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NUMERICAL RANGES OF NORMAL WEIGHTED
COMPOSITION OPERATORS ON ℓ2(N)

MITU GUPTA AND B.S. KOMAL

ABSTRACT. In this paper, we obtain numerical ranges of
normal weighted composition operators on ℓ2(N).

1. Introduction. Let N denote the set of natural numbers, and let
ℓ2(N) be the Hilbert space of square summable sequences of complex
numbers. The set {ek : k ∈ N} is an orthonormal basis for ℓ2(N),
where ek(m) = δkm is the Kronecker delta. Suppose that θ : N → C
and ϕ : N → N are two mappings. Let F (N,C) be the linear space
of all sequences of complex numbers. Then, a linear transformation
Cθ,ϕ : ℓ2(N) → F (N,C), defined by Cθ,ϕf = θ ·f ◦ϕ for every f ∈ ℓ2(N),
is known as a weighted composition transformation. If Cθ,ϕ is bounded
and ranCθ,ϕ ⊂ ℓ2(N), we shall call Cθ,ϕ a weighted composition operator
induced by θ and ϕ. It is easy to see that Cθ,ϕ is a bounded operator
if and only if there exists an M > 0 such that∑

m∈ϕ−1(n)

|θ(m)|2 ≤ M,

for every n ∈ N. If ϕ(n) = n for every n ∈ N, then Cθ,ϕ = Mθ is the
multiplication operator induced by θ. In the case where θ(n) = 1 for
every n ∈ N, Cθ,ϕ = Cϕ is the composition operator induced by ϕ. The
adjoint of Cθ,ϕ is given by

(C∗
θ,ϕf)(n) =


∑

m∈ϕ−1(n)

θ(m)f(m) if ϕ−1(n) ̸= ∅,

0 if ϕ−1(n) = ∅.
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Amapping ϕ : N → N is said to be antiperiodic at n ∈ N if ϕm(n) ̸= n
for every m ∈ N. If ϕ is not antiperiodic at n, then we say that ϕ is
periodic at n. If ϕ is periodic at every n ∈ N, then we say that ϕ is
a periodic mapping. If ϕ is periodic at n ∈ N, then the integer mn =
inf{m : ϕm(n) = n} is called the period of ϕ at n. The set {mn : n ∈ N}
of all periods of ϕ is denoted by P (ϕ). If ϕ is antiperiodic at every
n ∈ N, then we say that ϕ is an antiperiodic mapping. For n ∈ N, the
orbit of n with respect to ϕ is defined as

Oϕ(n) = {m ∈ N : ϕr(m) = ϕs(n) for some r, s ∈ N}.

By the symbol #(E) we shall denote the cardinality of the set E, and
by χE we denote the characteristic function of E. The Banach algebra
of all bounded linear operators from a Hilbert space H into itself is
denoted by B(H). For A ∈ B(H), the spectrum of A is defined as

σ(A) = {λ ∈ C : A− λI is not invertible}.

The smallest convex set containing the set E ⊂ H is called the convex
hull of E, and we shall denote it by C0(E ).

A complex number λ is called an eigenvalue of an operator A if
there exists a nonzero vector f ∈ H such that Af = λf. The set of all
eigenvalues of A is called the point spectrum of A, and it is denoted by
Π0(A). For G ⊂ N, let

ℓ2(G) = {f ∈ ℓ2(N) : f(m) = 0 for every m /∈ G}.

The symbol CT |ℓ2(G) denotes the restriction of CT to ℓ2(G). The nu-
merical range of A ∈ B(H) is defined as

W (A) = {⟨Ax, x⟩ : x ∈ H and ∥x∥ = 1}.

By the symbol ∥θ∥∞, we shall mean sup{|θ(n)| : n ∈ N}.
Weighted composition operators have been the subject matter of

systematic study over the past several decades. For more information
regarding weighted composition operators and numerical ranges of
operators, the reader is referred to [1, 2, 4, 5, 7, 9, 10, 12, 13],
etc.

Numerical ranges and their generalizations were studied due to their
connections and applications to several branches of the mathematical
sciences. Some of the more well-known results about numerical ranges
of operators are presented in the following proposition.
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Proposition 1.1. Let A ∈ B(H). Then:

(a) W(A) lies in the closed disc of radius ∥A∥ centered at the origin.

(b) W(A) is always convex.

(c) W(αA+βI) = αW(A)+β, where α and β are complex numbers.

(d) W(A) is invariant under a unitary transformation.

(e) The numerical range of the unilateral shift is the open unit disc
centered at the origin.

