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EIGENVALUES FOR SYSTEMS OF
FRACTIONAL p-LAPLACIANS

LEANDRO M. DEL PEZZO AND JULIO D. ROSSI

ABSTRACT. We study the eigenvalue problem for a sys-
tem of fractional p-Laplacians, that is,

(−∆p)
ru = λα

p
|u|α−2u|v|β in Ω,

(−∆p)
sv = λβ

p
|u|α|v|β−2v in Ω,

u = v = 0 in Ωc = RN \ Ω.

We show that there is a first (smallest) eigenvalue that is
simple and has associated eigenpairs composed of positive
and bounded functions. Moreover, there is a sequence of
eigenvalues λn such that λn → ∞ as n → ∞.

In addition, we study the limit as p → ∞ of the first ei-
genvalue, λ1,p, and we obtain [λ1,p]1/p → Λ1,∞ as p → ∞,
where

Λ1,∞ = inf
(u,v)

{
max{[u]r,∞; [v]s,∞}
∥|u|Γ|v|1−Γ∥L∞(Ω)

}
=

[
1

R(Ω)

](1−Γ)s+Γr

.

Here,

R(Ω) := max
x∈Ω

dist(x, ∂Ω) and [w]t,∞ := sup
(x,y)∈Ω

|w(y)− w(x)|
|x− y|t

.

Finally, we identify a PDE problem satisfied, in the vis-
cosity sense, by any possible uniform limit along subse-
quences of the eigenpairs.

1. Introduction. In this work, we deal with the nonlocal nonlinear
eigenvalue problem

(1.1)


(−∆p)

ru = λα
p |u|

α−2u|v|β in Ω,

(−∆p)
sv = λβ

p |u|
α|v|β−2v in Ω,

u = v = 0 in Ωc = RN \ Ω,
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where p > 2, r, s ∈ (0, 1) and α, β ∈ (0, p) are such that

α+ β = p, min{α;β} ≥ 1,

and λ is the eigenvalue. Here, and subsequently, Ω is a bounded smooth
domain in RN and (−∆p)

t denotes the fractional (p, t)-Laplacian, that
is,

(−∆p)
tu(x) := 2PV

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+tp
dy, x ∈ Ω.

The natural functional space for our problem is

W(r,s)
p (Ω) := W̃ r,p(Ω)× W̃ s,p(Ω).

Here, W̃ t,p(Ω) denotes the space of all u that belong to the fractional
Sobolev space

W t,p(Ω) :=

{
v ∈ Lp(Ω):

∫
Ω2

|v(x)− v(y)|p

|x− y|N+tp
dx dy <∞

}
such that ũ ∈ W t,p(RN ) where ũ is the extension by zero of u and
Ω2 = Ω×Ω. For a more detailed description of these spaces and some
of their properties, see for instance, [1, 15].

Note that, in our eigenvalue problem, we consider two different
fractional operators (since we allow for t ̸= s), and therefore, the
natural space to consider here, that is, W(r,s)

p (Ω) = W̃ r,p(Ω)× W̃ s,p(Ω)
is asymmetric.

In this context, an eigenvalue is a real value λ for which there is a

(u, v) ∈ W(r,s)
p (Ω) such that uv ̸≡ 0, and (u, v) is a weak solution of

(1.1), i.e.,

∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))(w(x)− w(y))

|x− y|N+rp
dx dy

= λ
α

p

∫
Ω

|u|α−2u|v|βw dx
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∫
R2N

|v(x)− v(y)|p−2(v(x)− v(y))(z(x)− z(y))

|x− y|N+sp
dx dy

= λ
β

p

∫
Ω

|u|α|v|β−2vz dx

for any (w, z) ∈ W(r,s)
p (Ω). The pair (u, v) is called a corresponding

eigenpair.

Observe that, if λ is an eigenvalue with eigenpair (u, v), then uv ̸≡ 0
and

λ =
[u]pr,p + [v]ps,p
|(u, v)|pα,β

,

where

[w]pt,p :=

∫
R2N

|w(x)− w(y)|p

|x− y|N+tp
dx dy

and

|(u, v)|pα,β :=

∫
Ω

|u|α|v|βdx.

Thus,
λ ≥ λ1,p,

where

(1.2) λ1,p := inf

{
[u]pr,p + [v]ps,p
|(u, v)|pα,β

: (u, v) ∈ W(r,s)
p (Ω), uv ̸≡ 0

}
.

Our first aim is to show that λ1,p is the first eigenvalue of our
problem. In fact, in Section 3, we prove the following result.

Theorem 1.1. There is a nontrivial minimizer (up, vp) of (1.2) such
that both components are positives, up, vp > 0 in Ω, and (up, vp) is a
weak solution of (1.1) with λ = λ1,p. Moreover, λ1,p is simple.

Finally, there is a sequence of eigenvalues λn such that λn → ∞ as
n→ ∞.

It is yet to be ascertained whether or not the first eigenvalue is iso-
lated. Here, our aim is to study λ1,p for large p. Towards this end,
we look for the asymptotic behavior of λ1,p as p → ∞. From now on,
for any p > 1, (up, vp) denotes the eigenpair associated to λ1,p such
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that |(u, v)|α,β = 1. In order to study the limit as p → ∞, we need to
assume that

(1.3) pmin{r, s} ≥ N,

and

(1.4) lim
p→∞

αp

p
= Γ, 0 < Γ < 1.

Note that the last assumption and the fact that αp + βp = p implies

lim
p→∞

βp
p

= 1− Γ, 0 < 1− Γ < 1.

In order to state our main theorem concerning the limit as p → ∞,
we need to introduce the following notation:

[w]t,∞ := sup
(x,y)∈Ω

|w(y)− w(x)|
|x− y|t

,

W̃ t,∞(Ω) := {w ∈ C0(Ω): [w]t,∞ <∞},

W(r,s)
∞ (Ω) := W̃ r,∞(Ω)× W̃ s,∞(Ω),

and
R(Ω) := max

x∈Ω
dist(x, ∂Ω).

Now, we are ready to state our second result. It states that there is
a limit for [λ1,p]

1/p and that this limit verifies both a variational char-
acterization and a simple geometrical characterization. In addition,
concerning eigenfunctions, there is a uniform limit (along with subse-
quences) that is a viscous solution to a limit PDE eigenvalue problem.
The proofs of our results concerning limits as p → ∞ are shown in
Section 4.

