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NONLOCAL INITIAL VALUE PROBLEMS
FOR HADAMARD-TYPE FRACTIONAL

DIFFERENTIAL EQUATIONS AND INCLUSIONS

BASHIR AHMAD AND SOTIRIS K. NTOUYAS

ABSTRACT. In this paper, we study initial value prob-
lems of fractional differential equations and inclusions of
Hadamard type, supplemented with nonlocal conditions.
Some new existence and uniqueness results are obtained by
using fixed point theorems for single valued and multi-valued
maps. Examples illustrating the main results are also pres-
ented.

1. Introduction. The mathematical modeling of several phenom-
ena in applied sciences, such as physics, biology and ecology, gives rise
to the problems with non-classical boundary conditions. Such condi-
tions, which connect the values of unknown functions on the boundary
and inside of the given domain, are known as nonlocal boundary con-
ditions. The idea of nonlocal conditions dates back to the work of
Hilb [20]. However, the systematic investigation of a certain class of
spatial nonlocal problems was carried out by Bitsadze and Samarskii
[7]. We refer the reader to [6, 11] and the references cited therein for
motivation regarding nonlocal conditions.

Fractional calculus (differentiation and integration of arbitrary or-
der) naturally arises in various areas of applied science and engineering,
such as mechanics, electricity, chemistry, biology, economics, control
theory, signal and image processing, polymer rheology, regular thermo-
dynamic variation, biophysics, blood flow phenomena, aerodynamics,
electro-dynamics of complex media, viscoelasticity and damping, con-
trol theory, wave propagation, percolation, identification, experimental
data fitting, etc. [23, 29, 30, 31].
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Differential equations of fractional order have attracted the attention
of several researchers, see [1, 2, 4, 14, 17, 22, 26, 28] and the
references therein. For some recent work on Hadamard-type fractional
differential equations, inclusions and inequalities, we refer the reader
to [3].

In this paper, we investigate the existence of solutions for Hadamard
type fractional differential equations and inclusions equipped with
nonlocal initial conditions. We first consider the following Hadamard
type single-valued nonlocal nonlinear initial value problem

(1.1)


HDqx(t) = f(t, x(t))

1 < t < T, 0 < q ≤ 1,

x(1) +
m∑
j=1

ζj x(tj) = 0,

where HDq denotes the Hadamard fractional derivative of order q,
f : [1, T ] × R → R, tj , j = 1, 2, . . . ,m, are given points with 1 ≤
t1 ≤ · · · ≤ tm < T , and ζj are real numbers such that

1 +

m∑
j=1

ζj ̸= 0.

Then, we extend our study to the Hadamard type multi-valued problem
of the form

(1.2)


HDqx(t) ∈ F (t, x(t))

1 < t < T, 0 < q ≤ 1,

x(1) +
m∑
j=1

ζj x(tj) = 0,

where F : [1, T ]×R → P(R) is a multi-valued map (P(R) is the family
of all nonempty subsets of R).

We emphasize that problem (1.1) was studied for q = 1 in [9], for the
time scales setting in [5] and for Caputo fractional differential equations
in [8]. Here, we extend the work presented in [5, 8, 9] to the fractional
case of Hadamard type single-valued and multi-valued nonlocal initial
value problems.

A variety of existence results for problem (1.1) are proven by ap-
plying fixed point theorems. In subsection 3.1, we discuss an existence
result using the idea employed in [5, 8, 9], where the growth condi-
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tion is split into two sub intervals: one containing the points involved
in the nonlocal condition, while the second one deals with the rest of
the interval. In subsection 3.2, we present some more existence and
uniqueness results for problem (1.1). In precise terms, an existence
and uniqueness result is obtained by using Banach’s fixed point the-
orem. Leray-Schauder alternative is employed to obtain an existence
result by assuming a growth condition on f(t, x(t)) on the whole in-
terval. The multi-valued problem (1.2) with convex and non-convex
multi-valued maps is studied in Section 4. In the case of convex-valued
maps (the upper semicontinuous case), we apply the nonlinear alterna-
tive of Leray-Schauder type to obtain an existence result for problem
(1.2) in subsection 4.1. When the right hand side of the inclusion in
(1.2) is not necessarily convex valued (the lower semicontinuous case),
the desired existence result for (1.2) is obtained in subsection 4.2 by
combining the nonlinear alternative of Leray-Schauder type for single-
valued maps with a selection theorem due to Bressan and Colombo for
lower semicontinuous multi-valued maps with nonempty closed and de-
composable values. The last result (the Lipschitz case), concerning the
existence of solutions for problem (1.2) with not necessary nonconvex
valued right hand side, is proven by applying a fixed point theorem
for contractive multi-valued maps due to Covitz and Nadler in subsec-
tion 4.3. Although the methods employed in the present study are well
known, their exposition in the framework of problems (1.1) and (1.2)
is new.

2. Preliminaries. In this section, we introduce notation and def-
initions which are used throughout this paper. Let X = C([1, T ],R)
denote the Banach space of all continuous functions from [1, T ] into R
with the norm

∥x∥ = ∥x∥[1,T ] = max
t∈[1,T ]

|x(t)|.

We denote by L1([1, T ],R) the Banach space of measurable functions
x : [1, T ] → R which are Lebesgue integrable and normed by

∥x∥L1 =

∫ T

1

|x(t)| dt for all x ∈ L1([1, T ],R).

Let us recall some definitions on fractional calculus [3, 23, 29, 31].
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Definition 2.1 ([23]). The Hadamard derivative of fractional order q
for a function g : [1,∞) → R is defined as

HDqg(t) =
1

Γ(n− q)

(
t
d

dt

)n ∫ t

1

(
log

t

s

)n−q−1
g(s)

s
ds,

n− 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q and log(·) =
loge(·).

