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STOCHASTIC PREDATOR-PREY MODEL WITH
LESLIE-GOWER AND HOLLING-TYPE II SCHEMES

WITH REGIME SWITCHING

JINGLIANG LV AND KE WANG

ABSTRACT. A predator-prey model with Leslie-Gower
and Holling-type II schemes with regime switching will
be considered, that is, both white and color noises are
taken into account. We firstly show that there exists a
globally unique solution to the stochastic predator-prey
model by use of the comparison theorem. Then, asymptotic
properties of the system will be examined and the conditions
under which the system is stochastically persistent will be
given. Moreover, lastly, we analyze the optimal harvesting
policy of the stochastic prey-predator model with Markovian
switching.

1. Preliminaries. Interest in mathematical models for populations
with interaction between species has been on the rise. Many models
in theoretical ecology take the Lotka-Volterra model of an interacting
species as a starting point. Recently, many results have been obtained
regarding Lotka-Volterra models in random environment. Mao, et
al., [7], considered a stochastic Lotka-Volterra model for a system
with n interacting components, and [2] continued the study of [7]
to investigate the dynamics properties of a stochastic Lotka-Volterra
model. In [4], the stochastic Lotka-Volterra competitive system

dxi(t) = xi(t)

[(
bi(t)−

n∑
j=1

aij(t)xj(t)

)
dt+σi(t) dBi(t)

]
, i = 1, 2, . . . n,

was discussed.

2010 AMS Mathematics subject classification. Primary 60H10, 60H20.
Keywords and phrases. Predator-prey, Markov chains, comparison theorem,

optimal harvest policy, Markovian switching.
Research supported by the National Natural Science Foundation of P.R. China,

grant No. 11501148, Shandong Provincial Natural Science Foundation, China, grant
No. ZR2015AQ002.

Received by the editors on March 13, 2010, and in revised form on November 8,
2013.
DOI:10.1216/RMJ-2018-48-4-1201 Copyright c⃝2018 Rocky Mountain Mathematics Consortium

1201



1202 JINGLIANG LV AND KE WANG

Recently, more and more attention has been focused on stochastic
population models with Markovian switching. Stochastic population
dynamics under regime switching was considered in [5, 6, 9]. Zhu
and Yin [10] examined competitive Lotka-Volterra model in random
environments, and [11] further gave certain long-run-average limits of
the solution for the competitive Lotka-Volterra model.

Ji, et al. [3], developed a predator-prey model with modified Leslie-
Gower and Holling-type II schemes with stochastic perturbation. This
provided the stochastic system, which takes the following form:

(1.1)

{
dx(t) = x(t)

(
a− bx(t)− cy(t)

m+x(t)

)
dt+ σ1x(t) dB1(t),

dy(t) = y(t)
(
r − fy(t)

m+x(t)

)
dt+ σ2y(t) dB2(t),

where Bi(t), i = 1, 2, are independent standard Brownian motions,
b, c and sf are positive constants and σi, i = 1, 2, represent noise
intensities. In [3], it is shown that there is a unique positive solution
to the system with positive initial value x0 > 0, y0 > 0. The long time
behavior of the system is mainly investigated therein. The following
result is proven in [3].

Under the conditions H:

a >
σ2
1

2
, r >

σ2
2

2
,

a− (σ2
1)/2

c
>
r − (σ2

2)/2

f
,

the solution to (1.1) has the property

lim
t→∞

∫ t

0
y(s)/(m(α(s)) + x(s)) ds

t
=
r − σ2

2/2

f
,

which yields that the Leslie-Gower term in system (1.1) is globally
stable in the time average. Moreover, referring to [1], Ji, et al. [3],
presented the following definition of the persistence in mean.

