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THE LOG-CONVEXITY OF
r-DERANGEMENT NUMBERS

FENG-ZHEN ZHAO

ABSTRACT. This paper focuses on the log-convexity
of the sequence {D.(n)},>, of r-derangement numbers,
where r > 2 is a positive integer. We mainly prove that
{D2(n)}n>2 and {D3(n)},>7 are log-convex. In addition,

we also show that {\/D2(n)}n>2 and {{/D3(n)},>7 are log-

balanced.

1. Introduction. The derangement number d, is the number of
fixed point-free permutations (FPF) on n letters. The sequence
{dn}n>0 satisfies the recurrence

(1.1) dp = (n —1)(dn1 +dn_2), n>2,

where dg =1, d1 = 0 and dy = 1. Some values of {d,, },>¢ are as shown
in Table 1.

TABLE 1.
n dn
0 1
1 0
2 1
3 2
4 9
5 44
6 265
7 1,854
8 14,833
9 133,496
10 | 1,334,961
11 | 14,684,570
12 | 176,214,841
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For a permutation on n + r letters, Wang, et al., [12] gave the
following definition.

Definition 1.1. An FPF permutation on n+1r letters will be called an
FPF r-permutation if, in its cycle decomposition, the first r letters are
in distinct cycles. The number of FPF r-permutations is denoted by
D,(n) and is called the r-derangement number. The first r elements,
as well as the cycles in which they are contained, will be called distin-
guished.

It is clear that D,(n) = 0 for n < r, D1(n) = dnpy1, Dr(r) = 7l,
r>1and D,(r+1) =r(r+ 1), r > 2. For the sequence {D,(n)}n>0,
Wang, et al., [12] proved that

(1.2) D.(n)=rD,_1(n—1)+(n+r—1)D.(n—1)
+(n—-1)Dy(n—2), n>r, r>0.
Some values of {Dy(n)} and {Ds3(n)} are as shown in Table 2.

TABLE 2.
n Do (n) D3(n)
2 2 0
3 12 6
4 84 72
5 640 780
6 5,430 8,520
7 50,938 97,650
8 | 526,568 1,189,104
9 5,940,576 15,441,048
10 | 72,755,370 213,816,240
11 | 961,839,340 | 3,152,287,710

Wang, et al., [12] also investigated some properties of {D,(n)}. In this
paper, we are interested in the log-behavior of {D,.(n)}.

Now, we recall some definitions involved in this paper. For a se-
quence of positive real numbers {z, },>0, it is said to be log-convez (or
log-concave) if 22 < z,_12n41 (01 22 > 2, _12,11) foreachn > 1. A log-
convex sequence {z, }n>o is said to be log-balanced if {z,,/n!},>0 is log-
concave [3]. It is well known that {z, } ,>0 is log-convex (or log-concave)
if and only if its quotient sequence {z,11/2x }rn>0 is nondecreasing (or
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nonincreasing), and a log-convex sequence {z,},>o is log-balanced if
and only if (n+1)z,/2n—1 > nzpt1/2zn for each n > 1. The log-
balancedness is a special case of log-convexity. It is clear that the
quotient sequence of a log-balanced sequence does not grow too fast.

In combinatorics, log-behavior of sequences is not only one of the
important parts of unimodality problems but also a fertile source of
inequalities. It has many applications in other subjects, see [1, 2, 4,
5, 6, 8, 9, 11]. Hence, the log-behavior of sequences deserves to be
studied. Liu and Wang [7] proved that the sequence of derangement
numbers {dp},>2 is log-convex. It seems that the log-behavior of
{D,(n)}n>r has not been studied when r > 2. The main object of
this paper is to discuss the log-behavior of {D,(n)},>,. In the next
section, we show that {D3(n)},>2 and {D3(n)},>7 are log-convex. In
addition, we also discuss the log-behavior of some sequences involving
Dy (n) (or D3(n)).

Throughout this paper, z.(n) = D.(n+1)/D,(n), n > r.

2. The log-convexity of the sequence {D,(n)},>,. In this pa-
per, we study the log-convexity of the sequence {D,(n) }n>, when r > 2.

Theorem 2.1. Suppose that r > 2 is a fized positive integer. For the
sequence {D,(n)}n>r, there exists a positive integer N > r + 1 such

that {D,(n)}n>n, is log-convex.

Proof. Tt follows from (1.2) that

(2.1) xT(n)—W+n+r+gw_l), n>r+l.
It is clear that

(2.2) zp(n)>n+r, n>r+1.

