THE LOG-CONVEXITY OF *r*-DERANGEMENT NUMBERS

FENG-ZHEN ZHAO

ABSTRACT. This paper focuses on the log-convexity of the sequence $\{D_r(n)\}_{n\geq r}$ of *r*-derangement numbers, where $r\geq 2$ is a positive integer. We mainly prove that $\{D_2(n)\}_{n\geq 2}$ and $\{D_3(n)\}_{n\geq 7}$ are log-convex. In addition, we also show that $\{\sqrt{D_2(n)}\}_{n\geq 2}$ and $\{\sqrt[3]{D_3(n)}\}_{n\geq 7}$ are log-balanced.

1. Introduction. The derangement number d_n is the number of fixed point-free permutations (FPF) on n letters. The sequence $\{d_n\}_{n>0}$ satisfies the recurrence

(1.1)
$$d_n = (n-1)(d_{n-1} + d_{n-2}), \quad n \ge 2,$$

where $d_0 = 1$, $d_1 = 0$ and $d_2 = 1$. Some values of $\{d_n\}_{n \ge 0}$ are as shown in Table 1.

n	d_n
0	1
1	0
2	1
3	2
4	9
5	44
6	265
7	1,854
8	14,833
9	133,496
10	1,334,961
11	14,684,570
12	176,214,841

TABLE 1.

2010 AMS Mathematics subject classification. Primary 05A20, 11B73, 11B83. Keywords and phrases. Derangement numbers, log-convexity, log-concavity, log-balancedness.

This research was supported by The Innovation Fund of Shanghai University. Received by the editors on March 29, 2017.

Copyright ©2018 Rocky Mountain Mathematics Consortium

DOI:10.1216/RMJ-2018-48-3-1031

For a permutation on n + r letters, Wang, et al., [12] gave the following definition.

Definition 1.1. An FPF permutation on n+r letters will be called an FPF *r*-permutation if, in its cycle decomposition, the first *r* letters are in distinct cycles. The number of FPF *r*-permutations is denoted by $D_r(n)$ and is called the *r*-derangement number. The first *r* elements, as well as the cycles in which they are contained, will be called distinguished.

It is clear that $D_r(n) = 0$ for n < r, $D_1(n) = d_{n+1}$, $D_r(r) = r!$, $r \ge 1$ and $D_r(r+1) = r(r+1)!$, $r \ge 2$. For the sequence $\{D_r(n)\}_{n\ge 0}$, Wang, et al., [12] proved that

(1.2)
$$D_r(n) = rD_{r-1}(n-1) + (n+r-1)D_r(n-1) + (n-1)D_r(n-2), \quad n > r, \quad r > 0.$$

Some values of $\{D_2(n)\}$ and $\{D_3(n)\}$ are as shown in Table 2.

n	$D_2(n)$	$D_3(n)$
2	2	0
3	12	6
4	84	72
5	640	780
6	5,430	8,520
7	50,988	97,650
8	526,568	1,189,104
9	5,940,576	15,441,048
10	72,755,370	213,816,240
11	961,839,340	3,152,287,710

TABLE 2.

Wang, et al., [12] also investigated some properties of $\{D_r(n)\}$. In this paper, we are interested in the log-behavior of $\{D_r(n)\}$.

Now, we recall some definitions involved in this paper. For a sequence of positive real numbers $\{z_n\}_{n\geq 0}$, it is said to be *log-convex* (or *log-concave*) if $z_n^2 \leq z_{n-1}z_{n+1}$ (or $z_n^2 \geq z_{n-1}z_{n+1}$) for each $n \geq 1$. A log-convex sequence $\{z_n\}_{n\geq 0}$ is said to be *log-balanced* if $\{z_n/n!\}_{n\geq 0}$ is log-concave [**3**]. It is well known that $\{z_n\}_{n\geq 0}$ is log-convex (or log-concave) if and only if its quotient sequence $\{z_{n+1}/z_n\}_{n>0}$ is nondecreasing (or

nonincreasing), and a log-convex sequence $\{z_n\}_{n\geq 0}$ is log-balanced if and only if $(n+1)z_n/z_{n-1} \geq nz_{n+1}/z_n$ for each $n \geq 1$. The logbalancedness is a special case of log-convexity. It is clear that the quotient sequence of a log-balanced sequence does not grow too fast.