Definition 2.2 ([23]). The Hadamard fractional integral of order q
for a function g is defined as

Iqg(t) =
1

Γ(q)

∫ t

1

(
log

t

s

)q−1
g(s)

s
ds, q > 0,

provided the integral exists.

In order to define the solution of problem (1.1), we consider the
following lemma.

Lemma 2.3. Assume that 1 +
∑m

j=1 ζj ̸= 0. For a given y ∈ X, the
unique solution of the initial value problem

(2.1)


HDqx(t) = y(t) 1 < t < T, 0 < q ≤ 1,

x(1) +

m∑
j=1

ζj x(tj) = 0 1 ≤ t1 ≤ · · · ≤ tm < T,

is given by

x(t) =
1

Γ(q)

∫ t

1

(
log

t

s

)q−1
y(s)

s
ds(2.2)

− 1

1 +
m∑
j=1

ζj

m∑
j=1

ζj
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1
y(s)

s
ds.

Proof. For some constant x0 ∈ R, we have

(2.3) x(t) =
1

Γ(q)

∫ t

1

(
log

t

s

)q−1
y(s)

s
ds− x0.
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Then, we obtain

x(tj) =
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1
y(s)

s
ds− x0,

which, together with the initial condition in (2.1), yields

x0 =
1

1 +
m∑
j=1

ζj

m∑
j=1

ζj
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1
y(s)

s
ds.

Substituting the value of x0 in (2.3), we obtain a unique solution of
problem (2.1) given by (2.2). This completes the proof. �

In the sequel, we set

(2.4) A = 1 + |β|
m∑
j=1

|ζj |, β =
(
1 +

m∑
j=1

ζj

)−1

,

with 1 +
∑m

j=1 ζj ̸= 0.

3. Main results for problem (1.1). In this section, we establish
the existence and uniqueness results for problem (1.1).

3.1. Existence result with the mixed growth condition. We
assume that f : [1, T ] × R → R is a Carathéodory function and prove
an existence result with mixed growth condition.

Definition 3.1. The map f : [1, T ] × R → R is said to be L1-
Carathéodory if

(i) t 7→ f(t, x) is measurable for each x ∈ R;
(ii) x 7→ f(t, x) is continuous for almost all t ∈ [1, T ];
(iii) For each ρ > 0, there exists a ϕρ ∈ L1([1, T ],R+) such that

|f(t, x)| ≤ ϕρ(t) for all ∥x∥ ≤ ρ and for almost all t ∈ [1, T ].

In view of Lemma 2.3, solutions of problem (1.1) are fixed points of
the operator F : X → X, defined by
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(Fx)(t) =
1

Γ(q)

∫ t

1

(
log

t

s

)q−1
f(s, x(s))

s
ds(3.1)

− β
m∑
j=1

ζj
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1
f(s, x(s))

s
ds.

Note that the operator F given by (3.1) appears as a sum of two
integral operators: Fredholm type SF (say), whose values depend on
the restriction of function values to [1, tm], and is given by

SFx(t) =



1

Γ(q)

∫ t

1

(
log

t

s

)q−1
f(s, x(s))

s
ds

−β

m∑
j=1

ζj
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1
f(s, x(s))

s
ds, t < tm,

1

Γ(q)

∫ tm

1

(
log

tm
s

)q−1
f(s, x(s))

s
ds

−β
m∑
j=1

ζj
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1
f(s, x(s))

s
ds, t ≥ tm,

and Volterra type SV (say), defined by

SV x(t) =


0 t < tm,

1

Γ(q)

∫ t

tm

(
log

t

s

)q−1
f(s, x(s))

s
ds, t ≥ tm,

depending on the restriction of function to [tm, T ]. This allows us to
split the growth condition on the nonlinear term f(t, x) into two parts,
namely, for t ∈ [1, tm] and t ∈ [tm, T ].

Theorem 3.2. Assume that

(H1) f : [1, T ]× R → R is an L1-Carathéodory function.

(H2) There exist a continuous function ω nondecreasing in its second
argument, p ∈ L1[tm, T ] and a nondecreasing function Ψ : R+ → R+

such that

|f(t, x)| ≤

{
ω(t, |x|) t ∈ [1, tm],

p(t)Ψ(|x|) t ∈ [tm, T ].
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(H3) There exists an R0 > 0 such that

ρ > R0 =⇒ 1

ρΓ(q)

∫ tm

1

(
log

tm
s

)q−1
ω(s, ρ)

s
ds <

1

A
.

(H4) lim supR→∞
R

Q1 +Ψ(R)Q2
> 1, where

Q1 =
A

Γ(q)

∫ tm

1

(
log

tm
s

)q−1
ω(s,R0)

s
ds

and

Q2 =
1

Γ(q)

∫ T

tm

(
log

T

s

)q−1
p(s)

s
ds.

Then, problem (1.1) has at least one solution on [1, T ].

Proof. We show that the solutions of (1.1) are a priori bounded. Let
x be a solution. Then, for t ∈ [1, tm], we have

|x(t)| = λ

∣∣∣∣ 1

Γ(q)

∫ t

1

(
log

t

s

)q−1
f(s, x(s))

s
ds

− β
m∑
j=1

ζj
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1
f(s, x(s))

s
ds

∣∣∣∣
≤ 1

Γ(q)

∫ tm

1

(
log

tm
s

)q−1 |f(s, x(s))|
s

ds

+ |β|
m∑
j=1

|ζj |
1

Γ(q)

∫ tm

1

(
log

tj
s

)q−1 |f(s, x(s))|
s

ds

≤ A
1

Γ(q)

∫ tm

1

(
log

tm
s

)q−1
ω(s, |x(s)|)

s
ds,

which, on taking the supremum for t ∈ [1, tm], yields

∥x∥[1,tm] ≤ A
1

Γ(q)

∫ tm

1

(
log

tm
s

)q−1ω(s, ∥x∥[1,tm])

s
ds.