Wang, et al., [12] proved

(2.3) i m -

where r € N, is fixed. Due to (2.3), we have

lim rDr—(n)

n—-+o0o Dr(n) =0
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Then, there exists a positive integer My > r+1 such that rD,._1(n)/D,
(n) < 1/2 for n > M;. Applying (2.2), we have

xr(n)gn—l—r—i—g, n > M.

This implies that
n

> -
xr(n)_n+r+n+r+3/2,

We note that
. n
hm —_— = 1
n—+oo N + 1 + 3/2

Then there exists a positive integer N, > Mj + 1 such that z,.(n) >
n+r+1/2forn > N,. Since n+r+1/2 < z,(n) < n+r+3/2 for
n > N,, the sequence {D,(n)},>n, is log-convex. O

For Theorem 2.1, we note that the value of N, is related to r.
Next, we mainly discuss the log-convexity of {Dy(n)} and {D3(n)}. In
addition, we also discuss the log-behavior of some sequences involving
Ds(n) (or Ds(n)).

For convenience, let =, = z2(n) (n > 2) and y, = x3(n) (n > 3).
We first give some lemmas.
Lemma 2.2. Forn > 6, we have
An S Tn S )\n+17
where Ay, = (2n + 5)/2.

Proof. For n > 2, put g, = dp41/d, and z, = Da(n). We prove by
induction that

(24) Hn S 9n S Mn+1, n Z 37

where u, = (2n + 1)/2. By (1.1), we have

n > 3.

(2.5) gn =N+

b)
In—1
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It is evident that pp < gr < pgy1 for k = 3. For k > 3, assume that
k< gk < pg41- It follows from (2.5) that

k+1 1 _ k+1 1
k4l — M1 = —— — = = —->0,
9k 27 pgy1r 2
k+1 3 k+1 3
— =— =X ——<0.
Jk+1 — Hk+2 2= T 5 <
Then we have p, < gn < pipy1 for n > 3.
It follows from (2.1) that
2dn+1 n
2.6 Ty = +n+2+ , n>3.
(2:6) Ds(n) Tp_1

By means of (1.2), we can verify that
(2.7)
Zn+1 = (n +24 gn)zn - [(n + 1)gn - n]znfl - (n - 1)gn2n72a n Z 4.

It follows from (2.7) that

(n+1)gn—n (n—1)gn

, n>4.
Tn-1 Tp—1Tn—2

Now, we prove by induction that A\ < zp < Agqq for £ > 6. By
straightforward calculation, we have

8498 131642
)\6<$6—W<)\7 and A7 < z7 = 19747 <

For k > 7, assume that Ay < 2 < Agy1. By using (2.6), we get

LR 242 k+1 1 1
k1 bl = Tk 2 DQ(]’C + ].) Tk 2 )\k+1 2
2k —3

AL}
22k +7)
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By applying (2.4) and (2.7), we derive

(k+2)grt1 —k—1  kgria

Tpr1 <k +3+ gry1 —

Ak+1 Ak4+1 Ak
— 2k 2(k+1
k434 (3, )gk+1 + 2(k + 1)
2M k11 Ak
6k + 19 9
<k+3+——-<k+-
R To T R
= )\k+2.
Hence, we have \,, <z, < A\41 for n > 6. O
Lemma 2.3. Forn > 8, we have
where v, = (2n+7)/2 and 0, =n + 5.
Proof. By applying (2.1), we have
(2.9) _3Dan) g sy
| " Dy(n) .

For n > 3, let z, = D3(n). It follows from (1.2) that

(2.10) Znp1 =M+ 3+ 2p-1)zn — [(n+2)Tp_1 — n]2n_1

—(n—1)xp_12n—2, n>5.
By using (2.10), we have

Ny 1 — )z,
(2.11) yn:n+3+wn71*(n+ Jtn-1—n  (n—1)z Loass
Yn—1 Yn—1Yn—2

We observe that v, <y < 60 for 8 < k < 10. For k > 10, assume that
v < yr < 0. It follows from (2.9) that

kE+1 > 2kE+9

>k+4
Yk+1 = K+4+ 0. 5

= Vk41-
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It follows from (2.11) that

(k+3)zy — k1 ke,
<k+4 _ _
Yri1 S kA4 k45 (k+4)(k +5)
2, +k+1 kxy,
— k4 _
Sy e (R (N
(k + 8)zx + (k + 1)(k + 4)
— k4t
(k+4)(k+5)

By means of Lemma 2.2 we know that (2k +5)/2 < xp < (2k+7)/2.
Then, we derive

4k* + 33k + 64
2k? + 18k + 40

Hence, we obtain v, <y, <0, for n > 8. O

Y1 <k +4+ <k+6=0u.