Theorem 1.2. Under assumptions (1.3) and (1.4), we have that

lim
p→∞

[λ1,p]
1/p = Λ1,∞,

where

Λ1,∞ = inf

{
max{[u]r,∞; [v]s,∞}
∥|u|Γ|v|1−Γ∥L∞(Ω)

: (u, v) ∈ W(r,s)
∞ (Ω)

}
.
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Moreover, we have the following geometric characterization of the limit
eigenvalue:

Λ1,∞ =

[
1

R(Ω)

](1−Γ)s+Γr

.

Lastly, there is a sequence pj → ∞ such that (upj , vpj ) → (u, v) con-

verges uniformly in Ω, where (u∞, v∞) is a minimizer of Λ1,∞, and a
viscous solution to

min{Lr,∞u(x);L+
r,∞u(x)− Λ1,∞u

Γ(x)v1−Γ(x)} = 0 in Ω,

min{Ls,∞u(x);L+
s,∞u(x)− Λ1,∞u

Γ(x)v1−Γ(x)} = 0 in Ω,

u = v = 0 in RN \ Ω,

where

Lt,∞w(x) := L+
t,∞w(x) + L−

r,∞w(x)

= sup
y∈RN

w(x)− w(y)

|x− y|t
+ inf

y∈RN

w(x)− w(y)

|x− y|t
.

To end the introduction, we briefly refer to previous references on
this subject. The limit of p-harmonic functions (solutions to the local p-
Laplacian, that is, −∆pu = −div(|∇u|p−2∇u) = 0) as p→ ∞, has been
extensively studied in the literature (see [3, 4]) and naturally leads to
solutions of the infinity Laplacian, given by −∆∞u = −∇uD2u(∇u)t =
0. Infinity harmonic functions (solutions to −∆∞u = 0) are related to
the optimal Lipschitz extension problem (see the survey [3]) and find
applications in optimal transportation, image processing and tug-of-
war games (see, e.g., [10, 19, 25, 26], and the references therein). In
addition, limits of the eigenvalue problem related to the p-Laplacian
with various boundary conditions have been exhaustively examined
[18, 22, 23, 27, 28] and naturally yield the infinity Laplacian eigen-
value problem (in the scalar case)

(1.5) min{|∇u| − λu, −∆∞u} = 0.

In particular, the limit, as p→ ∞ of the first eigenvalue λp,D of the p-
Laplacian with Dirichlet boundary conditions and of its corresponding
positive normalized eigenfunction up, has been studied in [22, 23]. It
was proven there that, up to a subsequence, the eigenfunctions up uni-
formly converge to some Lipschitz function u∞ satisfying ∥u∞∥∞ = 1
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and

(1.6) (λp,D)1/p −→ λ∞,D = inf
u∈W 1,∞(Ω)

∥∇u∥∞
∥u∥∞

=
1

R(Ω)
.

Moreover, u∞ is an extremal for this limit variational problem, and the
pair u∞, λ∞,D is a nontrivial solution to (1.5). This problem has also
been studied from an optimal mass-transport point of view [11]. Note
that, here, the fact that we are dealing with two different operators in
the system is reflected in that the limit is given by

Λ1,∞ =

[
1

R(Ω)

](1−Γ)s+Γr

,

a quantity that depends upon s and t.

On the other hand, there is rich recent literature concerning eigen-
values for systems of p-Laplacian type (we refer, e.g., to [5, 12, 14, 16,
29], and the references therein). The only known references concerning
the asymptotic behavior as p goes to infinity of the eigenvalues for a
system are [6, 12], where the authors studied the behavior of the first
eigenvalue for a system with the usual local p-Laplacian operator.

Finally, concerning limits as p→ ∞ in fractional eigenvalue problems
(a single equation), we refer the interested reader to [9, 17, 22]. In
[22], the limit of the first eigenvalue for the fractional p-Laplacian was
studied, while in [17], higher eigenvalues were considered.

2. Preliminaries. We begin with a review of the basic results that
will be needed in subsequent sections. The known results are generally
stated without proofs, but we provide references where the proofs may
be found. In addition, we introduce some of our notational conventions.

2.1. Fractional Sobolev spaces. Let s ∈ (0, 1) and p ∈ (1,∞).
There are several choices for a norm for W s,p(Ω). We choose the fol-
lowing:

∥u∥ps,p := ∥u∥pLp(Ω) + |u|ps,p,

where

|u|ps,p =

∫
Ω2

|u(x)− u(y)|p

|x− y|N+sp
dx dy.
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Observe that, for any u ∈ W̃ s,p(Ω), we obtain

|u|s,p ≤ [u]s,p.

Our first aim is to show a Poincaré-type inequality.

Lemma 2.1. Let s ∈ (0, 1). For any p > 1, there is a positive constant
C, independent of p, such that

[u]ps,p ≥ ωN

sp
(diam(Ω) + 1)−sp∥u∥pLp(Ω) for all u ∈ W̃ s,p(Ω),

where ωN is the N -dimensional volume of an Euclidean ball of radius 1.

Proof. Let u ∈ W̃ s,p(Ω). Then,

[u]ps,p ≥
∫
Ω

|u(x)|p
∫
Ω1

1

|x− y|N+sp
dy dx,

where Ω1 = {y ∈ Ωc : dist(y,Ω) ≥ 1}. Now, we observe that, for any
x ∈ Ω, we have Bd+1(x)

c ⊂ Ω1 where d = diam(Ω). Thus,∫
Ω1

dy

|x− y|N+sp
≥

∫
Bd+1(x)c

dy

|x− y|N+sp

= ωN

∫ ∞

d+1

dρ

ρsp+1
=
ωN

sp
(d+ 1)−sp

for all x ∈ Ω. Therefore, we conclude that

[u]ps,p ≥ ωN

sp
(d+ 1)−sp∥u∥pLp(Ω). �

The next result will be one of the keys in the proof of Theorem 1.2.