Then, assumption (H3) guarantees that

∥x∥[1,tm] ≤ R0.
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Next, we let t ∈ [tm, T ]. Then

|x(t)| = λ

∣∣∣∣ 1

Γ(q)

∫ t

1

(
log

t

s

)q−1
f(s, x(s))

s
ds

− β
m∑
j=1

ζj
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1
f(s, x(s))

s
ds

∣∣∣∣
≤ 1

Γ(q)

∫ tm

1

(
log

t

s

)q−1
ω(s,R0)

s
ds

+ |β|
m∑
j=1

ζj
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1
ω(s,R0)

s
ds

+
1

Γ(q)

∫ t

tm

(
log

t

s

)q−1
p(s)Ψ(|x(s)|)

s
ds

≤ A
1

Γ(q)

∫ tm

1

(
log

t

s

)q−1
ω(s,R0)

s
ds

+
1

Γ(q)

∫ t

tm

(
log

t

s

)q−1
p(s)Ψ(|x(s)|)

s
ds

≤ A
1

Γ(q)

∫ tm

1

(
log

t

s

)q−1
ω(s,R0)

s
ds

+Ψ(∥x∥[tm,T ])
1

Γ(q)

∫ t

tm

(
log

t

s

)q−1
p(s)

s
ds

≤ A
1

Γ(q)

∫ tm

1

(
log

tm
s

)q−1
ω(s,R0)

s
ds

+Ψ(∥x∥[tm,T ])
1

Γ(q)

∫ T

tm

(
log

T

s

)q−1
p(s)

s
ds.

Consequently, we have

(3.2)
∥x∥[tm,T ]

Q1 +Ψ(∥x∥[tm,T ])Q2
≤ 1.

Now, (H4) implies that there exists an R∗ > 0 such that, for all R > R∗,
we have

(3.3)
R

Q1 +Ψ(R)Q2
> 1.
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Comparing inequalities (3.2) and (3.3), we find that

∥x∥[tm,T ] ≤ R∗.

Let γ = max{R0, R
∗}. Then, we have ∥x∥[1,T ] ≤ γ. It follows from

(H1) that there exists a ϕγ ∈ L1([1, T ],R+) such that

|f(t, x(t))| ≤ ϕγ(t) for almost every t ∈ [1, T ].

The operator F : Bγ → X, defined by (3.1), is continuous and
completely continuous. Indeed, F is continuous in view of (H1), see
[19], and, for completely continuous, we remark that it is uniformly
bounded as

|Fx(t)| =
∣∣∣∣ 1

Γ(q)

∫ t

1

(
log

t

s

)q−1
f(s, x(s))

s
ds

− β
m∑
j=1

ζj
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1
f(s, x(s))

s
ds

∣∣∣∣
≤ 1

Γ(q)

∫ T

1

(
log

T

s

)q−1
ϕγ(s)

s
ds

+ |β|
m∑
j=1

|ζj |
1

Γ(q)

∫ T

1

(
log

T

s

)q−1
ϕγ(s)

s
ds

= A
1

Γ(q)

∫ T

1

(
log

T

s

)q−1
ϕγ(s)

s
ds,

and equicontinuous, since

|Fx(ν2)−Fx(ν1)|=
∣∣∣∣ 1

Γ(q)

∫ ν1

1

[(
log

ν2
s

)q−1

−
(
log

ν1
s

)q−1]
f(s, x(s))

s
ds

+
1

Γ(q)

∫ ν2

ν1

(
log

ν2
s

)q−1
f(s, x(s))

s
ds

∣∣∣∣
≤

∣∣∣∣ 1

Γ(q)

∫ ν1

1

[(
log

ν2
s

)q−1

−
(
log

ν1
s

)q−1]
ϕγ(s)

s
ds

+
1

Γ(q)

∫ ν2

ν1

(
log

ν2
s

)q−1
ϕγ(s)

s
ds

∣∣∣∣,
where 1 < ν1 < ν2 < T . Hence, by the Leray-Schauder alternative, we
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deduce that the operator F has a fixed point in Bγ , which is a solution
of problem (1.1). �

3.2. Further existence and uniqueness results. In the next theo-
rem, we prove the uniqueness of solutions for problem (1.1) via Banach’s
fixed point theorem.

Theorem 3.3. Assume that f : [1, T ]×R → R is a jointly continuous
function and satisfies the assumption:

(A1) |f(t, x)− f(t, y)| ≤ L∥x− y∥ for all t ∈ [1, T ], L > 0, x, y ∈ R.

Then, problem (1.1) has a unique solution on [1, T ] if L < Γ(q + 1)/
(A(log T )q).

Proof. Consider the operator F defined by (3.1), and show that FBr

⊂ Br, where
Br = {x ∈ X : ∥x∥ ≤ r}

with

r ≥ A(log T )qM

Γ(q + 1)−A(log T )qL
, sup
t∈[1,T ]

|f(t, 0)| = M.