Definition 1.1. The system is said to be persistent in mean if it
satisfies

lim inf
t→∞

∫ t

0
x(s) ds

t
> 0,

and

lim inf
t→∞

∫ t

0
y(s) ds

t
> 0.
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Under the assumption H, [3] shows that model (1.1) satisfies

(1.2) lim
t→∞

∫ t

0
x(s) ds

t
=
a− σ2

1/2

b
− c(r − σ2

2/2)

bf
> 0,

and

(1.3) lim inf
t→∞

∫ t

0
y(s) ds

t
≥ m(r − σ2

2/2)

f
r − σ2

2

2
> 0.

Relations (1.2) and (1.3) tell us that the system (1.1) is persistent in
mean.

In this paper, both white and color noises will be taken into account
in the stochastic predator-prey model with modified Leslie-Gower and
Holling-type II schemes with Markovian switching, which reads
(1.4){
dx(t) = x(t)

(
a(α(t))− bx(t)− cy(t)

m(α(t))+x(t)

)
dt+ x(t)σ1(α(t)) dB1(t),

dy(t) = y(t)
(
r(α(t))− fy(t)

m(α(t))+x(t)

)
dt+ y(t)σ2(α(t)) dB2(t),

where Bi(t), i = 1, 2, are independent standard Brownian motions,
σi, i = 1, 2, represent noise intensities, and b, c and f are positive
constants. Note that the system (1.4) has a globally unique solution.
We continue our work with the long-time behavior of the system. We
further show that (1.4) is stochastically persistent in mean. Finally, the
optimal harvesting policy of the prey x(t) will be taken into account
later in this paper. The corresponding harvesting system has the
stochastic form
(1.5){
dx(t) = x(t)

(
a(α(t))−E−bx(t)− cy(t)

m(α(t))+x(t)

)
dt+x(t)σ1(α(t)) dB1(t),

dy(t) = y(t)
(
r(α(t))− fy(t)

m(α(t))+x(t)

)
dt+y(t)σ2(α(t)) dB2(t),

where Bi(t), i = 1, 2, are independent standard Brownian motions, σi,
i = 1, 2, represent noise intensities, b, c and f are positive constants,
and E denotes the harvesting efforts, which are deterministic. The
optimal harvesting policy of system (1.5) will be given. Therefore, by
taking both color and white noise into account, the new stochastic
population system (1.4) and (1.5) has some desired properties: a
global positive solution, stochastic persistence in mean and the optimal
harvesting policy of prey x(t).
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Since x(t) and y(t) are population sizes or densities of the prey
and the predator at time t, respectively, we are only interested in the
positive solutions herein.

For convenience and simplicity in the following discussion, we define

m̌ = max
α∈S

(m(α)) and m̂ = min
α∈S

(m(α)).

The organization of the paper is as follows. We recall the funda-
mental theory regarding the stochastic differential equation with Mar-
kovian switching in Section 2. Section 3 is devoted to the stochastic
prey-predator system with Leslie-Gower and Holling-type II schemes
with Markovian switching. Finally, the paper concludes by considering
the optimal harvesting policy for the prey x(t) in Section 4.

2. Stochastic differential equation with Markovian switch-
ing. Throughout this paper, unless otherwise specified, we let (Ω,F ,
{Ft}t≥0, P ) be a complete probability space with a filtration {Ft}t≥0

satisfying the usual conditions (i.e., it is right continuous and F0 con-
tains all P-null sets). Let α(t), t ≥ 0, be a right-continuous Markov
chain in the probability space tasking values in a finite state space
S = {1, 2, . . . , N}, with generator Γ = (γij)N×N given by

P{α(t+∆t) = j | α(t) = i} =

{
γij∆+ o(∆) i ̸= j,

1 + γii∆+ o(∆) i = j,

where ∆ > 0. Here, γij ≥ 0 is the transition rate from i to j if i ̸= j
while γii = −

∑
i ̸=j γij . We assume that the Markov chain α(t) is

independent of the Brownian motion, and almost every sample path of
α(t) is a right-continuous step function with a finite number of simple
jumps in any finite subinterval of R+.