In combinatorics, log-behavior of sequences is not only one of the important parts of unimodality problems but also a fertile source of inequalities. It has many applications in other subjects, see [1, 2, 4, 5, 6, 8, 9, 11]. Hence, the log-behavior of sequences deserves to be studied. Liu and Wang [7] proved that the sequence of derangement numbers $\{d_n\}_{n\geq 2}$ is log-convex. It seems that the log-behavior of $\{D_r(n)\}_{n\geq r}$ has not been studied when $r \geq 2$. The main object of this paper is to discuss the log-behavior of $\{D_r(n)\}_{n\geq r}$. In the next section, we show that $\{D_2(n)\}_{n\geq 2}$ and $\{D_3(n)\}_{n\geq 7}$ are log-convex. In addition, we also discuss the log-behavior of some sequences involving $D_2(n)$ (or $D_3(n)$).

Throughout this paper, $x_r(n) = D_r(n+1)/D_r(n), n \ge r$.

2. The log-convexity of the sequence $\{D_r(n)\}_{n\geq r}$. In this paper, we study the log-convexity of the sequence $\{D_r(n)\}_{n\geq r}$ when $r\geq 2$.

Theorem 2.1. Suppose that $r \ge 2$ is a fixed positive integer. For the sequence $\{D_r(n)\}_{n\ge r}$, there exists a positive integer $N_r \ge r+1$ such that $\{D_r(n)\}_{n>N_r}$ is log-convex.

Proof. It follows from (1.2) that

(2.1)
$$x_r(n) = \frac{rD_{r-1}(n)}{D_r(n)} + n + r + \frac{n}{x_r(n-1)}, \quad n \ge r+1.$$

It is clear that

(2.2)
$$x_r(n) \ge n+r, \quad n \ge r+1.$$

Wang, et al., [12] proved

(2.3)
$$\lim_{n \to +\infty} \frac{D_r(n)}{(n+r)!} = \frac{1}{r!e},$$

where $r \in \mathbb{N}_+$ is fixed. Due to (2.3), we have

$$\lim_{n \to +\infty} \frac{rD_{r-1}(n)}{D_r(n)} = 0.$$

Then, there exists a positive integer $M_1 \ge r+1$ such that $rD_{r-1}(n)/D_r$ (n) < 1/2 for $n \ge M_1$. Applying (2.2), we have

$$x_r(n) \le n + r + \frac{3}{2}, \quad n \ge M_1.$$

This implies that

$$x_r(n) \ge n + r + \frac{n}{n + r + 3/2}, \quad n \ge M_1 + 1.$$

We note that

$$\lim_{n \to +\infty} \frac{n}{n+r+3/2} = 1.$$

Then there exists a positive integer $N_r \ge M_1 + 1$ such that $x_r(n) \ge n + r + 1/2$ for $n \ge N_r$. Since $n + r + 1/2 \le x_r(n) \le n + r + 3/2$ for $n \ge N_r$, the sequence $\{D_r(n)\}_{n\ge N_r}$ is log-convex.

For Theorem 2.1, we note that the value of N_r is related to r. Next, we mainly discuss the log-convexity of $\{D_2(n)\}$ and $\{D_3(n)\}$. In addition, we also discuss the log-behavior of some sequences involving $D_2(n)$ (or $D_3(n)$).

For convenience, let $x_n = x_2(n)$ $(n \ge 2)$ and $y_n = x_3(n)$ $(n \ge 3)$. We first give some lemmas.

Lemma 2.2. For $n \ge 6$, we have

$$\lambda_n \le x_n \le \lambda_{n+1},$$

where $\lambda_n = (2n+5)/2$.

