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NONTRIVIAL SOLUTIONS FOR
KIRCHHOFF-TYPE PROBLEMS

INVOLVING THE p(x)-LAPLACE OPERATOR

ABDELJABBAR GHANMI

ABSTRACT. In this article, we study the existence of
nontrivial solutions for the following p(x) Kirchhoff-type
problem

−M
( ∫

Ω A(x,∇u) dx
)
div(a(x,∇u))

= λh(x)(∂F/∂u)(x, u) in Ω

u = 0, on ∂Ω,

where Ω ⊂ Rn, n ≥ 3, is a smooth bounded domain, λ > 0,
h ∈ C(Ω), F : Ω × R → R is continuously differentiable and
a,A : Ω × Rn → Rn are continuous. The proof is based on
variational arguments and the theory of variable exponent
Sobolev spaces.

1. Introduction. In this paper, we consider the following p(x)
Kirchhoff-type problem

(Pλ)

{
−M

(∫
Ω
A(x,∇u) dx

)
div(a(x,∇u))=λh(x)(∂F/∂u)(x,u) in Ω

u = 0 on ∂Ω,

where Ω ⊂ Rn, n ≥ 3, is a smooth bounded domain, λ > 0, h ∈ C(Ω),
F : Ω × R → R is continuously differentiable, a : Ω × Rn → Rn is
continuous and it is a derivative with respect to the second variable of
the mapping A : Ω× Rn → Rn, i.e., a(x, ξ) = ∇ξA(x, ξ).

Problem (Pλ) is related to the stationary version of a model, the
so-called Kirchhoff equation, introduced by Kirchhoff [16]. To be more
precise, Kirchhoff established a model given by the equation
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(1.1) ρ
∂2u

∂t2
−
(
P0

h
+

E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2dx)∂2u

∂x2
= 0.

This equation is an extension of the classical D’Alembert’s wave equa-
tion by considering the effects of the changes in the length of the string
during the vibrations. The parameters in (1.1) have the following mean-
ings: L is the length of the string, h is the area of the cross-section, E is
the Young modulus of the material, ρ is the mass density, and P0 is the
initial tension. Recently, studies of Kirchhoff type problems have been
used in variational methods in the case involving the p-Laplacian oper-
ator [2, 6, 7, 11, 18, 21]. Moreover, due to the increase in attention
towards partial differential equations with nonstandard growth condi-
tions, it was further extended to the p(x)-Laplacian operator, defined by
△p(x) := div(|∇u|p(x)−2∇u) (see, for example, [3, 4, 8, 9, 14, 22, 23]).

The p(x)-Laplacian possesses more complicated nonlinearities than
the p-Laplacian; hence it is inhomogeneous. This fact implies some
difficulties. For example, we cannot use the theory of Sobolev spaces in
many problems involving this operator. Some of the nonlinear problems
involving p(x)-growth conditions are extremely attractive because those
problems can be used to model dynamical phenomena that arise from
the study of electrorheological fluids or elastic mechanics [15, 24].
Moreover, problems with variable exponent growth conditions also
appear in the mathematical modeling of stationary thermorheological
viscous flows of non-Newtonian fluids, in the mathematical description
of the processes of filtration of an ideal barotropic gas through a por-
ous medium and image processing [1, 6]. The detailed application
backgrounds of the p(x)-Laplacian operator may be found in [12, 13,
14, 17, 20]. In the present paper, motivated by the above works,
we give a very simple variational method to prove the existence of a
nontrivial solution of problem (Pλ).

For any continuous and bounded function ω ∈ C+(Ω) we define ω−

and ω+ as follows:

ω− := min
x∈Ω

ω(x) and ω+ = max
x∈Ω

ω(x).

Throughout this paper, we fix a nonnegative continuous function p on
Ω such that p− > 1, and we will make the following assumptions:

(A1) there exists a nonnegative measurable function b ∈ Lp′(x)(Ω)
such that, for all x ∈ Ω and y ∈ Rn,
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|a(x, y)| ≤ c1(b(x) + |y|p(x)−1)

for some c1 > 0, where p′ is the conjugate exponent of p defined by
1/p+ 1/p′ = 1.