In addition, we assume, as a standing hypothesis, that the Markov
chain is irreducible. The algebraic interpretation of irreducibility is
rank(Γ) = N −1. Under this condition, the Markov chain has a unique
stationary distribution π = (π1, π1, . . . , πN ) ∈ R1×N which can be
determined by solving the following linear equation

πΓ = 0,
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subject to
N∑
j=1

πj = 1 and πj > 0 for all j ∈ S.

Consider a stochastic differential equation with Markovian switching

dx(t) = f(x(t), t, α(t)) dt+ g(x(t), t, α(t)) dB(t)

on t ≥ 0, with initial value x(0) = x0 ∈ Rn, where

f : Rn ×R+ × S −→ Rn and g : Rn ×R+ × S −→ Rn×m.

For the existence and uniqueness of the solution, we assume that the
coefficients of the above equation satisfy the local Lipschitz condition
and the linear growth condition, that is, for each k = 1, 2, . . ., there is
an hk > 0 such that

|f(x, t, α)− f(y, t, α)|
∨

|g(x, t, α)− g(y, t, α)| ≤ hk|x− y|

for all t ≥ 0, α ∈ S and those x, y ∈ Rn with |x|
∨

|y| ≤ k, and there is
an h > 0 such that

|f(x, t, α)|
∨

|g(x, t, α)| ≤ h(1 + |x|)

for all (x, t, α) ∈ Rn ×R+ × S.

Let C2,1(Rn × R+ × S,R+) denote the family of all nonnegative
functions V (x, t, α) on Rn × R+ × S which are continuously twice
differentiable in x and once differentiable in t. If V ∈ C2,1(Rn ×R+ ×
S,R+), define an operator LV from Rn ×R+ × S to R by

LV (x, t, α) = Vt(x, t, α) + Vx(x, t, α)f(x, t, α)

+
1

2
trace[gT (x, t, α)Vxx(x, t, α)g(x, t, α)]

+

N∑
j=1

γijV (x, t, j).

In particular, if V is independent of α, that is, V (x, t, α) = V (x, t),
then

LV (x, t, α) = Vt(x, t)+Vx(x, t, )f(x, t)+
1

2
trace[gT (x, t)Vxx(x, t)g(x, t)].
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3. Asymptotic properties of the prey-predator model with
Leslie-Gower and Holling-type II schemes with regime switch-
ing. Here, we analyze stochastic prey-predator model with Leslie-
Gower and Holling-type II schemes with regime switching. The sto-
chastic system reads
(3.1){
dx(t) = x(t)

(
a(α(t))− bx(t)− cy(t)

m(α(t))+x(t)

)
dt+ x(t)σ1(α(t)) dB1(t),

dy(t) = y(t)
(
r(α(t))− fy(t)

m(α(t))+x(t)

)
dt+ y(t)σ2(α(t)) dB2(t),

where Bi(t), i = 1, 2, are independent standard Brownian motions, σi,
i = 1, 2, represent noise intensities and b, c, f are positive constants.
If the stochastic differential equation has a unique global (i.e., no
explosion in a finite time) solution for any initial value, the coefficients
of the equation are required to obey the linear growth condition and
local Lipschitz condition (cf., [8]). We obtain that there is a unique
local solution X(t) = (x(t), y(t)) on t ∈ [0, τe) with the initial value
(x0, y0) > 0, α ∈ S, where τe is the explosion time.

In order to proceed with our study, we assume the following assump-
tions (A1) and (A2).

(A1) 0 < min{r(α)− (1/2)σ2
2(α), α ∈ S} ≤ max{r(α)− (1/2)σ2

2(α),
α ∈ S} = A, and

(A2) min{a(α)− (1/2)σ2
1(α), α ∈ S} = ∆ > 0, ∆− c(P + ϵ) > 0,

where ϵ is a sufficiently small positive constant, and P =: (1/f)
∑N

α=1

πα(r(α)− (σ2
2(α))/2).