Proof. For $n \ge 2$, put $g_n = d_{n+1}/d_n$ and $z_n = D_2(n)$. We prove by induction that

(2.4) $\mu_n \le g_n \le \mu_{n+1}, \quad n \ge 3,$

where $\mu_n = (2n+1)/2$. By (1.1), we have

(2.5)
$$g_n = n + \frac{n}{g_{n-1}}, \quad n \ge 3.$$

It is evident that $\mu_k \leq g_k \leq \mu_{k+1}$ for k = 3. For $k \geq 3$, assume that $\mu_k \leq g_k \leq \mu_{k+1}$. It follows from (2.5) that

$$g_{k+1} - \mu_{k+1} = \frac{k+1}{g_k} - \frac{1}{2} \ge \frac{k+1}{\mu_{k+1}} - \frac{1}{2} > 0,$$

$$g_{k+1} - \mu_{k+2} = \frac{k+1}{g_k} - \frac{3}{2} \le \frac{k+1}{\mu_k} - \frac{3}{2} < 0.$$

Then we have $\mu_n \leq g_n \leq \mu_{n+1}$ for $n \geq 3$.

It follows from (2.1) that

(2.6)
$$x_n = \frac{2d_{n+1}}{D_2(n)} + n + 2 + \frac{n}{x_{n-1}}, \quad n \ge 3$$

By means of (1.2), we can verify that (2.7) $z_{n+1} = (n+2+g_n)z_n - [(n+1)g_n - n]z_{n-1} - (n-1)g_n z_{n-2}, \quad n \ge 4.$

It follows from (2.7) that

(2.8)
$$x_n = n + 2 + g_n - \frac{(n+1)g_n - n}{x_{n-1}} - \frac{(n-1)g_n}{x_{n-1}x_{n-2}}, \quad n \ge 4.$$

Now, we prove by induction that $\lambda_k \leq x_k \leq \lambda_{k+1}$ for $k \geq 6$. By straightforward calculation, we have

$$\lambda_6 < x_6 = \frac{8498}{905} < \lambda_7$$
 and $\lambda_7 < x_7 = \frac{131642}{12747} < \lambda_8$.

For $k \ge 7$, assume that $\lambda_k \le x_k \le \lambda_{k+1}$. By using (2.6), we get

$$\begin{aligned} x_{k+1} - \lambda_{k+1} &= \frac{k+1}{x_k} - \frac{1}{2} + \frac{2d_{k+2}}{D_2(k+1)} > \frac{k+1}{x_k} - \frac{1}{2} \ge \frac{k+1}{\lambda_{k+1}} - \frac{1}{2} \\ &= \frac{2k-3}{2(2k+7)} > 0. \end{aligned}$$

By applying (2.4) and (2.7), we derive

$$\begin{aligned} x_{k+1} &\leq k+3 + g_{k+1} - \frac{(k+2)g_{k+1} - k - 1}{\lambda_{k+1}} - \frac{kg_{k+1}}{\lambda_{k+1}\lambda_k} \\ &= k+3 + \frac{(3\lambda_k - 2k)g_{k+1} + 2(k+1)\lambda_k}{2\lambda_{k+1}\lambda_k} \\ &\leq k+3 + \frac{6k+19}{2(2k+7)} < k + \frac{9}{2} \\ &= \lambda_{k+2}. \end{aligned}$$

Hence, we have $\lambda_n \leq x_n \leq \lambda_{n+1}$ for $n \geq 6$.

Lemma 2.3. For $n \ge 8$, we have

$$\nu_n \le y_n \le \theta_n,$$

where $\nu_n = (2n+7)/2$ and $\theta_n = n+5$.

Proof. By applying (2.1), we have

(2.9)
$$y_n = \frac{3D_2(n)}{D_3(n)} + n + 3 + \frac{n}{y_{n-1}}, \quad n \ge 4.$$

For $n \ge 3$, let $z_n = D_3(n)$. It follows from (1.2) that

(2.10)
$$z_{n+1} = (n+3+x_{n-1})z_n - [(n+2)x_{n-1}-n]z_{n-1} - (n-1)x_{n-1}z_{n-2}, \quad n \ge 5.$$

