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THE LOG-CONVEXITY OF
r-DERANGEMENT NUMBERS

FENG-ZHEN ZHAO

ABSTRACT. This paper focuses on the log-convexity
of the sequence {Dr(n)}n≥r of r-derangement numbers,
where r ≥ 2 is a positive integer. We mainly prove that
{D2(n)}n≥2 and {D3(n)}n≥7 are log-convex. In addition,

we also show that {
√

D2(n)}n≥2 and { 3
√

D3(n)}n≥7 are log-
balanced.

1. Introduction. The derangement number dn is the number of
fixed point-free permutations (FPF) on n letters. The sequence
{dn}n≥0 satisfies the recurrence

(1.1) dn = (n− 1)(dn−1 + dn−2), n ≥ 2,

where d0 = 1, d1 = 0 and d2 = 1. Some values of {dn}n≥0 are as shown
in Table 1.

TABLE 1.

n dn
0 1

1 0

2 1

3 2

4 9

5 44

6 265

7 1,854

8 14,833

9 133,496

10 1,334,961

11 14,684,570

12 176,214,841
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For a permutation on n + r letters, Wang, et al., [12] gave the
following definition.

Definition 1.1. An FPF permutation on n+r letters will be called an
FPF r-permutation if, in its cycle decomposition, the first r letters are
in distinct cycles. The number of FPF r-permutations is denoted by
Dr(n) and is called the r-derangement number. The first r elements,
as well as the cycles in which they are contained, will be called distin-
guished.

It is clear that Dr(n) = 0 for n < r, D1(n) = dn+1, Dr(r) = r!,
r ≥ 1 and Dr(r + 1) = r(r + 1)!, r ≥ 2. For the sequence {Dr(n)}n≥0,
Wang, et al., [12] proved that

Dr(n) = rDr−1(n− 1) + (n+ r − 1)Dr(n− 1)(1.2)

+ (n− 1)Dr(n− 2), n > r, r > 0.

Some values of {D2(n)} and {D3(n)} are as shown in Table 2.

TABLE 2.

n D2(n) D3(n)

2 2 0

3 12 6

4 84 72

5 640 780

6 5,430 8,520

7 50,988 97,650

8 526,568 1,189,104

9 5,940,576 15,441,048

10 72,755,370 213,816,240

11 961,839,340 3,152,287,710

Wang, et al., [12] also investigated some properties of {Dr(n)}. In this
paper, we are interested in the log-behavior of {Dr(n)}.

Now, we recall some definitions involved in this paper. For a se-
quence of positive real numbers {zn}n≥0, it is said to be log-convex (or
log-concave) if z2n ≤ zn−1zn+1 (or z

2
n ≥ zn−1zn+1) for each n ≥ 1. A log-

convex sequence {zn}n≥0 is said to be log-balanced if {zn/n!}n≥0 is log-
concave [3]. It is well known that {zn}n≥0 is log-convex (or log-concave)
if and only if its quotient sequence {zn+1/zn}n≥0 is nondecreasing (or



THE LOG-CONVEXITY OF r-DERANGEMENT NUMBERS 1033

nonincreasing), and a log-convex sequence {zn}n≥0 is log-balanced if
and only if (n+ 1)zn/zn−1 ≥ nzn+1/zn for each n ≥ 1. The log-
balancedness is a special case of log-convexity. It is clear that the
quotient sequence of a log-balanced sequence does not grow too fast.

In combinatorics, log-behavior of sequences is not only one of the
important parts of unimodality problems but also a fertile source of
inequalities. It has many applications in other subjects, see [1, 2, 4,
5, 6, 8, 9, 11]. Hence, the log-behavior of sequences deserves to be
studied. Liu and Wang [7] proved that the sequence of derangement
numbers {dn}n≥2 is log-convex. It seems that the log-behavior of
{Dr(n)}n≥r has not been studied when r ≥ 2. The main object of
this paper is to discuss the log-behavior of {Dr(n)}n≥r. In the next
section, we show that {D2(n)}n≥2 and {D3(n)}n≥7 are log-convex. In
addition, we also discuss the log-behavior of some sequences involving
D2(n) (or D3(n)).

Throughout this paper, xr(n) = Dr(n+ 1)/Dr(n), n ≥ r.

2. The log-convexity of the sequence {Dr(n)}n≥r. In this pa-
per, we study the log-convexity of the sequence {Dr(n)}n≥r when r ≥ 2.