In the following content, we will demonstrate that the local solution
to (3.1) is global, motivated by the research [11, 3]. Let

(3.2) Φ(t) =
exp

∫ t
0
(a(α(s))−(1/2)σ2

1(α(s))) ds+σ1(α(s)) dB1(s)

(1/x0)+
∫ t
0
b exp

∫ s
0
(a(α(τ))−(1/2)σ2

1(α(τ))) dτ+σ1(α(τ)) dB1(τ) ds
.

Thus, Φ(t) is the unique solution of equation{
dΦ(t) = Φ(t)(a(α(t))− bΦ(t)) dt+Φ(t)σ1(α(t)) dB1(t),

Φ(0) = x0.

Hence, the comparison theorem implies x(t) ≤ Φ(t), t ∈ [0, τe) almost
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surely, and{
dψ(t) = ψ(t)(r(α(t))− (f/m(α))ψ(t)) dt+ ψ(t)σ2(α(t)) dB2(t),

ψ(0) = y0

has a unique solution
(3.3)

ψ(t) =
exp

∫ t
0
(r(α(s))−(1/2)σ2

2(α(s))) ds+σ2(α(s)) dB2(s)

(1/y0)+
∫ t
0
(f/m(α(s))) exp[

∫ s
0
(r(α(τ)−(1/2)σ2

2(α(τ)))dτ+σ2(α(τ))dB2(τ)]ds
.

Obviously, ψ(t) ≤ y(t), t ∈ [0, τe) almost surely. Moreover,

dΨ(t) = Ψ(t)

(
r(α(t))− fΨ(t)

m(α(t)) + Φ(t)

)
dt+Ψ(t)σ2(α(t)) dB2(t),

where
(3.4)

Ψ(t)=
exp

∫ t
0
(r(α(s))−(1/2)σ2

2(α(s))) ds+σ2(α(s)) dB2(s)

1/y0+
∫ t
0
(f/m(α(s))+Φ(s)) exp[

∫ s
0
(r(α(τ))−(1/2)σ2

2(α(τ)))dτ+σ2(α(τ))dB2(τ)]ds
.

Thus, we obtain y(t) ≤ Ψ(t), t ∈ [0, τe), almost surely. In addition,

(3.5) dϕ(t) = ϕ(t)

(
a(α(t))−bϕ(t)− cΨ(t)

m(α(t))

)
dt+ϕ(t)σ1(α(t) dB1(t).

It is easy to see that we have

x(t) ≥ ϕ(t), t ∈ [0, τe) almost surely.

Simply, we obtain
ϕ(t) ≤ x(t) ≤ Φ(t)

and
ψ(t) ≤ y(t) ≤ Ψ(t) t ∈ [0, τe) almost surely.

It can easily be verified that ϕ(t), Φ(t), ψ(t) and Ψ(t) all exist on t ≥ 0;
hence, this leads to the following.

Theorem 3.1. There is a unique positive solution X(t) = (x(t), y(t))
of (3.1) for any initial value (x0, y0) > 0, α ∈ S, and the solution has
the properties:
(3.6)
ϕ(t) ≤ x(t) ≤ Φ(t) and ψ(t) ≤ y(t) ≤ Ψ(t) t > 0 almost surely,

where ϕ(t), Φ(t), ψ(t) and Ψ(t) are defined as (3.2), (3.3), (3.4) and
(3.5).
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Theorem 3.1 states that equation (3.1) has a globally unique solu-
tion.

Now, we investigate certain asymptotic limits of the population
model (3.1). Referring to [11], it is not difficult to see that

(3.7) lim
t→∞

lnΦ(t)

t
= 0 and lim

t→∞

lnψ(t)

t
= 0 almost surely.

Next, we give the following essential theorems which will be used.

Theorem 3.2. Assume that condition (A1) holds. We have the prop-
erty :

(3.8) lim
t→∞

ln y(t)

t
= 0 almost surely.