Lemma 2.2. Let s ∈ (0, 1) and p > N/s. If q ∈ (N/s, p) and t =
s−N/q, then

∥u∥Lq(Ω) ≤ |Ω|1/q−1/p∥u∥Lp(Ω)

and
|u|t,q ≤ diam(Ω)N/p|Ω|2/q−2/p|u|s,p

for all u ∈W s,p(Ω).
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Proof. Since q < p, the first inequality is trivial. Therefore, we
only need to prove the second one. Let u ∈ W s,p(Ω). It follows from
Hölder’s inequality that

|u|qt,q =

∫
Ω2

|u(x)− u(y)|q

|x− y|sq
dx dy

≤
(∫

Ω2

|u(x)− u(y)|p

|x− y|sp
dx dy

)q/p

|Ω|2−2q/p

≤ diam(Ω)Nq/p

(∫
Ω2

|u(x)− u(y)|p

|x− y|sp+N
dx dy

)q/p

|Ω|2−2q/p,

as we wanted to show. �

2.2. Weak and viscous solutions. Here, we discuss the relation be-
tween the weak solutions of

(2.1)

{
(−∆p)

su = f(x) in Ω,

u = 0 in Ωc,

and the viscous solutions of the same problem.

We begin by introducing the precise definitions of weak and viscous
solutions.

Definition 2.3. Let f ∈ W−s,p(Ω) (the dual space of W̃ s,p(Ω)) and

u ∈ W̃ s,p(Ω). We say that u is a weak solution of (2.1) if and only if∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+rp
dx dy = ⟨f, v⟩

for every v ∈ W̃ s,p(Ω). Here, ⟨·, ·⟩ denotes the duality pairing of

W̃ s,p(Ω) with W−s,p(Ω).

Definition 2.4. Let p ≥ 2, f ∈ C(Ω) and u ∈ C(RN ) be such that
u = 0 in Ωc. We say that u is a viscous subsolution of (2.1) at a point
x0 ∈ Ω if and only if, for any test function φ ∈ C2

0 (RN ) such that
u(x0) = φ(x0) and u(x) ≤ φ(x) for all x ∈ RN , we have that

2

∫
RN

|φ(x0)− φ(y)|p−2(φ(x0)− φ(y))

|x0 − y|N+sp
dy ≤ f(x0).
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We say that u is a viscous supersolution of (2.1) at a point x0 ∈ Ω if
and only if, for any test function φ ∈ C2

0 (RN ) such that u(x0) = φ(x0)
and u(x) ≥ φ(x) for all x ∈ RN , we have that

2

∫
RN

|φ(x0)− φ(y)|p−2(φ(x0)− φ(y))

|x0 − y|N+sp
dy ≥ f(x0).

Finally, u is called a viscous solution of (2.1) if it is both a viscous
super and subsolution at x0 for any x0 ∈ Ω.

By carefully following the proof of [24, Proposition 11], the next
result is obtained.

Theorem 2.5. Let p ≥ 2 and f ∈ C(Ω). If u is a weak solution of
(2.1), then it is also a viscous solution.

The next result is key in showing that every eigenpair associated to
the first eigenvalue has a constant sign. For the proof, we refer to [24,
Lemma 12].

Lemma 2.6. Let p ≥ 2. Assume that u ≥ 0 and u ≡ 0 in Ωc. If u is
a viscous supersolution of (−∆p)

su = 0 in Ω, then either u > 0 in Ω
or u ≡ 0 in RN .

3. The eigenvalue problem. We begin by showing that λ1,p is the
first eigenvalue of our problem.

Lemma 3.1. There is a nontrivial minimizer (u, v) of (1.2) such that
u, v > 0 almost everywhere in Ω, and (u, v) is a weak solution of (1.1)
with λ = λ1,p.

Proof. Since C∞
0 (Ω)× C∞

0 (Ω) ⊂ W(r,s)
p (Ω), we have

(3.1) 0 ≤ inf

{
[u]pr,p + [v]ps,p
|(u, v)|pα,β

: (u, v) ∈ W(r,s)
p (Ω), uv ̸≡ 0

}
<∞.

Now, consider a minimizing sequence {(un, vn)}n∈N normalized ac-
cording to |(un, vn)|(α,β) = 1. It follows from (3.1) that {(un, vn)}
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is bounded in W(r,s)
p (Ω). Then, by the compactness of the Sobolev

embedding theorem, there is a subsequence {(unj
, vnj

)}j∈N such that

unj ⇀ u weakly in W̃r,p(Ω), vnj ⇀ v weakly in W̃s,p(Ω),

unj → u strongly in Lp(Ω), vnj → v strongly in Lp(Ω).

Thus, |(u, v)|(α,β) = 1, and

[u]pr,p + [v]ps,p ≤ lim inf
j→∞

{[unj ]
p
r,p + [vnj ]

p
s,p} = λ1,p.

Therefore, (u, v) is a minimizer of (1.2). Moreover, since

[|u|]pr,p + [|v|]ps,p ≤ [u]pr,p + [v]pr,p,

we can assume that u and v are nonnegative functions.

The fact that this minimizer is a weak solution (1.1) with λ = λ1,p
is straightforward and can be obtained from the arguments in [24].

Finally, since u and v are nonnegative functions and (u, v) is a weak
solution of (1.1) with λ = λ1,p, by [7, Theorem A.1], we obtain that u
and v are positive functions almost everywhere in Ω. �

The next result follows from the classical inequality

∥a| − |b∥ < |a− b| for all ab < 0.

Corollary 3.2. If (u, v) is an eigenpair corresponding to λ1,p, then u
and v have constant sign.

Our next aim is to prove that all of the eigenpairs associated to λ1,p
are bounded. For this, we follow ideas from [8, Theorem 3.2].

Lemma 3.3. If (u, v) is an eigenpair associated to λ1,p, then u, v ∈
L∞(RN ).

Proof. Without loss of generality, we can assume that r ≤ s and
u, v > 0 almost everywhere in Ω.

It follows from the fractional Sobolev embedding theorem (see, e.g.,
[13, Corollary 4.53, Theorem 4.54]) that, if r > N/p, then the assertion
holds.
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Thus, we need to prove that the assertion also holds in the following
cases:

Case 1. r < N/p;

Case 2. r = N/p.

Before we start analyzing the different cases, we will show two ine-
qualities. For every M > 0, we define

uM (x) := min{u(x),M} and vM (x) := min{v(x),M}.