By using (2.10), we have

$$(2.11) \quad y_n = n + 3 + x_{n-1} - \frac{(n+2)x_{n-1} - n}{y_{n-1}} - \frac{(n-1)x_{n-1}}{y_{n-1}y_{n-2}}, \quad n \ge 5.$$

We observe that $\nu_k \leq y_k \leq \theta_k$ for $8 \leq k \leq 10$. For $k \geq 10$, assume that $\nu_k \leq y_k \leq \theta_k$. It follows from (2.9) that

$$y_{k+1} \ge k+4 + \frac{k+1}{\theta_k} \ge \frac{2k+9}{2} = \nu_{k+1}.$$

It follows from (2.11) that

$$y_{k+1} \le k+4+x_k - \frac{(k+3)x_k - k - 1}{k+5} - \frac{kx_k}{(k+4)(k+5)}$$
$$= k+4 + \frac{2x_k + k + 1}{k+5} - \frac{kx_k}{(k+4)(k+5)}$$
$$= k+4 + \frac{(k+8)x_k + (k+1)(k+4)}{(k+4)(k+5)}.$$

By means of Lemma 2.2 we know that $(2k+5)/2 \le x_k \le (2k+7)/2$. Then, we derive

$$y_{k+1} \le k+4 + \frac{4k^2 + 33k + 64}{2k^2 + 18k + 40} < k+6 = \theta_{k+1}.$$

Hence, we obtain $\nu_n \leq y_n \leq \theta_n$ for $n \geq 8$.

Lemma 2.4. For $n \ge 2$, let $p_n = 2d_{n+1}/D_2(n)$. Then, the sequence $\{p_n\}_{n\ge 2}$ is decreasing.

Proof. We prove by induction that the sequence $\{p_n\}_{n\geq 2}$ is decreasing.

For $n \geq 2$, set $g_n = d_{n+1}/d_n$. We observe that $p_2 > p_3 > p_4 > p_5 > p_6$. For $k \geq 6$, assume that $p_{k-1} \geq p_k$. By Lemma 2.2, we derive $g_{k+1}/x_k \leq 1$ for $k \geq 6$. Due to $p_{k+1} = p_k g_{k+1}/x_k$, we have $p_k \geq p_{k+1}$. Hence, the sequence $\{p_n\}_{n\geq 2}$ is decreasing.

Lemma 2.5. For $n \ge 3$, let $q_n = 3D_2(n)/D_3(n)$. Then, the sequence $\{q_n\}_{n\ge 3}$ is decreasing.

The proof of Lemma 2.5 is similar to that of Lemma 2.4 and is omitted here.

Lemma 2.6. ([7]). If both $\{a_n\}$ and $\{b_n\}$ are log-convex, then so is the sequence $\{a_n + b_n\}$.

Theorem 2.7. The sequences $\{D_2(n)\}_{n\geq 2}$ and $\{D_3(n)\}_{n\geq 7}$ are logconvex, and $\{\sqrt{D_2(n)}\}_{n\geq 2}$ and $\{\sqrt[3]{D_2(n)}\}_{n\geq 7}$ are log-balanced.

FENG-ZHEN ZHAO

Proof. For $n \ge 2$, let $U_n = (n-2)D_2(n)$ and $V_n = nD_2(n-1)$, $n \ge 3$.

(i) In order to prove the log-convexity of $\{D_2(n)\}_{n\geq 2}$, we need to show that the sequence $\{x_n\}_{n\geq 2}$ is increasing. We have from Lemma 2.2 that $\{x_n\}_{n\geq 6}$ is increasing. On the other hand, it is not difficult to see that $x_k < x_{k+1}$ for $2 \leq k \leq 6$. Then, the sequence $\{x_n\}_{n\geq 2}$ is increasing.