Proof. From (3.6) and (3.7),

0 = lim inf
t→∞

lnψ(t)

t
≤ lim inf

t→∞

ln y(t)

t
almost surely.

Thus, it remains to show that lim supt→∞(ln y(t))/t ≤ 0. Note that
the quadratic variation of the stochastic integral∫ t

0

σi(α(s)) dBi(s)

is ∫ t

0

σ2
i (α(s)) ds ≤ Kt;

thus, the strong law of large numbers for local martingales yields that∫ t

0
σi(α(s)) dBi(s)

t
−→ 0 almost surely t→ ∞.

Therefore, for any ϵ > 0, there exists some positive constant T < ∞
such that∣∣∣∣ ∫ t

0

σi(α(s)) dBi(s)

∣∣∣∣ < ϵt almost surely for any t ≥ T.



STOCHASTIC PREDATOR-PREY MODEL 1209

Then, for any t > s ≥ T , we have
(3.9)∣∣∣∣ ∫ t

s

σi(α(τ)) dBi(τ)

∣∣∣∣ ≤ ∣∣∣∣ ∫ t

0

σi(α(τ)) dBi(τ)

∣∣∣∣+ ∣∣∣∣ ∫ s

0

σi(α(τ)) dBi(τ)

∣∣∣∣
≤ ϵ(t+ s) almost surely.

Moreover, it follows from (3.7) that, for the above ϵ and T , we get

(3.10) −ϵt ≤ lnΦ(t) ≤ ϵt almost surely t ≥ T.

By (3.4), (3.6), (3.9) and (3.10), for t > s ≥ T , we derive

1

y(t)
≥ 1

Ψ(t)
= exp−

[ ∫ t

T

(
r(α(s))− 1

2
σ2
2(α(s))

)
ds+ σ2(α(s)) dB2(s)

]
·
[

1

y(T )
+

∫ t

T

f

m(α(s)) + Φ(s)

· exp
[ ∫ s

T

(
r(α(τ))− 1

2
σ2
2(α(τ))

)
dτ

+ σ2(α(τ))dB2(τ)

]
ds

]
≥

∫ t

T

f

m(α(s))+ Φ(s)
exp−

[ ∫ t

s

(
r(α(τ))− 1

2
σ2
2(α(τ))

)
dτ

+ σ2(α(τ))dB2(τ)

]
ds

≥
∫ t

T

f

m(α(s)) + eϵs
exp−

[ ∫ t

s

(
r(α(τ))− 1

2
σ2
2(α(τ))

)
dτ

+ σ2(α(τ))dB2(τ)

]
ds

≥
∫ t

T

f

m(α(s)) + 1
e−ϵse−A(t−s)e−ϵ(t+s)ds

≥ f

m̌+ 1
e−(A+ϵ)t

∫ t

T

e(A−2ϵ)sds.

Therefore,

e(A+ϵ)t

Ψ(t)
≥ f

(m̌+ 1)(A− 2ϵ)

(
e(A−2ϵ)t − e(A−2ϵ)T

)
.
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Then,

lim
t→∞

(A+ ϵ)t

t
≥ lim sup

t→∞

lnΨ(t)

t
+ lim

t→∞

ln f/[(m̌+ 1)(A− 2ϵ)]

t

+ lim
t→∞

ln[e(A−2ϵ)t − e(A−2ϵ)T ]

t
,

that is,

A+ ϵ ≥ lim sup
t→∞

lnΨ(t)

t
+A− 2ϵ.

Thus,

lim sup
t→∞

lnΨ(t)

t
≤ 3ϵ.

Using the fact that ϵ > 0 is arbitrary, we obtain that

lim sup
t→∞

lnΨ(t)

t
≤ 0.

Consequently,

lim sup
t→∞

ln y(t)

t
≤ lim sup

t→∞

lnΨ(t)

t
≤ 0.