For x ∈ Br, we have

|(Fx)(t)| =
∣∣∣∣ 1

Γ(q)

∫ t

1

(
log

t

s

)q−1
f(s, x(s))

s
ds

− β
m∑
j=1

ζj
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1
f(s, x(s))

s
ds

∣∣∣∣
≤ 1

Γ(q)

∫ t

1

(
log

t

s

)q−1

(|f(s, x(s))− f(s, 0)|+ |f(s, 0)|) ds
s

+ |β|
m∑
j=1

|ζj |
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1

× (|f(s, x(s))− f(s, 0)|+ |f(s, 0)|) ds
s

≤ (Lr+M)
1

Γ(q)

[∫ t

1

(
log

t

s

)q−1
ds

s
+|β|

m∑
j=1

|ζj |
∫ tj

1

(
log

tj
s

)q−1
ds

s

]
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≤ (Lr +M)
1

Γ(q + 1)

[
(log T )q + |β|(log T )q

m∑
j=1

|ζj |
]

=
A(log T )q(Lr +M)

Γ(q + 1)
≤ r.

In consequence, ∥Fx∥ ≤ r, for any x ∈ Br, which shows that FBr ⊂ Br.
Now, for x, y ∈ X and for each t ∈ [1, T ], we obtain

|(Fx)(t)− (Fy)(t)|

≤ 1

Γ(q)

∫ t

1

(
log

t

s

)q−1

|f(s, x(s))− f(s, y(s))|ds
s

+ |β|
m∑
j=1

|ζj |
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1

|f(s, x(s))− f(s, y(s))|ds
s

ds

≤ L∥x−y∥ 1

Γ(q)

[ ∫ t

1

(
log

t

s

)q−1
ds

s
+ |β|

m∑
j=1

|ζj |
∫ tj

1

(
log

tj
s

)q−1
ds

s

]
≤ L(log T )qA

Γ(q + 1)
∥x− y∥.

By the given condition L(log T )qA/(Γ(q + 1)) < 1, it follows that the
operator F is a contraction. Thus, the conclusion of the theorem follows
by the contraction mapping principle (the Banach fixed point theorem).
The proof is complete. �

The following existence result is based on the Leray-Schauder non-
linear alternative.

Theorem 3.4. Let f : [1, T ]×R → R be a jointly continuous function.
Assume that :

(A2) there exist a function p ∈ L1([1, T ],R+) and a nondecreasing
function Ω : R+ → R+ such that |f(t, x)| ≤ p(t)Ω(∥x∥), for all (t, x)
∈ [1, T ]× R.

(A3) There exists a constant K > 0 such that

K

AΩ(K)(1/Γ(q))
∫ T

1
(log T/s)q−1(p(s)/s) ds

> 1.

Then problem (1.1) has at least one solution on [1, T ].
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Proof. We show the boundedness of the set of all solutions to
equations x = λFx for λ ∈ [0, 1]. For that, let x be a solution of
x = λFx for λ ∈ [0, 1]. Then, for t ∈ [1, T ], we have

|x(t)| = |λ(Fx)(t)| ≤ 1

Γ(q)

∫ t

1

(
log

t

s

)q−1
f(s, x(s))

s
ds

+ |β|
m∑
j=1

|ζj |
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1
f(s, x(s))

s
ds

≤ 1

Γ(q)

∫ t

1

(
log

t

s

)q−1
p(s)Ω(∥x∥)

s
ds

+ |β|
m∑
j=1

|ζj |
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1
p(s)Ω(∥x∥)

s
ds

= AΩ(∥x∥) 1

Γ(q)

∫ T

1

(
log

T

s

)q−1
p(s)

s
ds,

which implies that

∥x∥
AΩ(∥x∥)(1/Γ(q))

∫ T

1
(log T/s)q−1(p(s)/s) ds

≤ 1.

In view of (A3), there is no solution x such that ∥x∥ ̸= K. We set

U = {x ∈ X : ∥x∥ < K}.

As in the proof (last step) of Theorem 3.2, it can be shown that the
operator F : U → X defined by (3.1) is continuous and completely
continuous. From the choice of U , there is no u ∈ ∂U such that
u = λF(u) for some λ ∈ (0, 1). Consequently, by the nonlinear
alternative of Leray-Schauder type [18], we deduce that F has a fixed
point u ∈ U , which is a solution of problem (1.1). This completes the
proof. �

As a special case, when p(t) = 1 and Ω(∥x∥) = κ∥x∥ +N , we have
the following corollary.

Corollary 3.5. Let f : [1, T ]×R → R be a jointly continuous function.
Assume that :
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(A4) there exist constants 0 ≤ κ < Γ(q + 1)/(A(log T )q) and N > 0
such that

|f(t, x)| ≤ κ|x|+N for all t ∈ [1, T ], x ∈ R.

Then, problem (1.1) has at least one solution on [1, T ].

4. Main results for problem (1.2). This section is devoted to
the existence of solutions for problem (1.2). We first outline some
basic concepts of multi-valued analysis [15, 21].

For a normed space (X, ∥·∥), let Pcl(X) = {Y ∈ P(X) : Y is closed},
Pb(X) = {Y ∈ P(X) : Y is bounded}, Pcl,b(X) = {Y ∈ P(X) : Y is
closed and bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact} and
Pcp,c(X) = {Y ∈ P(X) : Y is compact and convex}.

A multi-valued map G : X → P(X) is

(i) convex (closed) valued if G(x) is convex (closed) for all x ∈ X.

(ii) Bounded on bounded sets if G(Y ) = ∪x∈Y G(x) is bounded in X
for all Y ∈ Pb(X), i.e., supx∈Y {sup{|y| : y ∈ G(x)}} < ∞.

