∗
s−1

≤ λ̃∞tp−p∗
s + sup

t∈[0,+∞)

|f(t)|
1 + tp

∗
s−1

< +∞,

since p < p∗ and tp−p∗
s → 0 as t → +∞. Therefore, (6.14) is satisfied.

If 0 < q < p − 1, we can proceed in a similar way, observing that
q < p− 1 < p∗s − 1. �

6.1. Proof of Theorem 3.2. Our strategy consists of applying The-
orems 4.1 and 6.1 to problem (PK

h ) and choosing the functions h and
K in a suitable way.

We begin with consideration of cases q = p − 1 and ℓ∞ ∈ (0,+∞).
Fix λ ∈ R such that λβ(x) < λ∞ almost everywhere x ∈ Ω for some

λ∞ ∈ (0, ℓ∞). We take λ̃∞ ∈ (λ∞, ℓ∞), and we define the following
functions

(6.17) K(x) := λ̃∞ − λβ(x) and h(x, t) := λ̃∞tp−1 + f(t),

for almost every x ∈ Ω and t ≥ 0. Arguing as in the proof of
Theorem 3.1, we can see that h and K satisfy the assumptions of
Theorem 6.1 (here, we also use the fact that f(0) = 0 by assumption),
and then the assertion of Theorem 3.2 follows.

When q = p − 1 and ℓ∞ = +∞, we take λ ∈ R, and we use Theo-
rem 6.1 with

(6.18) K(x) := λ̃∞ and h(x, t) := (λβ(x) + λ̃∞)tp−1 + f(t),
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for almost every x ∈ Ω and t ≥ 0. The arguments are the same as those
used in the previous case.

In the case 0 < q < p − 1, we choose h and K in Theorem 6.1 as
follows:

(6.19) K(x) := λ̃∞ and h(x, t) := λβ(x)tq + λ̃∞tp−1 + f(t),

for almost every x ∈ Ω and t ≥ 0, where λ̃∞ ∈ (0, ℓ∞), and we argue
as above.

When we consider the case q > p− 1, we aim to apply Theorem 4.1
to problem (PK

h ), provided to appropriately choose functions h and K.

Let λ̃∞ ∈ (λ∞, ℓ∞), where ℓ∞ > 0 is given in assumption (3.6), and
set

K(x) := λ̃∞ and h(x, s, λ) := λβ(x)tq + λ̃∞tp−1 + f(t)

almost everywhere x ∈ Ω, t ≥ 0 and λ ∈ R. Thus, we may proceed as
in the proof of Theorem 3.1 to obtain the assertion.

Example 6.3. Let Ω ⊂ RN be a bounded domain with smooth
boundary, N > sp, λ ∈ R. Furthermore, let β ∈ L∞(Ω), and consider
the following problem

(6.20)


(−∆)spu = λβ(x)uq + f(u) in Ω,

u ≥ 0, u ̸≡ 0 in Ω,

u = 0 in RN \ Ω,

where f : [0,+∞) → R is given by

f(t) := (p+ 1)(1− sin t)tp − tp+1 cos t− ptp−1.

Direct calculations show that f and the potential F (t) = (1 −
sin t)tp+1 − tp satisfy assumptions (3.6) and (3.7). Then, if 0 < q ≤
p − 1, and λ ∈ R is arbitrary, then there exists a sequence {uj}j in
X(Ω) ∩ L∞(Ω) of distinct weak solutions of problem (6.20) such that

lim
j→+∞

∥uj∥L∞(Ω) = +∞.

Remark 6.4. In Theorem 3.2, if q > p − 1, then, for every k ∈ N,
there exists a Λk > 0 such that problem (1.1) has at least k distinct
weak solutions u1, . . . , uk ∈ X(Ω) such that
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(6.21) ∥uj∥L∞(Ω) ≥ j − 1, j = 1, . . . , k,

provided |λ| < Λk.

Remark 6.5. It is easy to see that Theorems 1.1 and 1.2 in the in-
troduction immediately follow from Theorems 3.1 and 3.2. Finally, we
point out that the results contained in this paper are a fractional coun-
terpart of the main theorems proved in the recent paper [26] and are
valid for elliptic equations involving the classical p-Laplacian opera-
tor. Also, see the quoted paper [20] where the competition phenomena
analyzed here for nonlocal fractional equations was observed for the
first time in literature, exploiting the existence of infinitely many weak
solutions for elliptic problems driven by the classical Laplacian opera-
tor. Our methods are fully based on this abstract approach. See, for
instance, [18, 19, 28, 37] for related topics.

Remark 6.6. If p > N/s, our hypotheses on the nonlinear term f
can be relaxed. Indeed, for instance, if f is a non-negative continuous
function, exploiting [38, Theorem 2.1], the existence of infinitely many
weak solutions for the following problem{

(−∆)spu = f(u) in Ω,

u = 0 in RN \ Ω, s

is achieved, requiring that

lim inf
ξ→L

F (ξ)

ξp
= 0 and lim sup

ξ→L

F (ξ)

ξp
= +∞,

where either L = 0+ or L = +∞. This case will be discussed in a
forthcoming paper (see [23, 25] and the references therein for related
topics).
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18. M. Ghergu and V. Rădulescu, Nonlinear PDEs, Mathematical models in
biology, chemestry and population genetics, Springer Mono. Math., Springer, Hei-
delberg, 2012.

19. J. Giacomini, T. Mukherjee and K. Sreenadh, Positive solutions of fractional
elliptic equations with critical and singular nonlinearity, Adv. Nonlin. Anal. 6
(2017), 327–354.
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