(f) The closure of numerical range of a normal operator is the convex
hull of its spectrum.

(g) W (A∗) = W (A) = {λ : λ ∈ W (A)}, where A∗ denotes the
adjoint of the operator A, and λ is the conjugate of complex number λ.

The main purpose of the present paper is to compute the numerical
ranges of normal weighted composition operators on ℓ2(N).

2. Numerical ranges of normal weighted composition oper-
ators. In this section, we shall obtain the numerical ranges of normal
weighted composition operators. Let ϕ : N → N be an invertible map.
Define a relation ≡ on N as follows: for m,n ∈ N,m ≡ n if m and n are
in the same orbit of ϕ. This is an equivalence relation in N and will par-
tition N into disjoint equivalence classes, say Oϕ(ni) for i = 1, 2, . . . , p,
where p is the total number of distinct equivalence classes. Clearly, 1 ≤
p ≤ ∞. Then,

N =

p∪
i=1

Oϕ(ni).

Let
G = {#Oϕ(ni) : Oϕ(ni) is a finite set}.

For each k ∈ G, let q(k) be the number of distinct equivalence classes,
each of cardinality k. For k ∈ G, let nk

1 , n
k
2 , n

k
3 , . . . , n

k
q(k) be positive

integers such that #Oϕ(n
k
j ) = k, 1 ≤ j ≤ q(k). Denote the set Oϕ(n

k
j )

by Ek
j for 1 ≤ j ≤ q(k). Let

E(k) =

q(k)∪
j=1

Ek
j and E1 =

∪
k∈G

E(k).
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Let m be the number of distinct equivalence classes of infinite orbits,
and set

E2 =
m∪
i=1

{Oϕ(ri) : #Oϕ(ri) = ∞}.

Then, N = E1

∪
E2.

Theorem 2.1. Let θ : N → C\{0} and Cθ,ϕ ∈ B(ℓ2(N)). Then, Cθ,ϕ

is a normal operator if and only if ϕ is invertible and |θ| = |θ ◦ ϕ| [3].

Proof. Suppose first that Cθ,ϕ is a normal operator. If ϕ is not
surjective, then there exists an n0 ∈ N such that n0 /∈ ϕ(N). Let
en0

= (0, 0, . . . , 1nth
0 place, 0, . . .). Then, C

∗
θ,ϕCθ,ϕen0

= 0 and

Cθ,ϕC
∗
θ,ϕen0 = θ(ϕ(n0))

∑
m∈ϕ−1(ϕ(n0))

θ(m)em ̸= 0.

This contradicts the fact that Cθ,ϕ is a normal operator.

Again, if ϕ is not injective, then there exist two distinct positive
integers n1 and n2 such that ϕ(n1) = ϕ(n2). Simple computation
shows that

(2.1) C∗
θ,ϕCθ,ϕen1 =

∑
m∈ϕ−1(n1)

|θ(m)|2en1

and

Cθ,ϕC
∗
θ,ϕen1 = θ(n1)

[ ∑
m∈ϕ−1(ϕ(n1))

θ(m)em

]
= θ(n1)θ(n1)en1 + θ(n1)θ(n2)en2

+ θ(n1)
∑

m∈ϕ−1(ϕ(n1))\{n1,n2}

θ(m)em.

(2.2)

Taking the values of the functions in (2.1) and (2.2) at the point n2,
we find that the value of the function in (2.1) at n2 is zero, whereas

the value of the function in (2.2) at n2 = θ(n1)θ(n2). This, again, con-
tradicts the normality of Cθ,ϕ. Hence, ϕ must be injective. This proves
that ϕ is invertible.

Finally, if ϕ is invertible, then the value of the function in (2.1) at
n1 is |θ(m)|2, where m ∈ ϕ−1(n1), and the value of the function in
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(2.2) at n1 is θ(n1)θ(n1). Thus, |θ(m)|2 = |θ(n1)|2 = |θ(ϕ(m))|2, or
equivalently, |θ(m)| = |θ(ϕ(m))|. This can be proven for every m ∈ N.
Hence, |θ| = |θ ◦ ϕ|. Conversely, it is clear from equations (2.1) and
(2.2) that Cθ,ϕC

∗
θ,ϕ = C∗

θ,ϕCθ,ϕ. This completes the proof. �

Theorem 2.2. Suppose that θ : N → C \ {0}, and let Cθ,ϕ ∈ B(ℓ2(N))
be a normal operator. Then

W (Cθ,ϕ) = C0

( ∪
k∈G

q(k)∪
j=1

{λ ∈ C : λk = |θ(nk
j )|k

k∏
j=1

Bj}
)

∪
m∪
i=1

{|θ(ri)|λ : |λ| < 1},

where B : N → C \ {0} is defined by B(j) = Bj = eιβj , eιβ = cosβ
+ ι sinβ, where ι2 = −1, and βj is the principal argument of complex
number θ(j).