The proof is complete. �

We now consider the long time behavior of the Leslie-Gower term
y(t)/(m(α(t)) + x(t)). Denote V (y, α) = ln y. Using the generalized
Itô lemma, we conclude that

d(ln y(t)) =

(
r(α(t))−σ

2
2(α(t))

2
− fy(t)

m(α(t)) + x(t)

)
dt+σ2(α(t)) dB2(t).

Hence,

ln y(t)− ln y0 =

∫ t

0

r(α(s))− σ2
2(α(s))

2
ds− fy(s)

m(α(s)) + x(s)
ds

+

∫ t

0

σ2(α(s)) dB2(s).
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By virtue of (3.8), the strong law of large numbers for local martingales
and the ergodic properties of Markov chains, we obtain

lim
t→∞

∫ t

0
(y(s))/(m(α(s)) + x(s)ds)

t
=

1

f

N∑
α=1

πα

(
r(α)− σ2

2(α)

2

)
.

Theorem 3.3. Assume that (A1) holds. Then, the positive solution
X(t) = (x(t), y(t)) to (3.1) with initial value (x0, y0) > 0, α ∈ S,
satisfies
(3.11)

lim
t→∞

∫ t

0
(y(s))/(m(α(s)) + x(s)) ds

t
=

1

f

N∑
α=1

πα

(
r(α)− σ2

2(α)

2

)
=: P.

Theorem 3.4. Let condition (A2) hold. Then, x(t) has the property

(3.12) lim
t→∞

lnx(t)

t
= 0 almost surely.

Proof. From (3.6) and (3.7), we know that

lim sup
t→∞

lnx(t)

t
≤ lim sup

t→∞

lnΦ(t)

t
= 0 almost surely.

Now, we merely must show that

lim inf
t→∞

lnx(t)

t
≥ 0.

From the proof of Theorem 3.2, we obtain that, for any ϵ > 0, there
exists some positive constant T <∞ such that, for any t > s ≥ T ,∣∣∣∣ ∫ t

s

σi(α(τ)0) dBi(τ)

∣∣∣∣ ≤ ϵ(t+ s) almost surely,

and
| lnΦ(t)| ≤ ϵt almost surely.
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From the generalized Itô lemma, we have

1

x(t)
=

1

x(T )
exp

[
−
∫ t

T

a(α(s))− σ2
1(α(s))

2
−

∫ t

T

cy(s)

m(α(s)) + x(s)
ds

−
∫ t

T

σ1(α(s)) dB1(s)

]
+

∫ t

T

b exp

[
−
∫ t

s

a(α(τ))− σ2
1(α(τ))

2
−
∫ t

s

cy(τ)

m(α(τ)) + x(τ)
dτ

−
∫ t

s

σ1(α(τ)) dB1(τ)

]
=: I1 + I2.

It follows from the result of Theorem 3.3 that, for any ϵ > 0, there
exists some positive constant T <∞ such that∫ t

T

y(s)

m(α(s)) + x(s)
ds < (P + ϵ)t− (P − ϵ)T almost surely t > s > T.

Similarly, we have∫ t

s

y(τ)

m(α(τ)) + x(τ)
dτ < (P + ϵ)t− (P − ϵ)T almost surely.

Therefore,

I1 ≤ 1

x(T )
e−∆(t−T )+c(P+ϵ)t−c(P−ϵ)T+ϵ(t+T )

=
1

x(T )
e−[∆−c(P+ϵ)](t−T )+ϵ[t+(2c+1)T ]

≤ Keϵ[t+(2c+1)T ] almost surely

and

I2 ≤ b

∫ t

T

e−∆(t−s)+c(P+ϵ)t−c(P−ϵ)s+ϵ(t+s)ds

= b

∫ t

T

e−[∆−c(P+ϵ)](t−s)+ϵ[t+(2c+1)s]ds

≤ K

∫ t

T

eϵ[t+(2c+1)s]ds ≤ Keϵ(2c+2)t almost surely.
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Thus,

1

x(t)
≤ Keϵ[t+(2c+1)T ] +Keϵ(2c+2)t almost surely.