(A2) There exists a σ > 0 such that

A

(
x,

y + z

2

)
≤ 1

2
A(x, y) +

1

2
A(x, z)− σ|y − z|p(x)

for all x ∈ Ω and y, z ∈ Rn.

(A3) For all x ∈ Ω and y ∈ Rn, we have A(x, 0) = 0, A(x,−y) =
A(x, y) and

|y|p(x) ≤ a(x, y) · y ≤ p(x)A(x, y).

(H1) F : Ω× R → R is a C1 function such that

F (x, tu) = tq(x)F (x, u)(t > 0) for all x ∈ Ω, u ∈ R,

and ∫
Ω

h(x)F (x, t) dx ≥ 0, t ∈ R,

where q ∈ C+(Ω).

(H2) M : R+ → R+ is a continuous function such that, for all t > 0,
we have

1

c2
tr−1 ≤ M(t) ≤ c2t

r−1,

for some c2 > 1 and r ≥ 1.

(H3) h is a positive function such that h ∈ Lα(x)(Ω) for some
nonnegative continuous function α on Ω satisfying

p(x) <
α(x)− 1

α(x)
p∗(x) and 1 < q(x) <

α(x)

α(x)− 1
p∗(x),

where p∗(x) = np(x)/(n− p(x)) if n > p(x) or p∗(x) = ∞ if n ≤ p(x).

(H4) 1 < q− ≤ q+ < rp− < rp+ < (p∗)−, where (p∗)− = np−/
(n− p−).
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Remark 1.1.

(1) Using assumption (H1), for all x ∈ Ω, u ∈ R, we have the
so-called Euler identity

u
∂F (x, u)

∂u
= q(x)F (x, u),

and

(1.2) |F (x, u)| ≤ K|u|q(x)

for some constant K > 0.

(2) If A(x, ξ) = |ξ|p(x)/p(x), then a(x, ξ) = |ξ|p(x)−2ξ, and we obtain
the p(x)-Laplacian operator.

(3) If

A(x, ξ) =
(1 + |ξ|2)p(x)/2 − 1

p(x)
,

then a(x, ξ) = (1+|ξ|2)(p(x)−2)/2ξ , and we obtain the generalized mean
curvature operator

div((1 + |∇u|2)(p(x)−2)/2∇u).

Our main result is the following.

Theorem 1.2. Assume that conditions (A1)–(A3) and (H1)–(H4)
are satisfied. Then, there exists a λ0 > 0 such that, for any λ ∈ (0, λ0),
problem (Pλ) has a nontrivial weak solution.

This paper is organized as follows. In Section 2, we will recall some
basic facts about the variable exponent Lebesgue and Sobolev spaces
which we will use later. The proof of our main result will be presented
in Section 3.

2. Preliminaries. In this section, we recall some definitions and
basic properties of the generalized Lebesgue Sobolev spaces Lω(x)(Ω),

W 1,ω(x)(Ω),W
1,ω(x)
0 (Ω) and L

ω(x)
c(x) (Ω) (for details, see [4, 5, 8, 13, 14]).

Set
C+(Ω) := {ω : ω ∈ C(Ω), ω(x) > 1 for all x ∈ Ω}.
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For any ω ∈ C+(Ω), we define the variable exponent Lebesgue space

Lω(x)=
{
u :u a measurable real-valued function s.t.

∫
Ω

|u(x)|ω(x)dx<∞
}
.

We recall the following so-called Luxemburg norm on this space, defined
by the formula

|u|ω(x) = inf

{
µ > 0 :

∫
Ω

∣∣∣∣u(x)µ

∣∣∣∣ω(x)

dx ≤ 1

}
.

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces
in many respects: they are Banach spaces, the Hölder inequality holds,
they are reflexive if and only if 1 < ω− ≤ ω+ < ∞ and continuous
functions are dense if ω+ < ∞. The inclusion between Lebesgue spaces
also generalizes naturally: if 0 < |Ω| < ∞ and p1, p2 are variable
exponents so that p1(x) ≤ p2(x) almost everywhere x ∈ Ω, then there
exists a continuous embedding Lp2(x)(Ω) ↩→ Lp1(x)(Ω).