Proof. Suppose that Cθ,ϕ is a normal operator. Then, from Theo-
rem 2.1, ϕ is invertible and |θ| = |θ ◦ ϕ|. The equation |θ| = |θ ◦ ϕ|
implies that, for each n ∈ N, |θ| is constant in Oϕ(n), in other words,
|θ(m)| = |θ(n)| for all m ∈ Oϕ(n). Now, for m ∈ Oϕ(n), we have
θ(m) = |θ(m)|eιβm = |θ(n)|eιβm , where βm is the principal argument
of the complex number θ(m). Let n0 ∈ N and #(Oϕ(n0)) = k. Simple
computation shows that

σ(Cθ,ϕ|ℓ2(Oϕ(n0))) = Π0(Cθ,ϕ|ℓ2(Oϕ(n0)))

=

{
λ ∈ C :

λk

|θ(n0)|k
=

k∏
j=1

Bj

}

=

{
λ ∈ C : λk = |θ(n0)|k

k∏
j=1

Bj

}
.

Since N = E1

∪
E2,

ℓ2(N) = ℓ2(E1)⊕ ℓ2(E2)

=

(∑
k∈G

⊕ ℓ2(E(k))

)
⊕
( m∑

i=1

⊕ ℓ2(Oϕ(ri))

)
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and

ℓ2(E(k)) =

q(k)∑
j=1

⊕ ℓ2(Oϕ(n
k
j )).

Therefore,

Cθ,ϕ = Cθ,ϕ|ℓ2(E1) ⊕ Cθ,ϕ|ℓ2(E2)

=
∑
k∈G

⊕ Cθ,ϕ|ℓ2(E(k)) ⊕
m∑
i=1

⊕ Cθ,ϕ|ℓ2(Oϕ(ri))

and

Cθ,ϕ|ℓ2(E(k)) =

q(k)∑
j=1

⊕ Cθ,ϕ|ℓ2(Oϕ(nk
j ))

.

It follows that

σ(Cθ,ϕ|ℓ2(E1)) =
∪
k∈G

q(k)∪
j=1

σ(Cθ,ϕ|ℓ2(Oϕ(nk
j ))

).

Now, Cθ,ϕ is normal. Therefore, by Proposition 1.1 (f),
(2.3)

W (Cθ,ϕ|ℓ2(E1)) = C0

( ∪
k∈G

q(k)∪
j=1

{
λ ∈ C : λk = |θ(nk

j )|k
k∏

j=1

Bj

})
.

Let r1 ∈ N be such that #Oϕ(r1) = ∞. Choose n0 ∈ Oϕ(r1). Then,
Oϕ(r1) = Oϕ(n0). Write ϕk(n0) = nk and (ϕk)−1(n0) = n−k. Then,
Oϕ(n0) = {nk : k ∈ Z}. We can easily show that (Cθ,ϕ|ℓ2(Oϕ(n)))f =

|θ(n)|(CB,ϕ|ℓ2(Oϕ(n)))f , and CB,ϕ is a normal operator. Define

A : ℓ2(Oϕ(n0)) −→ ℓ2(Oϕ(n0))

by Aenk
= αnk

enk
, where αn0 = 1 and αnk+1

= αnk
Bnk

, and Bnk
is as

previously defined. Clearly,

AC∗
B,ϕenk

= A(Bnk
enk+1

) = Bnk
αnk+1

enk+1
= αnk

enk+1

and
C∗

ϕAenk
= C∗

ϕαnk
enk

= αnk
enk+1

.

Thus, AC∗
B,ϕ|ℓ2(Oϕ(n0)) = C∗

ϕA|ℓ2(Oϕ(n0)). It can be seen that |αnk
| = 1

for every k ∈ Z so that A is a unitary operator. Hence, C∗
B,ϕ|ℓ2(Oϕ(n0))
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is unitarily equivalent to C∗
ϕ|ℓ2(Oϕ(n0)). Consequently, CB,ϕ|ℓ2(Oϕ(n0))

is unitarily equivalent to Cϕ|ℓ2(Oϕ(n0)). From [9, Proposition 1.1 (d),
Lemma 2.1], we obtain

W (CB,ϕ|ℓ2(Oϕ(n0))) = W (Cϕ|ℓ2(Oϕ(n0))) = {λ : |λ| < 1}.