(iii) Upper semi-continuous (usc) on X if, for each x0 ∈ X, the set
G(x0) is a nonempty closed subset of X, and if, for each open set N of
X containing G(x0), there exists an open neighborhood N0 of x0 such
that G(N0) ⊆ N .

(iv) Lower semi-continuous (lsc) if the set {y∈X :G(y) ∩ Y ̸= ∅} is
open for any open set Y in X.

(v) Completely continuous if G(B) is relatively compact for every
B ∈ Pb(X). If the multi-valued map G is completely continuous with
nonempty compact values, then G is usc if and only if G has a closed
graph, i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗).

(vi) Measurable if, for every y ∈ X, the function

t 7−→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}

is measurable. Recall that G has a fixed point if there is an x ∈ X such
that x ∈ G(x). The fixed point set of the multi-valued operator G will
be denoted by FixG.

4.1. The Carathéodory case. In this subsection, we consider the
case when F has convex values and is of Carathéodory type and prove
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an existence result for problem (1.2) by applying nonlinear alternative
of Leray-Schauder type.

For each y ∈ C([1, T ],R), define the set of selections of F by

SF,y := {v ∈ L1([1, T ],R) : v(t) ∈ F (t, y(t)) on [1, T ]}.

We define the graph of G to be the set Gr(G) = {(x, y) ∈ X × Y,
y ∈ G(x)} and state a known result for closed graphs and upper-
semicontinuity.

Lemma 4.1 ([15, Proposition 1.2]). If G : X → Pcl(Y ) is usc, then
Gr(G) is a closed subset of X×Y ; i.e., for every sequence {xn}n∈N ⊂ X
and {yn}n∈N ⊂ Y , if xn → x∗, yn → y∗ as n → ∞ and yn ∈ G(xn),
then y∗ ∈ G(x∗). Conversely, if G is completely continuous and has a
closed graph, then it is upper semi-continuous.

We also need the following lemmas in the sequel.

Lemma 4.2 ([27]). Let X be a Banach space. Let F : J × R →
Pcp,c(X) be an L1-Carathéodory multi-valued map, and let Θ be a linear
continuous mapping from L1(J,X) to C(J,X). Then, the operator

Θ ◦ SF : C(J,X) −→ Pcp,c(C(J,X)), x 7→ (Θ ◦ SF )(x) = Θ(SF,x),

is a closed graph operator in C(J,X)× C(J,X).

Lemma 4.3 (Nonlinear alternative for Kakutani maps [18]). Let E be
a Banach space, C a closed convex subset of E, U an open subset of C
and 0 ∈ U . Suppose that F : U → Pcp,c(C) is an upper semicontinuous
compact map. Then, either :

(i) F has a fixed point in U ; or

(ii) there is a u ∈ ∂U and λ ∈ (0, 1) with u ∈ λF (u).

Definition 4.4. A function x ∈ C1([1, T ],R) is said to be a solution
of initial value problem (1.2) if

x(1) +
m∑
j=1

ζjx(tj) = 0
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and there exists a function v ∈ L1([0, 1],R) such that v(t) ∈ F (t, x(t))
almost everywhere on [1, T ] and

x(t) =
1

Γ(q)

∫ t

1

(
log

t

s

)q−1
v(s)

s
ds

− β

m∑
j=1

ζj
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1
v(s)

s
ds.

Theorem 4.5. Assume that (A5) holds. In addition, we suppose that :

(B1) F : [1, T ]× R → Pcp,c(R) is L1-Carathéodory ;

(B2) there exist a continuous nondecreasing function Φ : [0,∞) →
(0,∞) and a function p ∈ L1([1, T ],R+) such that

∥F (t, x)∥P := sup{|y| : y ∈ F (t, x)} ≤ p(t)Φ(∥x∥)
for each (t, x) ∈ [1, T ]× R;

(B3) there exists a constant K̂ > 0 such that

K̂

AΦ(K̂)(1/Γ(q))
∫ T

1
(log T/s)q−1(p(s)/s) ds

> 1,

where A is given by (2.4). Then, problem (1.2) has at least one solution
on [1, T ].

Proof. In order to transform problem (1.2) into a fixed point prob-
lem, we define an operator F : C([1, T ],R) → P(C([1, T ],R)) by

(4.1) F(x) = {h ∈ C([1, T ],R) : h(t) = N(x)(t)},

where

N(x)(t)=
1

Γ(q)

∫ t

1

(
log

t

s

)q−1
v(s)

s
ds−β

m∑
j=1

ζj
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1
v(s)

s
ds,

for v ∈ SF,x. It is obvious that the fixed points of F are solutions of
problem (1.2).

We will show that F satisfies the assumptions of Leray-Schauder
nonlinear alternative (Lemma 4.3) in several steps.

Step 1. F(x) is convex for each x ∈ C([1, T ],R). This step is obvious
since SF,x is convex (F has convex values).
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Step 2. F maps bounded sets (balls) into bounded sets in C([1, T ],R).
For a positive number r, let Br = {x ∈ C([1, T ],R) : ∥x∥ ≤ r} be a
bounded ball in C([1, T ],R). Then, for each h ∈ F(x), x ∈ Br, there
exists a v ∈ SF,x such that

h(t) =
1

Γ(q)

∫ t

1

(
log

t

s

)q−1
v(s)

s
ds−β

m∑
j=1

ζj
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1
v(s)

s
ds.

Then, for t ∈ [1, T ], we have

|h(t)| ≤ 1

Γ(q)

∫ t

1

(
log

t

s

)q−1 |v(s)|
s

ds

+ |β|
m∑
j=1

|ζj |
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1 |v(s)|
s

ds

≤ Φ(∥x∥)
Γ(q)

[ ∫ T

1

(
log

t

s

)q−1
p(s)

s
ds

+ |β|
m∑
j=1

|ζj |
∫ tj

1

(
log

tj
s

)q−1
p(s)

s
ds

]
,

and, consequently,

∥h∥ ≤ AΦ(r)

Γ(q)

∫ T

1

(
log

T

s

)q−1
p(s)

s
ds.