Since (u, v) ∈ W(r,s)
p (Ω), it is not difficult to verify that (uM , vM ) ∈

W(r,s)
p (Ω). Moreover, if q ≥ 1, then (uqM , v

q
M ) ∈ W(r,s)

p (Ω). Hence,
since (u, v) is an eigenpair associated to λ1,p, uM ≤ u, vM ≤ v, and
α, β ≤ p, we have∫

R2N

|u(x)− u(y)|p−2(u(x)− u(y))(uqM (x)− uqM (y))

|x− y|N+rp
dx dy

≤ λ1,p

∫
Ω

uα+q−1vβdx,

∫
R2N

|v(x)− v(y)|p−2(v(x)− v(y))(vqM (x)− vqM (y))

|x− y|N+sp
dx dy

≤ λ1,p

∫
Ω

uαvβ+q−1dx.

Hence, by using [8, Lemma C2], we obtain

(3.2)

q

(
p

q + p− 1

)p ∫
R2N

∣∣u(q+p−1)/p
M (x)− u

(q+p−1)/p
M (y)

∣∣p
|x− y|N+rp

dx dy

≤ λ1,p

∫
Ω

uα+q−1vβdx,

q

(
p

q + p− 1

)p ∫
R2N

∣∣v(q+p−1)/p
M (x)− v

(q+p−1)/p
M (y)

∣∣p
|x− y|N+rp

dx dy

≤ λ1,p

∫
Ω

uαvβ+q−1dx.

We now begin to analyze the different cases.
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Case 1. r < N/p. Since r ≤ s, then p⋆r ≤ p⋆s. Therefore, by Sobolev’s
embedding theorem,

(∫
Ω

u
[(q+p−1)/p]p⋆

r

M dx

)p/p⋆
r

≤ C(N, r, p,Ω)

∫
R2N

∣∣u(q+p−1)/p
M (x)− u

(q+p−1)/p
M (y)

∣∣p
|x− y|N+rp

dx dy,(∫
Ω

v
[(q+p−1)/p]p⋆

r

M dx

)p/p⋆
r

≤ C(N, r, s, p,Ω)

∫
R2N

∣∣v(q+p−1)/p
M (x)− v

(q+p−1)/p
M (y)

∣∣p
|x− y|N+rp

dx dy.

Then, by (3.2), we obtain

(∫
Ω

u
[(q+p−1)/p]p⋆

r

M dx

)p/p⋆
r

≤ λ1,p
C(N, r, p,Ω)

(
q + p− 1

p

)p−1 ∫
Ω

uα+q−1vβdx,(∫
Ω

v
[(q+p−1)/p]p⋆

r

M dx

)p/p⋆
r

≤ λ1,p
C(N, r, s, p,Ω)

(
q + p− 1

p

)p−1 ∫
Ω

uαvβ+q−1dx.

By using Fatou’s lemma and Young’s inequality, we obtain

(∫
Ω

u[(p+p−1)/p]p⋆
rdx

)p/p⋆
r

≤ λ1,p
C(N, r, p,Ω)

(
p+ q − 1

p

)p−1(∫
Ω

up+q−1dx+

∫
Ω

vp+q−1dx

)
,(∫

Ω

v[(q+p−1)/p]p⋆
rdx

)p/p⋆
r

≤ λ1,p
C(N, r, s, p,Ω)

(
q + p− 1

p

)p−1(∫
Ω

up+q−1dx+

∫
Ω

vp+q−1dx

)
.
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Taking Q = (q + p− 1)/p, we obtain(∫
Ω

uQ[Np/(N−rp)]dx

)Q(N−rp)/QN

≤ λ1,p
C(N, r, p,Ω)

Qp−1

(∫
Ω

uQpdx+

∫
Ω

vQpdx

)
,(∫

Ω

vQ[Np/(N−rp)]dx

)Q(N−rp)/QN

≤ λ1,p
C(N, r, s, p,Ω)

Qp−1

(∫
Ω

uQpdx+

∫
Ω

vQpdx

)
.

Then,

∥u∥Qp
L(QN/N−rp)p(Ω)

≤ λ1,p
C(N, r, p,Ω)

Qp−1
(
∥u∥Qp

LQp(Ω)
+ ∥v∥Qp

LQp(Ω)

)
,

∥v∥Qp
L(QN/N−rp)p(Ω)

≤ λ1,p
C(N, r, s, p,Ω)

Qp−1
(
∥u∥Qp

LQp(Ω)
+ ∥v∥Qp

LQp(Ω)

)
.

Hence,(
∥u∥Qp

L(QN/N−rp)p(Ω)
+ ∥v∥Qp

L(QN/N−rp)p(Ω)

)1/Qp

≤
(

2λ1,p
C(N, r, s, p,Ω)

)1/Q

(Q1/Q)(p−1)/p
(
∥u∥Qp

LQp(Ω)
+∥v∥Qp

LQp(Ω)

)1/Qp

.

Now, taking the following sequence

Q0 = 1 and Qn+1 = Qn
N

N − rp
,

we have(
∥u∥Qnp

LQn+1p(Ω)
+ ∥v∥Qnp

LQn+1p(Ω)

)1/Qnp

≤
(

2λ1,p
C(N, r, s, p,Ω)

)1/Qnp

(Q1/Qn
n )(p−1)/p

(
∥u∥Qnp

LQnp(Ω)
+∥v∥Qnp

LQnp(Ω)

)1/Qnp

for all n ∈ N. Moreover, since

Qn+1 = QnN/(N − rp),

we have that
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(
∥u∥Qnp

LQn+1p(Ω)
+∥v∥Qnp

LQn+1p(Ω)

)1/Qnp

≤
(

2λ1,p
C(N, r, s, p,Ω)

)1/Qnp

(Q1/Qn
n )(p−1)/p

(
∥u∥Qn−1p

LQnp(Ω)
+∥v∥Qn−1p

LQnp(Ω)

)1/Qn−1p

for all n ≥ 2. Then, iterating the last inequality, we obtain

(3.3)(
∥u∥Qnp

LQn+1p(Ω)
+∥v∥Qnp

LQn+1p(Ω)

)1/Qnp

≤
(

2λ1,p
C(N, r, s, p,Ω)

)1/p∑n
i=0 1/Qi

×
( n∏

i=0

Q1/Qi

i

)(p−1)/p(
∥u∥pLp(Ω)+∥v∥pLp(Ω)

)1/p
for all n ≥ 2.