Hence,

W
(
Cθ,ϕ|ℓ2(Oϕ(n0))

)
= W

(
|θ(n0)|CB,ϕ|ℓ2(Oϕ(n0))

)
= |θ(n0)|W

(
CB,ϕ|ℓ2(Oϕ(n0))

)
= |θ(r1)|W

(
Cϕ|ℓ2(Oϕ(r1))

)
= {|θ(r1)|λ : |λ| < 1}.

(2.4)

Finally, from equations (2.3) and (2.4), we can conclude that

W (Cθ,ϕ) = C0

( ∪
k∈G

q(k)∪
j=1

{
λ ∈ C : λk = |θ(nk

j )|k
k∏

j=1

Bj

})

∪
m∪
i=1

{|θ(ri)|λ : |λ| < 1}. �

Example 2.3. For each n ∈ N, set

En =

[
n(n− 1)

2
+ 1,

n(n+ 1)

2

)
and Fn =

{
n(n+ 1)

2

}
.

Write E =
∪∞

n=2 En and F =
∪∞

n=2 Fn. Clearly, N = E1 ∪ E ∪ F . For
n ≥ 2, let Gn = En ∪ Fn. For every n ∈ N, define ϕ : N → N as

(2.5) ϕ(m) =


1 if m ∈ E1,

m+ 1 if m ∈ E,

m− 1 if m ∈ F.

Let θ : N → C be defined as

(2.6) θ(m) =

{
eι(2π/n) if m ∈ Gn,

8 if m ∈ E1.

Then, |θ(1)| = 8 and |θ(m)| = 1 for every m ∈ Gn for n ≥ 2. Now,

Π0(Cθ,ϕ|ℓ2(E1)) = {8}
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and

Π0(Cθ,ϕ|ℓ2(Gn)) = {λ ∈ C : λn = θn(n−1)/2+1 · θn(n−1)/2+2

· . . . · θn(n+1)/2−1 · θn(n+1)/2}.

Since |θ(m)| = |θ(ϕ(m)| for m ∈ Gn, n ∈ N, and ϕ|Gn : Gn → Gn is
invertible, thus, in view of Theorem 2.1, Cθ,ϕ|ℓ2(Gn) is normal.

Therefore, by Theorem 2.2, for n ≥ 2,

W
(
Cθ,ϕ|ℓ2(Gn)

)
= C0

(
σ
(
Cθ,ϕ|ℓ2(Gn)

))
= C0

{
λ ∈ C : λn =

(
eι
2π

n

)n}
= C0{λ ∈ C : λn = 1}

and, for n = 1, W (Cθ,ϕ|ℓ2(E1)) = {8}. Since

Cθ,ϕ =

(∑
n∈N

⊕Cθ,ϕ|ℓ2(Gn)

)
and

W (Cθ,ϕ) = C0

(
σ

( ∞∑
n=1

⊕Cθ,ϕ|ℓ2(Gn)

))
,

it follows that

W (Cθ,ϕ) = C0

( ∞∪
n=1

{λ ∈ C : λn = 1}
∪

{8}
)
.

The numerical range of Cθ,ϕ is as shown in Figure 1.

Figure 1.
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Example 2.4. Define ϕ : N → N by

(2.7) ϕ(m) =

{
m+ 2 if m ≡ 1 or m ≡ 2,

m− 2 if m ≡ 3 or m ≡ 4.
(mod 4)

Let θ : N → C be defined by

(2.8) θ(m) =

{
2eιπ/4m if m ≡ 3 or m ≡ 1,

3eιπ/2m if m ≡ 4 or m ≡ 2.
(mod 4)

Clearly, |θ| = |θ◦ϕ|, and ϕ is invertible. Hence, Cθ,ϕ is normal. In view
of Theorem 2.2,

W
(
Cθ,ϕ) = W

(
Cθ,ϕ|ℓ2(Oϕ(1))

)∪
W

(
Cθ,ϕ|ℓ2(Oϕ(2))

)
=

{
λ ∈ C : |λ| < 2

}∪{
λ ∈ C : |λ| < 3

}
=

{
λ ∈ C : |λ| < 1

}
.

3. Numerical ranges of weighted composition operators in-
duced by antiperiodic mappings. In this section, we obtain the
numerical ranges of weighted composition operators induced by anti-
periodic mappings.