Step 3. F maps bounded sets into equicontinuous sets of C([1, T ],R).
Let 1 < ν1 < ν2 < T and x ∈ Br. Then, for each h ∈ F(x), we obtain

|h(ν2)− h(ν1)| ≤
Φ(r)

Γ(q)

∫ ν1

1

∣∣∣∣( log
ν2
s

)q−1

−
(
log

ν1
s

)q−1∣∣∣∣p(s)s ds

+
Φ(r)

Γ(q)

∫ ν2

ν1

(
log

ν2
s

)q−1
p(s)

s
ds.

Obviously, the right hand side of the previous inequality tends to zero
independently of x ∈ Br as ν2 − ν1 → 0. Therefore, it follows by
the Arzelá-Ascoli theorem that F : C([1, T ],R) → P(C([1, T ],R)) is
completely continuous.

In our next step, we show that F is usc Since F is completely
continuous, it is sufficient to establish that it has a closed graph.
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Step 4. F has a closed graph. Let xn → x∗, hn ∈ F(xn) and
hn → h∗. Then, we need to show that h∗ ∈ F(x∗). Associated with
hn ∈ F(xn), there exists a vn ∈ SF,xn such that, for each t ∈ [1, T ],

hn(t)=
1

Γ(q)

∫ t

1

(
log

t

s

)q−1
vn(s)

s
ds−β

m∑
j=1

ζj
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1
vn(s)

s
ds.

Thus, it suffices to show that there exists a v∗ ∈ SF,x∗ such that, for
each t ∈ [1, T ],

h∗(t)=
1

Γ(q)

∫ t

1

(
log

t

s

)q−1
v∗(s)

s
ds−β

m∑
j=1

ζj
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1
v∗(s)

s
ds.

Let us consider the linear operator Θ : L1([1, T ],R) → C([1, T ],R),
given by

f 7−→ Θ(v)(t) =
1

Γ(q)

∫ t

1

(
log

t

s

)q−1
v(s)

s
ds

− β
m∑
j=1

ζj
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1
v(s)

s
ds.

Observe that ∥hn(t) − h∗(t)∥ → 0 as n → ∞; thus, it follows from
Lemma 4.2 that Θ ◦ SF is a closed graph operator. Furthermore, we
have hn(t) ∈ Θ(SF,xn). Since xn → x∗, therefore, we have h∗(t) =

1/Γ(q)
∫ t

1
(log(t/s))q−1(v∗(s)/s) ds−β

∑m
j=1 ζj1/Γ(q)

∫ tj
1
(log(tj/s))

q−1

(v∗(s)/s) ds, for some v∗ ∈ SF,x∗ .

Step 5. We show that there exists an open set U ⊆ C([1, T ],R) with
x /∈ λF(x) for any λ ∈ (0, 1) and all x ∈ ∂U . Let λ ∈ (0, 1) and x ∈
λF(x). Then, there exists a v ∈ L1([1, T ],R) with v ∈ SF,x such that,
for t ∈ [1, T ], we have

x(t)=λ
1

Γ(q)

∫ t

1

(
log

t

s

)q−1
v(s)

s
ds−βλ

m∑
j=1

ζj
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1
v(s)

s
ds.

Similarly to the second step, we can obtain

|x(t)| ≤ AΦ(∥x∥) 1

Γ(q)

∫ T

1

(
log

T

s

)q−1
p(s)

s
ds,
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which implies that

∥x∥
AΦ(∥x∥)(1/Γ(q))

∫ T

1
(log T/s)q−1(p(s)/s) ds

≤ 1.

In view of (B3), there exists a K̂ such that ∥x∥ ̸= K̂. Let us set

U = {x ∈ C(I,R) : ∥x∥ < K̂}.

Note that the operator F : U → P(C(I,R)) is a compact multi-valued
map, usc with convex closed values. From the choice of U , there is no
x ∈ ∂U such that x ∈ λF(x) for some λ ∈ (0, 1). Consequently, by the
nonlinear alternative of Leray-Schauder type (Lemma 4.3), we deduce
that F has a fixed point x ∈ U which is a solution of problem (1.2).
This completes the proof. �

4.2. The lower semicontinuous case. Next, we deal with the case
where F is not necessarily convex valued. Our strategy to deal with
this situation is based on the nonlinear alternative of Leray Schauder
type together with the selection theorem of Bressan and Colombo [10]
for lower semi-continuous maps with decomposable values.

Let X be a nonempty closed subset of a Banach space E and
G : X → P(E) be a multi-valued operator with nonempty closed values.
G is lower semi-continuous (lsc) if the set {y ∈ X : G(y) ∩ B ̸= ∅} is
open for any open set B in E. Let A be a subset of [1, T ] × R. A is
L ⊗ B measurable if A belongs to the σ−algebra generated by all sets
of the form J ×D, where J is Lebesgue measurable in [1, T ] and D is
Borel measurable in R. A subset A of L1([1, T ],R) is decomposable
if for all u, v ∈ A and measurable J ⊂ [1, T ] = J , the function
uχJ + vχJ−J ∈ A, where χJ stands for the characteristic function
of J .

Definition 4.6. Let Y be a separable metric space and let N : Y →
P(L1([1, T ],R)) be a multi-valued operator. We say N has a property
(BC) if N is lower semi-continuous (lsc) and has nonempty closed and
decomposable values.