We denote by Lω′(x)(Ω) the conjugate space of Lω(x)(Ω), where

1/ω(x) + 1/ω′(x) = 1. For any u ∈ Lω(x)(Ω) and v ∈ Lω′(x)(Ω),
the Hölder inequality

(2.1)

∣∣∣∣ ∫
Ω

uv dx

∣∣∣∣ ≤ (
1

ω− +
1

(ω′)−

)
|u|ω(x)|v|ω′(x)

holds (see [8, 13]).

An important role in manipulating the generalized Lebesgue-Sobolev
spaces is played by the modular of the Lω(x)(Ω) space, which is the
mapping ρω(x) : L

ω(x)(Ω) → R, defined by

ρω(x)(u) :=

∫
Ω

|u|ω(x)dx.

Proposition 2.1 ([8, 13]). If u, uk ∈ Lω(x)(Ω), k = 1, 2, . . ., and
ω+ < ∞, then we have:

(i) |u|ω(x) < 1 (respectively, = 1, > 1) ⇔ ρω(x)(u) < 1 (respectively,
= 1, > 1).

(ii) |u|ω(x) > 1 ⇒ |u|ω−

ω(x) ≤ ρω(x)(u) ≤ |u|ω+

ω(x).

(iii) |u|ω(x) < 1 ⇒ |u|ω+

ω(x) ≤ ρω(x)(u) ≤ |u|ω−

ω(x).

(iv) limk→∞ |uk|ω(x) = 0 ⇔ limk→∞ ρω(x)(uk) = 0.
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Next, we define the Lebesgue-Sobolev space W 1,ω(x)(Ω) by

W 1,ω(x)(Ω) = {u ∈ Lω(x)(Ω) : |∇u| ∈ Lω(x)(Ω)},

equipped with the norm

∥u∥1,ω(x) = |u|ω(x) + |∇u|ω(x).

The space W
1,ω(x)
0 (Ω) is defined as the closure of C∞

0 (Ω) in W 1,ω(x)(Ω)
with respect to the norm ∥ · ∥1,ω(x). Since the well-known Poincaré in-

equality holds, see [8], we can define an equivalent norm in W
1,ω(x)
0 (Ω)

by
∥u∥ = |∇u|ω(x).

Proposition 2.2 ([10]). Let p and q be measurable functions such
that p ∈ L∞(Ω), 1 ≤ p(x), q(x) ≤ ∞ for almost every x ∈ Ω. Let
u ∈ Lq(x)(Ω), u ̸= 0. Then:

(i) |u|p(x)q(x) ≤ 1 ⇒ |u|p
+

p(x)q(x) ≤ ||u|p(x)|q(x) ≤ |u|p
−

p(x)q(x).

(ii) |u|p(x)q(x) ≥ 1 ⇒ |u|p
−

p(x)q(x) ≤ ||u|p(x)|q(x) ≤ |u|p
+

p(x)q(x).

In particular, if p(x) = p is constant, then ||u|p|q(x) = |u|ppq(x).

We also consider the weighted variable exponent Lebesgue space

L
p(x)
c(x)(Ω). Let c : Ω → R be a measurable function such that c(x) > 0

almost everywhere x ∈ Ω. We define

L
p(x)
c(x)(Ω) =

{
u : u is a measurable real-valued function:∫

Ω

c(x)|u(x)|p(x)dx < ∞
}
,

with the norm

|u|(c(x),ω(x)) := inf

{
µ > 0 :

∫
Ω

∣∣∣∣c(x)u(x)µ

∣∣∣∣ω(x)

dx ≤ 1

}
.

Then, L
p(x)
c(x) is a Banach space which has similar properties with the

usual variable exponent Lebesgue spaces. The modular of this space is

ρ(c(x),p(x)) : L
p(x)
c(x) → R, defined by

ρ(c(x),p(x))(u) =

∫
Ω

c(x)|u(x)|p(x)dx.
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Proposition 2.3 ([8, 13]). If p+ < ∞ and u, uk ∈ L
p(x)
c(x)(Ω), k = 1,

2, . . ., then, we have:

(i) |u|(c(x),p(x)) < 1 ⇒ |u|p
+

(c(x),p(x)) ≤ ρ(c(x),p(x))(u) ≤ |u|p
−

(c(x),p(x)).