Observe that Qn → ∞ as n → ∞ due to the fact that N/(N − rp)
> 1. Moreover,

∞∑
i=0

1

Qi
=
N

rp
and

∞∏
i=0

Q1/Qi

i =

(
N

N − rp

)N/rpp⋆
r

.

Hence, passing to the limit in (3.3), we deduce

max{∥u∥L∞(Ω), ∥v∥L∞(Ω)}

≤
(

2λ1,p
C(N, r, s, p,Ω)

)N/rp2(
N

N−rp

)(N/rpp⋆
r)(p−1/p)(

∥u∥pLp(Ω)+∥v∥pLp(Ω)

)1/p
,

that is, u, v ∈ L∞(Ω).

Case 2. r = N/p. In this case, W(r,s)
p (Ω) ↩→ Lm(Ω)× Lm(Ω) for all

m > 1. Then,

(∫
Ω

u
[(q+p−1)/p]2p
M dx

)1/2

≤ C(N, r, p,Ω)

×
∫
R2N

|u(q+p−1)/p
M (x)− u

(q+p−1)/p
M (y)|p

|x−y|N+rp
dx dy,
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(∫
Ω

v
[(q+p−1)/p]2p
M dx

)1/2

≤ C(N, r, s, p,Ω)

×
∫
R2N

|v(q+p−1)/p
M (x)−v(q+p−1)/p

M (y)|p

|x−y|N+rp
dx dy.

Applying the previous reasoning, we obtain

(∥u∥Qp
L2Qp(Ω)

+ ∥v∥Qp
L2Qp(Ω)

)1/Qp

≤
(

2λ1,p
C(N, r, s, p,Ω)

)1/Q
(Q1/Q)(p−1)/p(∥u∥Qp

LQp(Ω)
+∥v∥Qp

LQp(Ω)
)1/Qp.

Now, taking the sequence

Q0 = 1 and Qn+1 = 2Qn,

the proof follows as in the previous case. �
In order to show that λ1,p is simple, we will first prove that λ1,p is the

unique eigenvalue with the following property: any eigenpair associated
to λ has a constant sign.

Theorem 3.4. Let (u, v) be an eigenfunction associated to λ1,p such
that u, v ≥ 0 in Ω. If λ > 0 is such that there is an eigenpair (w, z)
associated to λ such that w, z > 0, then λ = λ1(s, p), and there exist
k1, k2 ∈ R such that w = k1u and z = k2v almost everywhere in RN .

Proof. Since λ1(s, p) is the first eigenvalue, we have that λ1(s, p) ≤
λ. Moreover, by [7, Theorem A.1], u, v > 0 almost everywhere in Ω
since (u, v) is an eigenpair associated to λ1,p and u, v ≥ 0.

Let k ∈ N, and define wk := w+1/k and zk := z+1/k. We begin by

proving that up/wp−1
k ∈ W̃r,p(Ω). It is immediate that up/wp−1

k = 0 in
Ωc and wk ∈ Lp(Ω), due to the fact that u ∈ L∞(Ω), see Lemma 3.3.

On the other hand, for any x, y ∈ RN ,∣∣∣∣ u(x)

wk(x)p−1(x)
− u(y)

wk(y)p−1

∣∣∣∣
=

∣∣∣∣u(x)p − u(y)p

wk(x)p−1
+
u(y)p(wk(y)

p−1 − wk(x)
p−1)

wk(x)p−1wk(y)p−1

∣∣∣∣s
≤ kp−1|u(x)p − u(y)p|+ ∥u∥pL∞(Ω)

|wk(x)
p−1 − wk(y)

p−1|
wk(x)p−1wk(y)p−1
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≤ 2∥u∥p−1
L∞(Ω)k

p−1p|u(x)− u(y)|

+ ∥u∥pL∞(Ω)(p− 1)
wk(x)

p−2 + wk(y)
p−2

wk(x)p−1wk(y)p−1
|wk(x)− wk(y)|

≤ 2∥u∥p−1
L∞(Ω)k

p−1p|u(x)− u(y)|

+ ∥u∥pL∞(Ω)(p− 1)kp−1

(
1

wk(x)
+

1

wk(y)

)
|w(y)− w(x)|

≤ C(k, p, ∥u∥L∞(Ω))(|u(x)− u(y)|+ |w(x)− w(y)|).

Hence, we have that up/wp−1
k ∈ W̃r,p(Ω) for all k ∈ N since u,w ∈

W̃r,p(Ω). Analogously, vp/zp−1
k ∈ W̃s,p(Ω).

Set

L(φ,ψ)(x, y)= |φ(x)−φ(y)|p−(ψ(x)−ψ(y))p−1

(
φ(x)p

ψ(x)p−1
− φ(y)p

ψ(y)p−1

)
for all functions φ ≥ 0 and ψ > 0. For [2, Lemma 6.2], for any φ ≥ 0
and ψ > 0,

L(φ,ψ)(x, y) ≥ 0 for all (x, y).

Then,

0 ≤
∫
Ω2

L(u,wk)(x, y)

|x− y|N+rp
dx dy +

∫
Ω2

L(v, zk)(x, y)

|x− y|N+sp
dx dy

≤
∫
R2N

L(u,wk)(x, y)

|x− y|N+rp
dx dy +

∫
R2N

L(v, zk)(x, y)

|x− y|N+sp
dx dy

= λ1,p

∫
Ω

|u|α|v|βdx− λ
α

p

∫
Ω

wα−1zβ
up

wp−1
k

dx− λ
β

p

∫
Ω

wαzβ−1 vp

zp−1
k

dx

for all k ∈ N, since (u, v), (w, z) are eigenpairs associated to λ1,p and
λ, respectively.

On the other hand, by Young’s inequality,∫
Ω

wαzβ
uαvβ

wα
k z

β
k

dx ≤ α

p

∫
Ω

wα−1zβ
up

wp−1
k

dx+
β

p

∫
Ω

wαzβ−1 vp

zp−1
k

dx

for all k ∈ N. Then,

0 ≤
∫
Ω

L(u,wk)(x, y)

|x− y|N+rp
dx dy +

∫
Ω

L(v, zk)(x, y)

|x− y|N+sp
dx dy
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≤ λ1,p

∫
Ω

|u|α|v|βdx− λ

∫
Ω

wαzβ
uαvβ

wα
k z

β
k

dx.