Let F : [1, T ] × R → P(R) be a multi-valued map with nonempty
compact values. Define a multi-valued operator

F : C([1, T ]× R) −→ P(L1([1, T ],R))
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associated with F as

F(x)={w∈L1([1, T ],R) :w(t)∈ F (t, x(t)) for almost every t∈ [1, T ]},

which is called the Nemytskii operator associated with F .

Definition 4.7. Let F : [1, T ]×R → P(R) be a multi-valued function
with nonempty compact values. We say F is of lower semi-continuous
type (lsc type) if its associated Nemytskii operator F is lower semi-
continuous and has nonempty closed and decomposable values.

Lemma 4.8 ([16]). Let Y be a separable metric space, and let N : Y →
P(L1([1, T ],R)) be a multi-valued operator satisfying the property (BC).
Then, N has a continuous selection, that is, there exists a continuous
function (single-valued) g : Y → L1([1, T ],R) such that g(x) ∈ N(x)
for every x ∈ Y .

Theorem 4.9. Assume that (B2), (B3) and the following condition
hold :

(B4) F : [1, T ] × R → P(R) is a nonempty compact-valued multi-
valued map such that

(a) (t, x) 7→ F (t, x) is L ⊗ B measurable;

(b) x 7→ F (t, x) is lower semicontinuous for each t ∈ [1, T ].

Then, problem (1.2) has at least one solution on [1, T ].

Proof. It follows from (B2) and (B4) that F is of lsc type. Then,
by Lemma 4.8, there exists a continuous function f : C1([1, T ],R) →
L1([1, T ],R) such that f(x) ∈ F(x) for all x ∈ C([1, T ],R).

Consider the problem

(4.2)


cDqx(t) = f(x(t))

1 < t < T, 0 < q ≤ 1,

x(1) +
m∑
j=1

ζj x(tj) = 0.

Obviously, if x ∈ C1([1, T ],R) is a solution of (4.2), then x is a
solution to problem (1.2). In order to transform problem (4.2) into a
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fixed point problem, we define the operator F as

Fx(t) =
1

Γ(q)

∫ t

1

(
log

t

s

)q−1
f(x(s))

s
ds

− β
m∑
j=1

ζj
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1
f(x(s))

s
ds, t ∈ J.

It can easily be shown that F is continuous and completely contin-
uous. The remaining part of the proof is similar to that of Theorem
4.5. Thus, we omit it. This completes the proof. �

4.3. The Lipschitz case. In this subsection, we prove the existence
of solutions for problem (1.2) with a nonconvex valued right hand side
by applying a fixed point theorem for multi-valued maps due to Covitz
and Nadler [13].

Let (X, d) be a metric space induced from the normed space (X; ∥·∥).
Consider Hd : P(X)× P(X) → R ∪ {∞}, given by

Hd(A,B) = max
{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}
,

where d(A, b) = infa∈A d(a; b) and d(a,B) = infb∈B d(a; b). Then, (Pcl,b

(X), Hd) is a metric space, see [24].

Definition 4.10. A multi-valued operator N : X → Pcl(X) is called

(a) γ-Lipschitz if and only if there exists a γ > 0 such that

Hd(N(x), N(y)) ≤ γ d(x, y) for each x, y ∈ X;

(b) a contraction if and only if it is γ-Lipschitz with γ < 1.

Lemma 4.11 ([13]). Let (X, d) be a complete metric space. If N :
X → Pcl(X) is a contraction, then FixN ̸= ∅.

Theorem 4.12. Assume that :

(C1) F : [1, T ] × R → Pcp(R) is such that F (·, x) : [1, T ] → Pcp(R)
is measurable for each x ∈ R;
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(C2) Hd(F (t, x), F (t, x)) ≤ m(t)|x− x| for almost all t ∈ [1, T ] and
x, x ∈ R with m ∈ L1([1, T ],R+) and d(0, F (t, 0)) ≤ m(t) for almost
all t ∈ [1, T ].

Then, problem (1.2) has at least one solution on [1, T ] if

(4.3) δ :=
A

Γ(q)

∫ T

1

(
log

t

s

)q−1
m(s)

s
ds < 1.

Proof. Note that the set SF,x is nonempty for each x ∈ C([1, T ],R)
by assumption (C1). Thus, F has a measurable selection, see [12,
Theorem III.6]. Now, we show that the operator F defined by (4.1)
satisfies the assumptions of Lemma 4.11. First, we show that F(x) ∈
Pcl((C[1, T ],R)) for each x ∈ C([1, T ],R). Let {un}n≥0 ∈ F(x) be such
that un → u, n → ∞, in C([1, T ],R). Then, u ∈ C([1, T ],R), and there
exists a vn ∈ SF,xn such that, for each t ∈ [1, T ],

un(t)=
1

Γ(q)

∫ t

1

(
log

t

s

)q−1
vn(s)

s
ds−β

m∑
j=1

ζj
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1
vn(s)

s
ds.

Since F has compact values, we pass onto a subsequence, if necessary,
to obtain that vn converges to v in L1([1, T ],R). Thus, v ∈ SF,x and,
for each t ∈ [1, T ], we have

vn(t) −→ v(t) =
1

Γ(q)

∫ t

1

(
log

t

s

)q−1
v(s)

s
ds

− β
m∑
j=1

ζj
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1
v(s)

s
ds.

Hence, u ∈ F(x).

Next, we show that there exists a δ < 1, defined by (4.3), such that

Hd(F(x),F(x)) ≤ δ∥x− x∥ for each x, x ∈ C1([1, T ],R).