(ii) |u|(c(x),p(x)) > 1 ⇒ |u|p
−

(c(x),p(x)) ≤ ρ(c(x),p(x))(u) ≤ |u|p
+

(c(x),p(x)).

(iii) limk→∞ |uk|(c(x),p(x)) = 0 ⇔ limk→∞ ρ(c(x),p(x))(uk) = 0.

Proposition 2.4 ([8, 13]). The following statements hold :

(i) if 1 < p− ≤ p+ < ∞, then the spaces Lp(x)(Ω),W 1,p(x)(Ω) and

W
1,p(x)
0 (Ω) are separable and reflexive Banach spaces.

(ii) Let q ∈ C+(Ω). If q(x) < p∗(x), for all x ∈ Ω, then the embed-

ding W
1,p(x)
0 (Ω) ↩→ Lq(x)(Ω) is compact and continuous. In addition,

there is a constant cq > 0 such that

|u|q(x) ≤ cq||u|| for all u ∈ W
1,p(x)
0 (Ω).

Problem (Pλ) is posed in the framework of the Sobolev space

E = W
1,p(x)
0 (Ω).

Moreover, a function u in E is said to be a weak solution of problem
(Pλ) if, for all v ∈ E, we have

M

(∫
Ω

A(x,∇u)

)∫
Ω

a(x,∇u)∇v dx = λ

∫
Ω

h(x)
∂F (x, u)

∂u
v dx.

Thus, the corresponding energy functional of problem (Pλ) is defined
as Jλ : E → R,

Jλ(u) = M̂

(∫
Ω

A(x,∇u)

)
− λ

∫
Ω

h(x)F (x, u)

q(x)
dx

:= M̂(Λ(u))− λI(u),

where M̂(t) =
∫ t

0
M(s) ds, Λ(u) =

∫
Ω
A(x,∇u) and I(u) =

∫
Ω
(h(x)

F (x, u)/q(x)) dx.

Lemma 2.5 ([19]). The function A verifies the following conditions:

(i) for all x ∈ Ω and ξ ∈ Rn, we have

|A(x, ξ)| ≤ c0(b(x)|ξ|+ |ξ|p(x)).
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(ii) For all x ∈ Ω, ξ ∈ Rn and z ≥ 1, we have

A(x, zξ) ≤ A(x, ξ)zp(x).

Lemma 2.6. The following statements hold :

(i) the functional Λ is well defined on E.
(ii) The functional Λ is of class C1(E,R), and

≺Λ′(u), v≻=

∫
Ω

a(x,∇u) · ∇v dx for all u, v ∈ E.

(iii) The functional Λ is weakly semi-continuous on E.
(iv) For all u, v ∈ E

Λ

(
u+ v

2

)
≤ 1

2
Λ(u) +

1

2
Λ(v)− k||u||p.

(v) For all u, v ∈ E

Λ(u)− Λ(v) ≥≺Λ′(v), u− v≻

(vi) Jλ is weakly lower semi-continuous on E.
(vii) Jλ is well defined on E. Moreover, Jλ ∈ C1(E,R) with the

following derivative:

≺J ′
λ(u), v≻ = M

(∫
Ω

A(x,∇u)

)∫
Ω

a(x,∇u)∇v dx

− λ

∫
Ω

h(x)
∂F (x, u)

∂u
v dx.

Thus, the weak solutions of (Pλ) are precisely the critical points of Jλ.

Proof. Since the proof of Lemma 2.6 is very similar to that of [19,
Lemmas 2.2, 2.7], we omit it. �

Lemma 2.7. Assume that (H1)–(H4) hold. Then, there exist real
numbers δ > 0, γ ∈ (0, 1) and λ0 > 0 such that, for any λ ∈ (0, λ0), we
have

Jλ(u) ≥ δ > 0 for all u ∈ E with ||u|| = γ.
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Proof. Let γ ∈ (0, 1) and u ∈ E be such that ||u|| = γ. Then, from
(1.2), we obtain

(2.2)

∫
Ω

h(x)F (x, u)

q(x)
dx ≤ K

q−

∫
Ω

h(x)|u|q(x)dx.