By Fatou’s lemma and the dominated convergence theorem, we obtain

0 ≤
∫
Ω2

L(u,w)(x, y)

|x− y|N+rp
dx dy +

∫
Ω2

L(v, z)(x, y)

|x− y|N+sp
dx dy

≤ (λ1,p − λ)

∫
Ω

|u|α|v|β dx.

Then, λ = λ1,p, and L(u,w) = 0 and L(v, z) = 0 almost everywhere
in Ω.

Finally, again by [2, Lemma 6.2], there exist k1, k2 ∈ R such that
w = k1u and z = k2v almost everywhere in RN . �

Now, we show that λ1,p is simple.

Corollary 3.5. Let (u1, v1) be an eigenpair associated to λ1,p normal-
ized according to |(u1, v1)|α,β = 1. If (u, v) is an eigenpair associated
to λ1,p, then there is a constant k such that (u, v) = k(u1, v1).

Proof. By Theorem 3.4, there exist k1 and k2 such that u = k1u1
and v = k2v2. Without loss of generality, we can assume that k1 ≤ k2.
Then, since (u1, v1) and (u, v) are eigenpairs associated to the first
eigenvalue λ1,p and |(u, v)|α,β = 1, we obtain((

k1
k2

)β

− 1

)
[u]pr,p +

((
k2
k1

)α

− 1

)
[v]ps,p = 0.

Taking x = k1/k2, a = [u]pr,p and b = [v]ps,p, we get

a(xβ − 1) + b
1− xα

xα
= 0.

Multiplying by xα and using that α+ β = p, we obtain

axp − (a+ b)xα + b = 0.

In order to conclude the proof, we only need show that 1 is the unique
zero of the function

f : [0, 1] −→ R, f(x) = axp − (a+ b)xα + b.
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Observe that, for any x ∈ (0, 1), we have

f ′(x) = paxα−1

(
xp−α − a+ b

a

α

p

)
= paxα−1

(
xα − a+ b

a

α

p

)
.

On the other hand, since (u1, v1) is an eigenpair associated to λ1,p
such that |(u, v)|α,β = 1, we have

a+ b = λ1,p and a =
α

p
λ1,p.

Then,
a+ b

a
=
p

α
,

that is,
a+ b

a

α

p
= 1.

Hence,
f ′(x) < 0 for all x ∈ (0, 1).

that is, f is decreasing. Therefore, x = 1 is the unique zero of f . �

Recall that we made the assumption min{α, β} ≥ 1. Now, if (u, v)
is an eigenpair associated to λ1,p, then |u|α−2u|v|β and |u|α|v|β−2v ∈
L∞(Ω) due to Lemma 3.3. Thus, by [21, Theorem 1.1], we have the
following result.

Lemma 3.6. If (u, v) is an eigenpair associated to λ1,p, then γ1 =
γ1(N, p, r) ∈ (0, r] and γ2 = γ2(N, p, s) ∈ (0, s] exist such that (u, v) ∈
Cγ1(Ω)× Cγ2(Ω).

Thus, by Lemma 3.6 and Theorem 2.5, we have that

Corollary 3.7. If (u, v) is an eigenpair associated to λ1,p, then u is a
viscous solution of{

(−∆p)
ru = λ1,p

α
p |u|

α−2u|v|β in Ω,

u = 0 in RN \ Ω,

and v is a viscous solution of{
(−∆p)

sv = λ1,p
β
p |u|

α|v|β−2v in Ω,

v = 0 in RN \ Ω.
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It follows by Corollary 3.7 and Lemma 2.6 that we obtain

Corollary 3.8. If (u, v) is an eigenpair corresponding to the first
eigenvalue λ1,p, then |u|, |v| > 0 in Ω.

Finally, we show a sequence of eigenvalues.

Lemma 3.9. There is a sequence of eigenvalues λn such that λn → ∞
as n→ ∞.

Proof. We follow ideas from [20], and hence, we omit the details.
Let us consider

Mτ = {(u, v) ∈ W(r,s)
p (Ω): [u]pr,p + [v]ps,p = pτ}

and

φ(u, v) =
1

p

∫
Ω

|u|α|v|βdx.

We look for critical points of φ restricted to the manifold Mτ using a

minimax technique. We consider the class Σ = {A ⊂ W(r,s)
p (Ω)\{0} : A

is closed, A = −A}. Over this class, we define the genus γ : Σ → N
∪ {∞} as γ(A) = min{k ∈ N : there exists a ϕ ∈ C(A,Rk − {0}),
ϕ(x) = −ϕ(−x)}. Now, we let Ck = {C ⊂ Mτ : C is compact,
symmetric and γ(C) ≤ k}, and

βk = sup
C∈Ck

min
(u,v)∈C

φ(u, v).

Then, βk > 0, and there is a (uk, vk) ∈ Mτ such that φ(uk, vk) = βk,
and (uk, vk) is a weak eigenpair with λk = τ/βk. �

4. The limit as p → ∞. From now on, we assume that (1.3) and
(1.4) hold. Recall that Λ1,∞ is defined by

Λ1,∞ = inf

{
max{[u]r,∞; [v]s,∞}
∥|u|Γ|v|1−Γ∥L∞(Ω)

: (u, v) ∈ W(r,s)
∞ (Ω)

}
.

First, we show the geometric characterization of Λ1,∞. Then, we prove
that there exists a sequence of eigenpairs (up, vp) associated to λ1,p
such that (up, vp) → (u∞, v∞) as p → ∞ and (u∞, v∞) is a minimizer
for Λ1,∞. Finally, we will show that (u∞, v∞) is a viscous solution of
(4.3).
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4.1. Geometric characterization. Observe that, from the Arzelà-
Ascoli theorem, there exists a minimizer for Λ1,∞. Moreover, if (u, v) is
a minimizer for Λ1,∞, then so is (|u|, |v|). Now, we show the geometric
characterization of Λ1,∞.

Lemma 4.1. The following equality holds:

Λ1,∞ =

[
1

R(Ω)

](1−Γ)s+Γr

.

Proof. We take (u, v) as a minimizer for Λ1,∞ with u, v ≥ 0 nor-
malized according to ∥uΓv1−Γ∥L∞(Ω) = 1. Therefore, there is a point

x0 ∈ Ω such that uΓ(x0)v
1−Γ(x0) = 1. We call a = u(x0) and b = v(x0).