It is easy to conclude that

e−ϵ(2c+2)t 1

x(t)
≤ K almost surely,

that is,
1

x(t)
≤ Keϵ(2c+2)t almost surely.

Hence,

lim sup
t→∞

(− lnx(t)

t
) ≤ ϵ(2c+ 2) almost surely.

Hence,

lim inf
t→∞

lnx(t)

t
≥ −ϵ(2c+ 2) almost surely.

Since ϵ > 0 is arbitrary, it is inferred that

lim inf
t→∞

lnx(t)

t
≥ 0 almost surely.

This completes the proof. �

Next, we proceed with stochastic persistent conditions for the system
(3.1).

Theorem 3.5. Assume that (A1) and (A2) hold. Then, the system
(3.1) is stochastically persistent in mean, that is, the positive solution
X(t) = (x(t), y(t)) of equation (3.1) with initial value (x0, y0) > 0
obeys:

lim inf
t→∞

∫ t

0
x(s) ds

t
> 0 and lim inf

t→∞

∫ t

0
y(s) ds

t
> 0 almost surely.

Proof. Firstly, we show that

lim inf
t→∞

∫ t

0
x(s) ds

t
> 0 almost surely.
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Using the generalized Itô lemma, we have

(3.13)

lnx(t)− lnx0 =

∫ t

0

a(α(s))− σ2
1(α(s))

2
ds

−
∫ t

0

(
bx(s) +

cy(s)

m(α(s)) + x(s)

)
ds

+

∫ t

0

σ1(α(s))dB1(s).

Note the quadratic variation of the stochastic integral
∫ t

0
σ1(α(s)) dB1(s)

is
∫ t

0
σ2
1(α(s)) ds ≤ Kt; thus, the strong law of large numbers for local

martingales yields that

(3.14)

∫ t

0
σ1(α(s)) dB1(s)

t
−→ 0 almost surely t→ ∞.

By virtue of (3.11) and the ergodic properties of Markov chains, we
conclude:

lim
t→∞

∫ t

0
[y(s)/m(α(s)) + x(s)] ds

t
=

1

f

N∑
α=1

πα

(
r(α)− σ2

2(α)

2

)
(3.15)

and

lim
t→∞

∫ t

0
(a(α(s))− [σ2

1(α(s))]/2) ds

t
=

N∑
α=1

πα

(
a(α)− σ2

1(α)

2

)
.

(3.16)

It follows from (3.12)–(3.16) that

(3.17) lim
t→∞

b
∫ t

0
x(s) ds

t

=
N∑

α=1

πα

(
a(α)− σ2

1(α)

2

)
− c

f

N∑
α=1

πα

(
r(α)− σ2

2(α)

2

)
.

Secondly, we show that

lim inf
t→∞

∫ t

0
y(s)ds

t
> 0 almost surely.
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Obviously,

1

m̂
lim inf
t→∞

∫ t

0
y(s) ds

t
≥ lim

t→∞

∫ t

0
[y(s)/m(α(s)) + x(s)] ds

t

=
1

f

N∑
α=1

πα

(
r(α)− σ2

2(α)

2

)
> 0 almost surely.

Thus,

lim inf
t→∞

∫ t

0
y(s) ds

t
≥ m̂

f

N∑
α=1

πα

(
r(α)− σ2

2(α)

2

)
> 0 almost surely,

as required. The proof is complete. �

4. Harvesting policy for the prey-predator model with Leslie-
Gower and Holling-type II schemes with regime switching.
When the harvesting problems of population resources is discussed,
we aim to gain the optimal harvesting effort and corresponding maxi-
mum sustainable yield. Optimal harvesting policy for stochastic prey-
predator population model with Markovian switching (1.5) will be
taken into account. Here, we mainly consider the optimal harvest-
ing policy of the prey x(t). We make use of the ergodic property of
Markov chain in order to proceed with our study.

Here, we present the following assumptions.