Theorem 3.1. Let ϕ : N → N be an antiperiodic injection, and let
θ : N → N be such that limn→∞θn = ∥θ∥∞ and Cθ,ϕ ∈ B(ℓ2(N)).
Then,

W (Cθ,ϕ) = {λ ∈ C : |λ| < ∥θ∥∞}.

Proof. Let E = {n ∈ N : #(ϕ−1(n)) = 0},

G =
∪
n∈E

Oϕ(n)

and H = N \G. If E = ∅, then H = N. Next, if E ̸= ∅, choose n1 ∈ E.
Write ϕk(n1) = nk+1 for all k ∈ N. Let Ek = {nk : k ∈ N}. Define
S : ℓ2(Ek) → ℓ2(N) by S(enk

) = ek for every k ∈ N. Then, S is a
unitary operator and C∗

θ,ϕ|ℓ2(Ek) = S−1US, where U is the unilateral

weighted shift with weights {θ(nk)}. Hence, in view of [13, Theorem
1 (i)],

W
(
C∗

θ,ϕ|ℓ2(Ek)

)
= W (U) =

{
λ ∈ C :

∣∣λ∣∣ < ∥θ|Ek
∥∞

}
.



1168 MITU GUPTA AND B.S. KOMAL

If H ̸= ∅, choose n0 ∈ H. Define ϕk(n0) = nk and (ϕk)−1(n0) = n−k.
Let Fk = {nk : k ∈ Z}. Then, C∗

θ,ϕ|ℓ2(Fk) is the bilateral weighted

shift B with weights {θ(nk)}. Hence, again in view of [13, Theorem
1 (ii)],

W
(
C∗

θ,ϕ|ℓ2(Fk)

)
= W (B) =

{
λ ∈ C : |λ| < ∥θ|Fk

∥∞
}
.

Now, ℓ2(N) = ℓ2(G)⊕ ℓ2(H). However,

ℓ2(G) =
∑
k∈E

⊕ ℓ2(Ek) and ℓ2(H) =
∑
k∈H

⊕ ℓ2(Fk),

where Ej ∩ Ek = ∅, Fj ∩ Fk = ∅ for j ̸= k and

C∗
θ,ϕ =

(∑
k∈E

⊕ C∗
θ,ϕ|ℓ2(Ek)

)
⊕
(∑

k∈H

⊕ C∗
θ,ϕ|ℓ2(Fk)

)
.

Therefore,

W (C∗
θ,ϕ) = C0

( ∪
k∈E

{λ ∈ C : |λ| < ∥θ|Ek
∥∞}

∪
∪
k∈H

{λ ∈ C : |λ| < ∥θ|Fk
∥∞}

)
,

which yields that W (C∗
θ,ϕ) = {λ ∈ C : |λ| < ∥θ∥∞} = W (Cθ,ϕ). �

Theorem 3.2. Suppose that θ : N → R+ is bounded away from zero,
where R+ is the set of non-negative real numbers. Then, 0 ∈ W (Cθ,ϕ)
if and only if ϕ ̸= I.

Proof. Suppose that ϕ ̸= I. Then, ϕ(n0) ̸= n0 for some n0 ∈ N.
Consider ⟨Cθ,ϕ en0 , en0⟩ = ⟨θ · χϕ−1(n0), en0⟩ = 0 as n0 /∈ ϕ−1(n0).
Therefore, 0 ∈ W (Cθ,ϕ). Conversely, suppose that 0 ∈ W (Cθ,ϕ). Since
θ is bounded away from zero, there exists an ϵ > 0 such that |θ(n)| ≥ ϵ,
that is, θ(n) ≥ c. We must show that ϕ ̸= I. Suppose, on the contrary,
that ϕ = I. Then

⟨Cθ,ϕf, f⟩ = ⟨θ · f ◦ ϕ, f⟩ =
∞∑

n=1

θ(n)f(ϕ(n))f(n)

≥ ϵ
[
|f(1)|2 + |f(2)|2 + |f(3)|2 + · · ·

]
= ϵ,

which implies that 0 /∈ W (Cθ,ϕ), a contradiction. Hence, ϕ ̸= I. �
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Note 3.3. Theorem 3.2 fails if θ is a complex-valued function. Let
θ : N → C be defined by θ(n) = ιn. Then, |θ(n)| = 1 for every
n ∈ N. Suppose that ϕ = I. Then, Cθ,ϕ = Mθ, which is a nor-

mal operator. From Proposition 1.1 (f), W (Mθ) = C0(σ(Mθ)) =
C0(ran θ) = C0{1,−1, ι,−ι}. Clearly, 0 ∈ W (Cθ,ϕ).
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