Then, since u, v = 0 in Ωc,

[u]r,∞ = sup
(x,y)∈Ω

|u(y)− u(x)|
|x− y|r

≥ a

[dist(x0, ∂Ω)]r
,

and

[v]s,∞ = sup
(x,y)∈Ω

|v(y)− v(x)|
|x− y|s

≥ b

[dist(x0, ∂Ω)]s
.

Therefore, this yields

Λ1,∞ ≥ inf
(a,b,x0)∈A

{
max

{
a

[dist(x0, ∂Ω)]r
;

b

[dist(x0, ∂Ω)]s

}}
,

where
A := {(0,∞)× (0,∞)× Ω: aΓb1−Γ = 1}.

In order to compute the infimum, we observe that we must have

a

[dist(x0, ∂Ω)]r
=

b

[dist(x0, ∂Ω)]s
,

that is,
a = b[dist(x0, ∂Ω)]

r−s.

Then, using aΓb1−Γ = 1, we obtain

b [dist(x0, ∂Ω)]
Γ(r−s) = 1.
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Hence,

b = [dist(x0, ∂Ω)]
Γ(s−r)

and

a = [dist(x0, ∂Ω)]
(r−s)(1−Γ).

This yields
inf
x0

[dist(x0, ∂Ω)]
−[(1−Γ)s+Γr],

which is attained at a point x0 ∈ Ω that maximizes the distance to the
boundary, that is, letting

R(Ω) = dist(x0, ∂Ω),

we obtain that

Λ1,∞ ≥
[

1

R(Ω)

](1−Γ)s+Γr

.

In order to conclude the proof, we need to show the reverse inequal-
ity. As before, let x0 ∈ Ω be the point where the maximum distance to
the boundary is attained. Set

u0(x) = R(Ω)(r−s)(1−Γ)

(
1− |x− x0|

R(Ω)

)r

+

,

v0(x) = R(Ω)−(r−s)Γ

(
1− |x− x0|

R(Ω)

)s

+

.

We observe that (u0, v0) ∈ Cr(RN )×Cs(RN ), ∥uΓ0 v1−Γ
0 ∥L∞(Ω) = 1 and

max{[u0]r,∞; [v0]s,∞} ≤
[

1

R(Ω)

](1−Γ)s+Γr

.

Therefore,

Λ1,∞=inf

{
max{[u]r,∞; [v]s,∞}
∥|u|Γ|v|1−Γ∥L∞(Ω)

: (u, v)∈W(r,s)
∞ (Ω)

}
≤
[

1

R(Ω)

](1−Γ)s+Γr

.

�

Remark 4.2. Observe that (u0, v0) is a minimizer of Λ1,∞.
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4.2. Convergence. Now, we prove that there exists a sequence of
eigenpairs (up, vp) associated to λ1,p such that (up, vp) → (u, v) as p→
∞ and (u, v) is a minimizer for Λ1,∞.

Lemma 4.3. Let (up, vp) be an eigenpair for λ1,p such that up and vp
are positive and |(u, v)|α,β = 1. Then, there exists a sequence pj → ∞
such that

(upj , vpj ) −→ (u∞, v∞)

uniformly in RN . The limit (u∞, v∞) belongs to the space W(r,s)
∞ (Ω)

and is a minimizer of Λ1,∞. In addition, the following holds:

[λ1,p]
1/p −→ Λ1,∞.

Proof. We begin by showing that

(4.1) lim sup
p→∞

[λ1,p]
1/p ≤ Λ1,∞.

Let γ > 1 be such that γmax{r, s} < 1. Then, (uγ , vγ) = (uγ∞, v
γ
∞) ∈

W(r,s)
p (Ω) ∩W(r,s)

∞ (Ω) for all p > 1. Thus,

[λ1,p]
1/p ≤

([uγ ]
p
r,p + [vγ ]

p
s,p)

1/p

|(uγ , vγ)|α,β

for all p > 1. In addition, we observe that ∥uΓγv1−Γ
γ ∥L∞(Ω) = 1. Then,

lim sup
p→∞

[λ1,p]
1/p≤max{[uγ ]r,∞; [vγ ]s,∞}

≤max
{
2r(γ−1)R(Ω)γ(r−s)(1−Γ)−r; 2s(γ−1)R(Ω)−γ(r−s)Γ−s

}
.

Therefore, passing to the limit as γ → 1 in the previous inequality and
using Lemma 4.1, we obtain (4.1).

Our next step is to show that

Λ1,∞ ≤ lim inf
p→∞

[λ1,p]
1/p.

Let pj > 1 be such that

lim inf
p→∞

[λ1,p]
1/p = lim

j→∞
[λj ]

1/pj ,
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where λj = λ1,pj . From (4.1), without of loss of generality, we can
assume that

2max{N/r,N/s} < p1, pj ≤ pj+1,

and

(4.2) [λj ]
1/pj =

(
[uj ]

pj
r,pj

+ [vj ]
pj
s,pj

)1/pj ≤ Λ1,∞ + ε

for all j ∈ N, where ε is any positive number and (uj , vj) is an eigenpair
corresponding to λj normalized according to |(uj , vj)|αj ,βj = 1 (αj =
αpj , βj = βpj ) and such that uj , vj > 0 in Ω.

Let q ∈ (2max{N/r,N/s}, p1), t1 = r − N/q and t2 = s − N/q.
It follows from (4.2) and Lemmas 2.1 and 2.2 that {uj} and {vj} are
bounded in W t1,q(Ω) and W t2,q(Ω), respectively. Since qmin{t1, t2} ≥
N , taking a subsequence, if necessary, we get

uj −→ u∞ strongly in C0,γ1(Ω),

vj −→ v∞ strongly in C0,γ2(Ω),

due to the compact Sobolev embedding theorem. Here, 0 < γ1 <
t1 − N/q = r − 2N/q and 0 < γ1 < t2 − N/q = s − 2N/q. Therefore,
u∞ = v∞ = 0 on ∂Ω.

On the other hand, by Lemma 2.2,

|uj |t1,q ≤ diam(Ω)N/pj |Ω|2/q−2/pj |uj |r,pj

≤ diam(Ω)N/pj |Ω|2/q−2/pj [λj ]
1/pj ,

|vj |t2,q ≤ diam(Ω)N/pj |Ω|2/q−2/pj |vj |s,pj

≤ diam(Ω)N/pj |Ω|2/q−2/pj [λj ]
1/pj .