Since the sequence $\{D_2(n)\}_{n\geq 2}$ is log-convex, $\{\sqrt{D_2(n)}\}_{n\geq 2}$ is also log-convex. In order to prove the log-balancedness of $\{\sqrt{D_2(n)}\}_{n\geq 2}$, we need to show that $\{\sqrt{D_2(n)}/n!\}_{n\geq 2}$ is log-concave. It is sufficient to prove that the sequence $\{\sqrt{x_n}/(n+1)\}_{n\geq 2}$ is decreasing. It is evident that $\sqrt{x_n}/(n+1) \geq \sqrt{x_{n+1}}/(n+2)$ if and only if $(n+2)^2 x_n - (n+1)^2 x_{n+1} \geq 0$. For $n \geq 6$, it follows from Lemma 2.2 that

$$(n+2)^2 x_n - (n+1)^2 x_{n+1} \ge \frac{(2n+5)(n+2)^2}{2} - \frac{(2n+9)(n+1)^2}{2}$$
$$= \frac{8n+11}{2} > 0.$$

On the other hand, we can verify that $(k+2)^2 x_k \ge (k+1)^2 x_{k+1}$ for $2 \le k \le 5$. Hence, the sequence $\{\sqrt{x_n}/(n+1)\}_{n\ge 2}$ is decreasing.

(ii) There is a recurrence relation for $D_r(n)$ and $D_{r+1}(n)$ in [12]

$$D_{r+1}(n) = \frac{n-r}{r+1}D_r(n) + \frac{n}{r+1}D_r(n-1),$$

where $r \in \mathbb{N}$ and $n \in \mathbb{N}_+$. Then, we have

(2.12)
$$D_3(n) = \frac{U_n}{3} + \frac{V_n}{3}.$$

In order to prove the log-convexity of $\{D_3(n)\}$, we first show that $\{U_n\}$ and $\{V_n\}$ are both log-convex.

For $n \ge 3$, set $s_n = U_{n+1}/U_n$ and $t_n = V_{n+1}/V_n$, $n \ge 4$. Now, we prove that $\{s_n\}_{n\ge 8}$ and $\{t_n\}_{n\ge 8}$ are both increasing. It is obvious that

$$s_n = \frac{n-1}{n-2}x_n$$
 and $t_n = \frac{n+1}{n}x_{n-1}$.

We note that

$$s_{n+1} - s_n = \frac{n(n-2)x_{n+1} - (n-1)^2 x_n}{(n-1)(n-2)},$$

$$t_{n+1} - t_n = \frac{n(n+2)x_n - (n+1)^2 x_{n-1}}{n(n+1)}.$$

It follows from (2.6) that

$$\begin{split} n(n-2)x_{n+1} - (n^2 - 2n + 1)x_n \\ &\geq n(n-2)\left(n+3 + \frac{n+1}{x_n}\right) - (n-1)^2 x_n \\ &= \frac{n(n-2)(n+3)x_n + n(n+1)(n-2) - (n-1)^2 x_n^2}{x_n}, \\ n(n+2)x_n - (n+1)^2 x_{n-1} \geq \frac{n(n+2)^2 x_{n-1} + n^2(n+2) - (n+1)^2 x_{n-1}^2}{x_{n-1}}. \end{split}$$

For any real number x, we define

$$\varphi(x) = -(n^2 - 2n + 1)x^2 + n(n-2)(n+3)x + n(n+1)(n-2),$$

$$\psi(x) = -(n+1)^2x^2 + n^2(n+2)x + n^2(n+2).$$

It is obvious that

$$n(n-2)x_{n+1} - (n^2 - 2n + 1)x_n \ge \frac{\varphi(x_n)}{x_n},$$
$$(n^2 - 1)x_n - n^2 x_{n-1} \ge \frac{\psi(x_{n-1})}{x_{n-1}}.$$

/ \)

We note that

$$\varphi'(x) = -2(n^2 - 2n + 1)x + n(n - 2)(n + 3),$$

$$\psi'(x) = -2(n + 1)^2x + n^2(n + 2).$$

It is easy to verify that $\varphi'(x) < 0$ and $\psi'(x) < 0$ for $x \in [\lambda_n, +\infty)$, where $\lambda_n = (2n+5)/2$. The functions $\varphi(x)$ and $\psi(x)$ are decreasing on $[\lambda_n, +\infty)$. We have from Lemma 2.2 that $\lambda_n \leq x_n \leq \lambda_{n+1}$ for $n \geq 6$. This implies