Lemma 2.4. For n > 2, let py = 2dy11/D2(n). Then, the sequence
{Pn}n>2 is decreasing.

Proof. We prove by induction that the sequence {p,, }n>2 is decreas-
ing.

For n > 2, set g, = dpt1/d,. We observe that ps > p3 > py >
ps > pg. For k > 6, assume that pr_1 > pr. By Lemma 2.2, we derive

gk+1/xk < 1 for k > 6. Due to pr4+1 = prgr+1/Tk, we have pg > pri1.
Hence, the sequence {py, }n>2 is decreasing. a

Lemma 2.5. Forn > 3, let ¢, = 3D3(n)/Ds(n). Then, the sequence
{qn}n>3 is decreasing.

The proof of Lemma 2.5 is similar to that of Lemma 2.4 and is
omitted here.

Lemma 2.6. ([7]). If both {an} and {b,} are log-convex, then so is
the sequence {a, + b, }.

Theorem 2.7. The sequences {Da(n)}n>2 and {D3(n)},>7 are log-

convez, and {\/Da2(n)}n>2 and {{/Da(n)}n>7 are log-balanced.
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Proof. For n > 2, let U, = (n — 2)Dz(n) and V;, = nDy(n — 1),
n > 3.

(1) In order to prove the log-convexity of {D3(n)},>2, we need to
show that the sequence {z,, },>2 is increasing. We have from Lemma 2.2
that {x,},>¢ is increasing. On the other hand, it is not difficult to
see that xp < xpy1 for 2 < k < 6. Then, the sequence {x,}n,>2 is
increasing.

Since the sequence {D2(n)},>2 is log-convex, {y/Da(n)}n>2 is also
log-convex. In order to prove the log-balancedness of {\/Da(n)}n>2,
we need to show that {\/Da(n)/n!},>2 is log-concave. It is sufficient
to prove that the sequence {\/z,/(n+1)},>2 is decreasing. It is
evident that \/Z, /(n + 1) > \/Zni1/(n + 2) if and only if (n+2)%z, —
(n+1)%z,41 > 0. For n > 6, it follows from Lemma 2.2 that

(2n+5)(n+2)? (2n+9)(n+1)?

2 2

8n+ 11
:n—2|— > 0.

(n+2)2%x, — (n+ 1)%w,41

Y

On the other hand, we can verify that (k 4+ 2)%zy > (k + 1)2x)4 for
2 <k < 5. Hence, the sequence {\/Z,,/(n+ 1)},>2 is decreasing.

(ii) There is a recurrence relation for D,(n) and D,41(n) in [12]

n—r

n
DT+1(’I’L) = T 1DT('I’L) + m

D,.(n—-1),
where » € N and n € Ny. Then, we have

(2.12) D3(n) = - +

Va
3 3

In order to prove the log-convexity of {Ds(n)}, we first show that {U,}
and {V,,} are both log-convex.

For n > 3, set s, = Upy41/U,, and t, = Vy41/Vi, n > 4. Now, we

prove that {s,}n>s and {¢,},>s are both increasing. It is obvious that

-1 1
n T, and tn:n+

Sp = Lp—1-
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We note that
nn —2)z,1 — (n— 1)z,
(n—1)(n-2) ’
nn+2)z, — (n+1)>%w,
n(n+1) '

Sn+1 — Sn =

tn+1 - tn ==

It follows from (2.6) that

n(n —2)z,11 — (n? —2n+ 1)z,

Zn(n—2)<n+3—|—n+1) —(n—1)%x,

n(n —2)(n+3)z, +n(n+1)(n —2) — (n — 1)%22

9

Ty,
nn+2)>%r, 1 +n’(n+2)— (n+1)%22_,

Tn—1

n(n+2)z,—(n+1) %z, >

For any real number z, we define
ox)=—(Mn*=2n+1)2°>+n(n—-2)(n+3)z+n(n+1)(n—2),
P(x)=—(n+ 1222 + n?(n + 2)z + n?(n + 2).