(A1) 0 < min{r(α)− (1/2)σ2
2(α), α ∈ S} ≤ max{r(α)− (1/2)σ2

2(α),
α ∈ S} = A;

(A3) min{a(α)−E−(1/2)σ2
1(α), α ∈ S} = ∆ > 0, ∆−c(P +ϵ) > 0,

where ϵ is a sufficiently small positive constant and

P =:
1

f

N∑
α=1

πα

(
r(α)− σ2

2(α)

2

)
.

In the same manner as the proofs of Theorems 3.1–3.4, we derive
Theorems 4.1 and 4.2. Here we don’t list the corresponding arguments
in detail, only give the essential results.

Theorem 4.1. Equation (1.5) has a globally unique solution X(t) =
(x(t), y(t)) for any initial value (x0, y0) > 0. In addition, under the
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conditions (A1) and (A3), we have the properties

lim
t→∞

lnx(t)

t
= 0, lim

t→∞

ln y(t)

t
= 0 almost surely.

When harvesting problems are considered, the corresponding aver-
age population level is derived below.

Theorem 4.2. Assume that the conditions of Theorem 4.1 hold. Then,
the solution X(t) = (x(t), y(t)) to (1.5) obeys

(4.1) lim
t→∞

∫ t

0
x(s) ds

t

=
1

b

[ N∑
α=1

πα

(
a(α)− σ2

1(α)

2

)
− c

f

N∑
α=1

πα

(
r(α)− σ2

2(α)

2

)
− E

]
almost surely, where α ∈ S = {1, 2, . . . , N}.

Proof. The proof is similar to the argument of (3.17); hence, it is
omitted here. �

When the species x(t) is subjected to exploitation, it is important
and necessary to consider the corresponding maximum sustainable
revenue.

Theorem 4.3. Let the conditions of Theorem 4.1 hold. Then, the
optimal harvesting effort of x(t) is

(4.2) E∗ =
1

2

[ N∑
α=1

πα

(
a(α)− σ2

1(α)

2

)
− c

f

N∑
α=1

πα

(
r(α)− σ2

2(α)

2

)]
.

The optimal sustainable harvesting yield reads
(4.3)

lim
t→∞

∫ t

0
E∗x(s)ds

t
=

1

4b

[ N∑
α=1

πα

(
a(α)− σ2

1(α)

2

)

− c

f

N∑
α=1

πα

(
r(α)− σ2

2(α)

2

)]2
.
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Proof. It follows from (4.1) that

lim
t→∞

∫ t

0
x(s)ds

t
=

1

b

[ N∑
α=1

πα

(
a(α)− σ2

1(α)

2

)

− c

f

N∑
α=1

πα

(
r(α)− σ2

2(α)

2

)
− E

]
.

Thus,
(4.4)

lim
t→∞

E
∫ t

0
x(s) ds

t
= lim

t→∞

∫ t

0
Ex(s) ds

t

=
1

b

[
E

N∑
α=1

πα

(
a(α)− σ2

1(α)

2

)

− c

f
E

N∑
α=1

πα

(
r(α)− σ2

2(α)

2

)
− E2

]
=: F (E).

Equation (4.4) indicates that F (E) is not a stochastic function. Letting
F ′(E) = 0, there exists a unique extreme value point

E∗ =
1

2

[ N∑
α=1

πα

(
a(α)− σ2

1(α)

2

)
− c

f

N∑
α=1

πα

(
r(α)− σ2

2(α)

2

)]
.

Thus, the optimal harvesting effort of x(t) is as required. Substituting
(4.2) into (4.4) implies

F (E∗) = lim
t→∞

∫ t

0
E∗x(s) ds

t

=
1

4b

[ N∑
α=1

πα

(
a(α)− σ2

1(α)

2

)
− c

f

N∑
α=1

πα

(
r(α)− σ2

2(α)

2

)]2
.

We have the optimal sustainable yield (4.3), as desired. �
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