$$\varphi(x_n) \ge \varphi(\lambda_{n+1}),$$

$$\psi(x_{n-1}) \ge \psi(\lambda_n).$$

Since

$$\varphi(\lambda_{n+1}) = \frac{2n^3 - 11n^2 - 22n - 49}{4} > 0, \quad n \ge 8,$$

and

$$\psi(\lambda_n) = \frac{2n^3 - 11n^2 - 50n + 25}{4} > 0, \quad n \ge 9,$$

the sequences $\{s_n\}_{n\geq 8}$ and $\{t_n\}_{n\geq 9}$ are both increasing. Then, $\{U_n\}_{n\geq 8}$ and $\{V_n\}_{n\geq 9}$ are log-convex. By means of (2.12) and Lemma 2.6, we derive that the sequence $\{D_3(n)\}_{n\geq 9}$ is log-convex. We note that $\{D_3(7), D_3(8), D_3(9), D_3(10)\}$ is log-convex. Thus, $\{D_3(n)\}_{n\geq 7}$ is log-convex.

Since the sequence $\{D_3(n)\}_{n\geq 7}$ is log-convex, $\{\sqrt[3]{D_3(n)}\}_{n\geq 7}$ is also log-convex. In order to prove the log-balancedness of $\{\sqrt[3]{D_3(n)}\}_{n\geq 7}$, we must show that the sequence $\{\sqrt[3]{D_3(n)}/n!\}_{n\geq 7}$ is log-concave. Now, we prove that the sequence $\{\sqrt[3]{y_n}/(n+1)\}_{n\geq 7}$ is decreasing. It is clear that

$$\frac{\sqrt[3]{y_n}}{n+1} \ge \frac{\sqrt[3]{y_{n+1}}}{n+2}$$

if and only if $(n+2)^3y_n - (n+1)^3y_{n+1} \ge 0$. By using Lemma 2.3, we obtain

$$(n+2)^{3}y_{n} - (n+1)^{3}y_{n+1}$$

$$\geq \frac{(n+2)^{3}(2n+7) - (n+1)^{3}(2n+12)}{2}$$

$$= \frac{(n+16)(n+1)^{2} + (3n+4)(2n+7)}{2} > 0, \quad n \geq 8.$$

On the other hand, we observe that $9^3y_7 - 8^3y_8 > 0$. Then

$$\frac{\sqrt[3]{y_n}}{n+1} - \frac{\sqrt[3]{y_{n+1}}}{n+2} > 0 \quad \text{for } n \ge 7.$$

This implies that $\{\sqrt[3]{y_n}/(n+1)\}_{n\geq 7}$ is decreasing. Therefore, $\{\sqrt[3]{D_3(n)}/n!\}_{n\geq 7}$ is log-concave.

Theorem 2.8. The sequence $\{nD_2(n)\}_{n\geq 6}$ is log-balanced, and the sequence $\{D_3(n)/(n-1)!\}_{n\geq 3}$ is log-concave.

Proof. From the proof of Theorem 2.7, we know that the sequence $\{(n-2)D_2(n)\}_{n\geq 8}$ is log-convex. Since $nD_2(n) = (n-2)D_2(n) + 2D_2(n)$, the sequence $\{nD_2(n)\}_{n\geq 8}$ is log-convex. On the other hand, we can verify that $\{kD_2(k)\}_{6\leq k\leq 9}$ is log-convex. Hence, the sequence $\{nD_2(n)\}_{n\geq 6}$ is log-convex.

Now, we prove that the sequences $\{D_2(n)/(n-1)!\}_{n\geq 6}$ and $\{D_3(n)/(n-1)!\}_{n\geq 3}$ are both log-concave. For $n\geq 2$, let $\rho_n=x_n/n$ and $p_n=2d_{n+1}/D_2(n)$. For $n\geq 3$, let $\tau_n=y_n/n$ and $q_n=3D_2(n)/D_3(n)$. It is evident that $\{\rho_n\}$ (or $\{\tau_n\}$) is the quotient sequence of $\{D_2(n)/(n-1)!\}$ (or $\{D_3(n)/(n-1)!\}$). In order to prove the log-concavity of $\{D_2(n)/(n-1)!\}_{n\geq 6}$ (or $\{D_3(n)/(n-1)!\}_{n\geq 3}$), it is sufficient to show that the sequence $\{\rho_n\}_{n\geq 6}$ (or $\{\tau_n\}_{n\geq 3}$) is decreasing. Due to (2.6) (or (2.9)), we have