Let x, x ∈ C1([1, T ],R) and h1 ∈ F(x). Then, there exists a v1(t) ∈
F (t, x(t)) such that, for each t ∈ [1, T ],

h1(t)=
1

Γ(q)

∫ t

1

(
log

t

s

)q−1
v1(s)

s
ds−β

m∑
j=1

ζj
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1
v1(s)

s
ds.
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From (C2), we have

Hd(F (t, x), F (t, x)) ≤ m(t)|x(t)− x(t)|.

Thus, there exists a w ∈ F (t, x(t)) such that

|v1(t)− w| ≤ m(t)|x(t)− x(t)|, t ∈ [1, T ].

Define U : [1, T ] → P(R) by

U(t) = {w ∈ R : |v1(t)− w| ≤ m(t)|x(t)− x(t)|}.

Since the multi-valued operator U(t) ∩ F (t, x(t)) is measurable, [12,
Proposition III.4], there exists a function v2(t) which is a measurable
selection for U . Therefore, v2(t) ∈ F (t, x(t)), and, for each t ∈ [1, T ],
we have |v1(t)− v2(t)| ≤ m(t)|x(t)− x(t)|.

For each t ∈ [1, T ], we define

h2(t)=
1

Γ(q)

∫ t

1

(
log

t

s

)q−1
v2(s)

s
ds−β

m∑
j=1

ζj
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1
v2(s)

s
ds.

Then,

|h1(t)− h2(t)| ≤
1

Γ(q)

∫ T

1

(
log

t

s

)q−1 |v1(s)− v2(s)|
s

ds

+ |β|
m∑
j=1

|ζj |
1

Γ(q)

∫ tj

1

(
log

tj
s

)q−1 |v1(s)− v2(s)|
s

ds

≤ A∥x− x∥
Γ(q)

∫ T

1

(
log

T

s

)q−1
m(s)

s
ds.

Hence,

∥h1 − h2∥ ≤ A∥x− x∥
Γ(q)

∫ T

1

(
log

T

s

)q−1
m(s)

s
ds.

Analogously, interchanging the roles of x and x, we obtain

Hd(F(x),F(x)) ≤ A∥x− x∥
Γ(q)

∫ T

1

(
log

T

s

)q−1
m(s)

s
ds.
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Thus, F is a contraction. Therefore, it follows from Lemma 4.11 that F
has a fixed point x which is a solution of (1.2). This completes the
proof. �

5. Examples.

(a) Consider the following Hadamard type nonlocal problem:
(5.1){

HD3/4x(t) = f(t, x(t)) 1 < t < e,

x(1)+(2/3)x(6/5)+(2/3)2x(8/5)+(2/3)3x(2)+(2/3)4x(12/5)=0.

Here, q = 3/4, T = e, ζ1 = 2/3, ζ2 = 4/9, ζ3 = 8/27, ζ4 = 16/81,
t1 = 6/5, t2 = 8/5, t3 = 2 and t4 = 12/5. With the given data, the
values of β and A defined by (2.4) are found to be β = 81/211 and
A = 341/211. In order to illustrate Theorem 3.3, we take

(5.2) f(t, x) =
1√

t2 + 24

|x|
(1 + |x|)

+
1

t+ 9
tan−1 x(t) + log t.

Clearly, L = 3/10 as |f(t, x) − f(t, y)| ≤ (3/10)|x − y| and Γ(q + 1)/
(A(log T )q) = 211Γ(7/4)/341 ≈ 0.56868678. With L < Γ(q + 1)/
(A(log T )q), all the conditions of Theorem 3.3 are satisfied. Therefore,
by the conclusion of Theorem 3.3, problem (5.1) with f(t, x) given by
(5.2) has a unique solution on [1, e].

In order to demonstrate the application of Theorem 3.4, we choose

(5.3) f(t, x) = (log e/t)2(1 + sinx(t)),

and note that |f(t, x)| ≤ p(t)Ω(∥x∥) with p(t) = (log e/t)2 and Ω(∥x∥)
= 1 + ∥x∥. Condition (A5) is satisfied for K > K1 ≈ 0.92150198.
Clearly, the hypothesis of Theorem 3.4 is satisfied, and consequently,
problem (5.1) with f(t, x) given by (5.3) has at least one solution on
[1, e].

(b) Consider the nonlocal multi-valued (inclusion) problem given by
(5.4){

HD3/4x(t) ∈ F (t, x(t)) 1 < t < e,

x(1)+(2/3)x(6/5)+(2/3)2x(8/5)+(2/3)3x(2)+(2/3)4x(12/5)=0.
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For the illustration of Theorem 4.5, consider

F (t, x(t)) = [log(e/t)x(t) + 1/10, (log(e/t))3(sinx(t) + 2)](5.5)

≤ (log(e/t))3(∥x∥+ 2).

Letting p(t) = (log(e/t))3,Φ(∥x∥) = (∥x∥+ 2), condition (B3) is satis-

fied with K̂ > K̂1 ≈ 1.08493176. Since all of the conditions of Theo-
rem 4.5 are satisfied, there exists at least one solution for problem (5.4)
with F given by (5.5) on [1, e].

In order to explain Theorem 4.12, we take

(5.6) F (t, x(t)) = [0, (5/2)(log(e/t))4 tan−1(x(t) + 1/4].

Fixing m(t) = (5/2)(log(e/t))4, condition (C2) is satisfied. From con-
dition (4.3), δ ≈ 0.69412000 < 1. In consequence, the conclusion of
Theorem 4.5 applies, and hence, problem (5.4) with F given by (5.6)
has at least one solution on [1, e].
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