On the other hand, from (H3)–(H4) and the arguments developed in
[19, Theorem 2.8], we have

(2.3)

∫
Ω

h(x)F (x, u)

q(x)
dx ≤ CK

q−
(||u||q

−
+ ||u||q

+

) for all u ∈ E.

Since ||u|| = γ < 1, then, using (1.2), (2.3) and Proposition 2.1 yields

Jλ(u) ≥
1

c1r

(∫
Ω

|∇u|p(x)

p(x)
dx

)r

− λ
CK

q−
(||u||q

−
+ ||u||q

+

)

≥ 1

c1r(p+)r
||u||p

+r − 2λ
CK

q−
||u||q

−
(2.4)

=

(
1

c1r(p+)r
||u||p

+r−q− − 2λ
CK

q−

)
||u||q

−
.

Set

(2.5) λ0 =
q−γp+r−q−

2CKc1r(p+)r
and δ = λ0γ

q− .

Then, it follows from (2.4) that, for all λ ∈ (0, λ0), we have

Jλ(u) ≥ δ > 0 for all u ∈ E with ||u|| = γ.

The proof of Lemma 2.7 is now complete. �

Lemma 2.8. Assume that (H1)–(H4) hold. Then, there exists a φ ∈
E with φ ̸= 0 such that Jλ(tφ) < 0 for all t > 0 small enough.

Proof. From assumption (H4), we know that q− < rp−. Then, we
can choose ε > 0 such that

(2.6) q− + ε < rp−.

On the other hand, since q ∈ C(Ω), then there exists an open set
Ω0 ⊂ Ω such that

(2.7) |q(x)− q−| < ε for all x ∈ Ω0.
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Combining (2.6) and (2.7), we obtain

(2.8) q(x) < q− + ε < rp− for all x ∈ Ω0.

Let φ ∈ C∞
0 (Ω) be such that Ω0 ⊂ supp(φ), φ(x) = 1 for all x ∈ Ω0

and 0 ≤ φ(x) ≤ 1 in Ω. Then, from the above facts for any t ∈ (0, 1),
it follows that:

Jλ(tφ) = M̂

(∫
Ω

A(x,∇tφ) dx

)
− λ

∫
Ω

h(x)

q(x)
F (x, tφ) dx

≤ c1
r

(∫
Ω

A(x,∇tφ) dx

)r

− λ

∫
Ω

tq(x)
h(x)

q(x)
F (x, φ) dx

≤ c

r

(∫
Ω

tp(x)A(x,∇φ) dx

)r

− λtq
−+ε

∫
Ω

h(x)

q(x)
F (x, φ) dx

≤ ctp
−r

r

(∫
Ω

A(x,∇φ) dx

)r

− λtq
−+ε

q+

∫
Ω

h(x)F (x, φ) dx

= tq
−+ε

[
ctp

−r−q−−ε

r

(∫
Ω

A(x,∇φ) dx

)r

− λ

q+

∫
Ω

h(x)F (x, φ) dx

]
.

Therefore,

Jλ(tφ) < 0 for all 0 < t < θ1/rp
−−q−−ε,

with

0 < θ < min

(
1,

λr
∫
Ω
h(x)F (x, φ) dx

cq+(
∫
Ω
A(x,∇φ) dx)r

)
,

and the proof is now complete. �

3. Proof of Theorem 1.1. In this section, we prove our main
result.

Existence of the nontrivial solution of (Pλ) follows from a mini-
mization argument and Ekeland’s variational principle. Indeed, from
Lemma 2.7, we know that there exists a γ ∈ (0, 1) such that the open
ball centered at the origin and of radius γ denoted by B(0, γ) is such
that

B(0, γ) ⊂ E and inf
v∈∂B(0,γ)

Jλ(v) > 0.
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Moreover, from Lemma 2.8, there exists an ω ∈ E such that Jλ(tω) < 0
for small enough t > 0. Thus, from Lemma 2.7, we have

−∞ < τ := inf
v∈B(0,γ)

Jλ(v) < 0.