Then, passing to the limit as j → ∞ and using Fatou’s lemma, we
obtain (u∞, v∞) ∈W t1,q(Ω)×W t2,q(Ω) and

|u∞|t1,q ≤ |Ω|2/q lim inf
p→∞

[λ1,p]
1/p,

|v∞|t2,q ≤ |Ω|2/q lim inf
p→∞

[λ1,p]
1/p.
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Now, passing to the limit as q → ∞, we obtain

[u∞]r,∞ ≤ lim inf
p→∞

[λ1,p]
1/p,

[v∞]s,∞ ≤ lim inf
p→∞

[λ1,p]
1/p,

that is, (u∞, v∞) ∈ W(r,s)
∞ (Ω) and

max{[u∞]r,∞; [v∞]r,∞} ≤ lim inf
p→∞

[λ1,p]
1/p.

In order to conclude the proof, we need only show that

∥uΓ∞v1−Γ
∞ ∥L∞(Ω) = 1.

For all q > 1, there exists a j0 ∈ N such that pj > q if j > j0, and
therefore, by Fatou’s lemma and Hölder’s inequality, we get

∥uΓ∞v1−Γ
∞ ∥qLq(Ω)≤ lim inf

j→∞

∫
Ω

u
(αj/pj)q
j v

(βj/pj)q
j dx≤ lim inf

j→∞
|Ω|1−(q/pj)=1

due to |(uj , vj)|αj ,βj = 1. Then, passing to the limit as q → ∞, we
have

∥uΓ∞v1−Γ
∞ ∥L∞(Ω) ≤ 1.

On the other hand,

1 = |(uj , vj)|
1/pj

αj ,βj
≤ ∥uαj/pj

j v
βj/pj

j ∥L∞(Ω)|Ω|1/pj −→ ∥uΓ∞v1−Γ
∞ ∥L∞(Ω).

Therefore, ∥uΓ∞v1−Γ
∞ ∥L∞(Ω) = 1. �

4.3. Viscous solution. Finally, we show that (u∞, v∞) is a viscous
solution of
(4.3)

min{Lr,∞u(x);L+
r,∞u(x)− Λ1,∞u

Γ(x)v1−Γ(x)} = 0 in Ω,

min{Ls,∞u(x);L+
s,∞u(x)− Λ1,∞u

Γ(x)v1−Γ(x)} = 0 in Ω,

u = v = 0 in RN \ Ω,

where

Lt,∞w(x) = L+
t,∞w(x) + L−

r,∞w(x)

= sup
y∈RN

w(x)− w(y)

|x− y|t
+ inf

y∈RN

w(x)− w(y)

|x− y|t
.
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Next, we the introduce the precise definition of the viscous solution
of (4.3).

Definition 4.4. Let (u, v) ∈ C(RN ) × C(RN ) be such that u, v ≥ 0
in Ω and u = v = 0 in Ωc. We say that (u, v) is a viscous sub-
solution of (4.3) at a point x0 ∈ Ω if and only if, for any test pair
(φ,ψ) ∈ C2

0 (RN ) × C2
0 (RN ) such that u(x0) = φ(x0), v(x0) = ψ(x0),

u(x) ≤ φ(x) and v(x) ≤ ψ(x) for all x ∈ RN , we have that

min{Lr,∞φ(x0);L+
r,∞φ(x0)− Λ1,∞u

Γ(x0)v
1−Γ(x0)} ≤ 0,

min{Lr,∞ψ(x0);L+
r,∞ψ(x0)− Λ1,∞u

Γ(x0)v
1−Γ(x0)} ≤ 0.

We say that (u, v) is a viscous subsolution of (4.3) at a point x0 ∈ Ω
if and only if, for any test pair (φ,ψ) ∈ C2

0 (RN ) × C2
0 (RN ) such that

u(x0) = φ(x0), v(x0) = ψ(x0), u(x) ≥ φ(x) and v(x) ≥ ψ(x) for all
x ∈ RN , we have that

min{Lr,∞φ(x0);L+
r,∞φ(x0)− Λ1,∞u

Γ(x0)v
1−Γ(x0)} ≥ 0,

min{Lr,∞ψ(x0);L+
r,∞ψ(x0)− Λ1,∞u

Γ(x0)v
1−Γ(x0)} ≥ 0.

Finally, u is a viscous solution of (4.3) at a point x0 ∈ Ω viscous
solution if it is both a viscous super and subsolution at every x0.

Lemma 4.5. (u∞, v∞) is a viscous solution of (4.3).

Proof. The proof follows as in [24, Section 8]; we include a sketch
here for completeness. We show that u∞ is a viscous supersolution of
the first equation in (4.3) (the fact that it is a viscous subsolution is
similar). Assume that φ is a test function touching u∞ strictly from
below at a point x0 ∈ Ω. We have that uj−φ has a minimum at points
xj → x0. Since uj is a weak solution (and hence, a viscous solution) to
the first equation in our system, we have the inequality

−(−∆pj )
rφ(xj) + λ1,pj

αj

pj
|φ|αj−2φ|v|βj (xj) ≤ 0.

Writing, as in [24],

A
pj−1
j = 2

∫
RN

|φ(xj)− φ(y)|pj−2(φ(xj)− φ(y))+

|xj − y|N+spj
dy,



1102 LEANDRO M. DEL PEZZO AND JULIO D. ROSSI

B
pj−1
j = 2

∫
RN

|φ(xj)− φ(y)|pj−2(φ(xj)− φ(y))−

|xj − y|N+spj
dy

and
C

pj−1
j = λ1,pj

αj

pj
|φ|αj−2φ|v|βj (xj),

we obtain
A

pj−1
j + C

pj−1
j ≤ B

pj−1
j .

Using that
Aj −→ L+

r,∞φ(x0),

Bj −→ −L−
r,∞φ(x0)

and
Cj −→ Λ1,∞u

Γ(x0)v
1−Γ(x0),

we obtain

min{Lr,∞φ(x0);L+
r,∞φ(x0)− Λ1,∞u

Γ(x0)v
1−Γ(x0)} ≤ 0. �
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