$$\rho_n = \frac{p_n}{n} + \frac{n+2}{n} + \frac{1}{x_{n-1}}, \quad n \ge 3,$$

$$\tau_n = \frac{q_n}{n} + \frac{n+3}{n} + \frac{1}{y_{n-1}}, \quad n \ge 4.$$

We have from Lemma 2.4 (or Lemma 2.5) that the sequence $\{p_n\}_{n\geq 2}$ (or $\{q_n\}_{n\geq 3}$) is decreasing. On the other hand, we note that $\{1/n\}_{n\geq 1}$, $\{(n+2)/n\}_{n\geq 1}$ and $\{1/x_{n-1}\}_{n\geq 3}$ are decreasing. Then, the sequence $\{\rho_n\}_{n\geq 6}$ is decreasing. Using a similar method, we derive that $\{\tau_n\}_{n\geq 8}$ is decreasing. We observe that $\{\tau_k\}_{3\leq k\leq 8}$ is decreasing. Hence, the sequence $\{\tau_n\}_{n\geq 3}$ is increasing.

Since $\{nD_2(n)\}_{n\geq 6}$ is log-convex and $\{D_2(n)/(n-1)!\}_{n\geq 6}$ is log-concave, $\{nD_2(n)\}_{n\geq 6}$ is log-balanced.

3. Conclusions. We have discussed the log-behavior of the sequence $\{D_r(n)\}_{n\geq r}$ of the *r*-derangement numbers. We mainly proved that $\{D_2(n)\}_{n\geq 2}$ and $\{D_3(n)\}_{n\geq 7}$ are log-convex. Our future work is to study the log-behavior of various recurrence sequences appearing in combinatorics.

Acknowledgments. The author would like to thank the referee and the editor for their helpful suggestions.

REFERENCES

1. N. Asai, I. Kubo and H.H. Kubo, *Roles of log-concavity, log-convexity and growth order in white noise analysis*, Infin. Dimen. Anal. Quant. Prob. Rel. Top. 4 (2001), 59–84.

2. F. Brenti, Log-concave and unimodal sequences in algebra, combinatorics, and geometry: An update, Contemp. Math. 178 (1994), 71–89.

3. T. Došlić, Log-balanced combinatorial sequences, Int. J. Math. Math. Sci. 4 (2005), 507–522.

4. _____, Seven (lattice) paths to log-convexity, Acta Appl. Math. **110** (2010), 1373–1392.

5. T. Došlić, D. Svrtan and D. Veljan, *Enumerative aspects of secondary struc*tures, Discr. Math. **285** (2004), 67–82.

6. T. Došlić and D. Veljan, Logarithmic behavior of some combinatorial sequences, Discr. Math. 308 (2008), 2182–2212.

 L.L. Liu and Y. Wang, On the log-convexity of combinatorial sequences, Adv. Appl. Math. 39 (2007), 453–476.

8. O. Milenkovic and K.J. Compton, *Probabilistic transforms for combinatorial urn models*, Combin. Prob. Comp. **13** (2004), 645–675.

9. D. Prelec, *Decreasing impatience: A criterion for non-stationary time preference and 'hyperbolic' discounting*, Scandinavian J. Econ. **106** (2004), 511–532.

10. R.P. Stanley, *Enumerative combinatorics*, Cambridge University Press, Cambridge, 1999.

11. _____, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Ann. NY Acad. Sci. **576** (1989), 500–535.

C.Y. Wang, P. Miska and I. Mező, The r-derangement numbers, Discr. Math.
 (2017), 1681–1692.

Shanghai University, Department of Mathematics, Shanghai 200444, China **Email address: fengzhenzhao@shu.edu.cn**