Let ε > 0 be small enough such that

(3.1) 0 < ε < inf
v∈∂B(0,γ)

Jλ(v)− inf
v∈B(0,γ)

Jλ(v).

Applying Ekeland’s variational principle [11] to the functional Jλ :

B(0, γ) → R, we can find uε ∈ B(0, γ) such that

Jλ(uε) < inf
v∈B(0,γ)

Jλ(v) + ε(3.2)

and

Jλ(uε) < Jλ(v) + ε||v − uε||, v ̸= uε.

Combining (3.1) and (3.2), we obtain

Jλ(uε) < inf
v∈B(0,γ)

Jλ(v) + ε < inf
v∈∂B(0,γ)

Jλ(v).

Thus, uε ∈ B(0, γ).

Now, we define ϕλ : B(0, γ) → R by

ϕλ(u) := Jλ(u) + ε||u− uε||.

It is clear that uε is a minimum point of ϕλ. Moreover, for t > 0 small
enough and for all v ∈ B(0, 1), we have

(3.3)
ϕλ(uε + tv)− ϕλ(uε)

t
≥ 0.

Consequently,

Jλ(uε + tv)− Jλ(uε)

t
+ ε||v|| ≥ 0.

Letting t tend to zero, we obtain

≺J ′
λ(uε), v≻ +ε||v|| ≥ 0,
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and we infer that ||J ′
λ(uε)|| ≤ ε. Thus, there exists a sequence {uk} ⊂

B(0, γ) such that

(3.4) Jλ(uk) −→ α := inf
v∈B(0,γ)

Jλ(v) < 0 and J ′
λ(uk) −→ 0.

Since the sequence {uk} is bound in E, up to subsequence again denoted
by {uk}, there exists a u ∈ E such that uk converges weakly to u in E,
that is,

≺J ′
λ(uk), uk − u≻−→ 0 as k → ∞.

On the other hand, using (H3), (2.1) and Proposition 2.4, E is a

compact embedding in L
q(x)
h(x)(Ω), see [19]. Therefore,

lim
k→∞

∫
Ω

h(x)F (x, u)(uk − u) dx = 0

since

≺J ′
λ(uk), uk−u≻ = M

(∫
Ω

A(x,∇uk) dx

)∫
Ω

a(x,∇uk)(∇uk−∇u) dx

− λ

∫
Ω

h(x)F (x, uk)(uk − u) dx.

Then, it follows that

lim
k→∞

∫
Ω

a(x,∇uk)(∇uk −∇u) dx = 0,

that is,
lim
k→∞

≺Λ′(uk), uk − u≻= 0.

Moreover, from Lemma 2.6 (v), we have

0= lim
k→∞

≺Λ′(uk), uk − u≻≤ lim
k→∞

(Λ(u)− Λ(uk))=Λ(u)− lim
k→∞

Λ(uk).

Therefore, limk→∞ Λ(uk) ≤ Λ(u). Using this fact and Lemma 2.6 (iii),
we obtain

lim
k→∞

Λ(uk) = Λ(u).

Now, we aim to prove that {uk} strongly converges to u in E.
Supposing otherwise, then, there exist ε > 0 and a subsequence of
{uk}, also denoted {uk}, such that ||uk − u|| ≥ ε. Moreover, from
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Lemma 2.6 (iv), we have

1

2
Λ(u) +

1

2
Λ(uk)− Λ

(
uk + u

2

)
≥ σ||uk − u||p

−
≥ σεp

−
.

Consequently,

(3.5) lim sup
k→∞

Λ

(
uk + u

2

)
≤ Λ(u)− σεp

−
.

On the other hand, (uk + u)/2 weakly converges to u in E. Then, by
Lemma 2.6 (iii), we obtain

(3.6) Λ(u) ≤ lim inf
k→∞

Λ

(
uk + u

2

)
.

Combining (3.5) and (3.6), we obtain a contradiction. Therefore, {uk}
strongly converges to u in E. Finally, we conclude that u is a nontrivial
weak solution of problem (Pλ). The proof is complete. �
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