It is obvious that

nn—2)z,11 — (0% —2n+ 1)z, > cp(a?n)7
Tn
(n? — Dy — n2zn_1 > M
Tn-1

We note that

¢ () = =2(n* — 2n 4+ 1)z + n(n — 2)(n + 3),

() = —2(n+ 1)z +n*(n +2).
It is easy to verify that ¢'(z) < 0 and 9'(z) < 0 for z € [A,, +00),
where A\, = (2n 4+ 5)/2. The functions ¢(x) and ¢ (x) are decreasing

on [A,, +00). We have from Lemma 2.2 that A, <z, < A\, 41 for n > 6.
This implies
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Since
2n3 — 11n% — 22n — 49 S

4

80()\7%1) =

and
2n3 — 11n2% — 50n + 25

4

P(A,) = >0, n>09,

the sequences {s,}n>s and {t,}n>9 are both increasing. Then,
{Un}n>s and {V,,},>9 are log-convex. By means of (2.12) and Lem-
ma 2.6, we derive that the sequence {Ds(n)},>9 is log-convex. We note
that {D3(7), D3(8), D3(9), D3(10)} is log-convex. Thus, {Ds(n)},>7 is
log-convex.

Since the sequence {Ds(n)},>7 is log-convex, {{/Ds(n)},>7 is also
log-convex. In order to prove the log-balancedness of {{/Ds(n)}n>7,
we must show that the sequence { {/Ds(n)/n!},>7 is log-concave. Now,
we prove that the sequence {{/¥n/(n + 1)}n>7 is decreasing. It is clear

that
/Yn > VYn+1
n+1~ n+2

if and only if (n + 2)3y, — (n + 1)3y,4+1 > 0. By using Lemma 2.3, we
obtain

(n+ 2)3yn —(n+ 1)33/n+1

n+222n+7) — (n+1)3(2n + 12)
2

(n+16)(n+1)*+ (Bn+4)(2n+7)

= 5 >0, n>8.

>

On the other hand, we observe that 93y, — 83ys > 0. Then

3/ 3/
n _ VYnil >0 forn>"T.

n+1 n+2

This implies that { &y /(n+1) }n>7 is decreasing. Therefore, { ¥/ D3(n /
nl},>7 is log-concave.

Theorem 2.8. The sequence {nD2(n)}n>¢ is log-balanced, and the
sequence {Ds(n)/(n — 1)!},>3 is log-concave.
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Proof. From the proof of Theorem 2.7, we know that the sequence
{(n — 2)Ds(n)}n>s is log-convex. Since nDy(n) = (n — 2)Da(n) +
2D4(n), the sequence {nDy(n)},>s is log-convex. On the other hand,
we can verify that {kD2(k)}s<k<o is log-convex. Hence, the sequence
{nDz(n)}n>6 is log-convex.

Now, we prove that the sequences {Da(n)/(n — 1)!},>¢ and {Ds(n)/
(n — 1)!},,>3 are both log-concave. For n > 2, let p,, = x,,/n and p,, =
2d,+1/D2(n). For n > 3, let 7, = y,/n and ¢, = 3Dy(n)/D3(n). It is
evident that {p, } (or {7, }) is the quotient sequence of { D2(n)/(n — 1)}
(or {D3(n)/(n—1)!}). In order to prove the log-concavity of {Ds(n)/
(n—D1}p>6 (or {D3(n)/(n — 1)!},>3), it is sufficient to show that the
sequence {pn}n>6 (or {7, }n>3) is decreasing. Due to (2.6) (or (2.9)),
we have

Pn M+ 2 1

pn:7+ + 5 77/23,
n n Tr_1
31

S e S )
n no Ypo1

We have from Lemma 2.4 (or Lemma 2.5) that the sequence {py }n>2
(or {gn}n>3) is decreasing. On the other hand, we note that {1/n},>1,
{(n+2)/n}p>1 and {1/x,—1}n>3 are decreasing. Then, the sequence
{pn}n>6 is decreasing. Using a similar method, we derive that {7, },>s
is decreasing. We observe that {7;}s<k<s is decreasing. Hence, the
sequence {7, }n>3 is increasing.

Since {nDz(n)}n>6 is log-convex and {Dz(n)/(n — 1)!},>¢ is log-
concave, {nDs(n)}n>¢ is log-balanced. O

3. Conclusions. We have discussed the log-behavior of the se-
quence {D,(n)},>, of the r-derangement numbers. We mainly proved
that {Ds(n)}n>2 and {Ds(n)},>7 are log-convex. Our future work is
to study the log-behavior of various recurrence sequences appearing in
combinatorics.
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