Theorem 2.1. Suppose that r ≥ 2 is a fixed positive integer. For the
sequence {Dr(n)}n≥r, there exists a positive integer Nr ≥ r + 1 such
that {Dr(n)}n≥Nr is log-convex.

Proof. It follows from (1.2) that

(2.1) xr(n) =
rDr−1(n)

Dr(n)
+ n+ r +

n

xr(n− 1)
, n ≥ r + 1.

It is clear that

(2.2) xr(n) ≥ n+ r, n ≥ r + 1.

Wang, et al., [12] proved

(2.3) lim
n→+∞

Dr(n)

(n+ r)!
=

1

r!e
,

where r ∈ N+ is fixed. Due to (2.3), we have

lim
n→+∞

rDr−1(n)

Dr(n)
= 0.
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Then, there exists a positive integerM1 ≥ r+1 such that rDr−1(n)/Dr

(n) < 1/2 for n ≥M1. Applying (2.2), we have

xr(n) ≤ n+ r +
3

2
, n ≥M1.

This implies that

xr(n) ≥ n+ r +
n

n+ r + 3/2
, n ≥M1 + 1.

We note that
lim

n→+∞

n

n+ r + 3/2
= 1.

Then there exists a positive integer Nr ≥ M1 + 1 such that xr(n) ≥
n + r + 1/2 for n ≥ Nr. Since n + r + 1/2 ≤ xr(n) ≤ n + r + 3/2 for
n ≥ Nr, the sequence {Dr(n)}n≥Nr is log-convex. �

For Theorem 2.1, we note that the value of Nr is related to r.
Next, we mainly discuss the log-convexity of {D2(n)} and {D3(n)}. In
addition, we also discuss the log-behavior of some sequences involving
D2(n) (or D3(n)).

For convenience, let xn = x2(n) (n ≥ 2) and yn = x3(n) (n ≥ 3).
We first give some lemmas.

Lemma 2.2. For n ≥ 6, we have

λn ≤ xn ≤ λn+1,

where λn = (2n+ 5)/2.

Proof. For n ≥ 2, put gn = dn+1/dn and zn = D2(n). We prove by
induction that

(2.4) µn ≤ gn ≤ µn+1, n ≥ 3,

where µn = (2n+ 1)/2. By (1.1), we have

(2.5) gn = n+
n

gn−1
, n ≥ 3.
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It is evident that µk ≤ gk ≤ µk+1 for k = 3. For k ≥ 3, assume that
µk ≤ gk ≤ µk+1. It follows from (2.5) that

gk+1 − µk+1 =
k + 1

gk
− 1

2
≥ k + 1

µk+1
− 1

2
> 0,

gk+1 − µk+2 =
k + 1

gk
− 3

2
≤ k + 1

µk
− 3

2
< 0.

Then we have µn ≤ gn ≤ µn+1 for n ≥ 3.

It follows from (2.1) that

(2.6) xn =
2dn+1

D2(n)
+ n+ 2 +

n

xn−1
, n ≥ 3.

By means of (1.2), we can verify that
(2.7)
zn+1 = (n+ 2+ gn)zn − [(n+ 1)gn − n]zn−1 − (n− 1)gnzn−2, n ≥ 4.

It follows from (2.7) that

(2.8) xn = n+ 2 + gn − (n+ 1)gn − n

xn−1
− (n− 1)gn
xn−1xn−2

, n ≥ 4.

Now, we prove by induction that λk ≤ xk ≤ λk+1 for k ≥ 6. By
straightforward calculation, we have

λ6 < x6 =
8498

905
< λ7 and λ7 < x7 =

131642

12747
< λ8.

For k ≥ 7, assume that λk ≤ xk ≤ λk+1. By using (2.6), we get

xk+1 − λk+1 =
k + 1

xk
− 1

2
+

2dk+2

D2(k + 1)
>
k + 1

xk
− 1

2
≥ k + 1

λk+1
− 1

2

=
2k − 3

2(2k + 7)
> 0.



1036 FENG-ZHEN ZHAO

By applying (2.4) and (2.7), we derive

xk+1 ≤ k + 3 + gk+1 −
(k + 2)gk+1 − k − 1

λk+1
− kgk+1

λk+1λk

= k + 3 +
(3λk − 2k)gk+1 + 2(k + 1)λk

2λk+1λk

≤ k + 3 +
6k + 19

2(2k + 7)
< k +

9

2

= λk+2.

Hence, we have λn ≤ xn ≤ λn+1 for n ≥ 6. �

Lemma 2.3. For n ≥ 8, we have

νn ≤ yn ≤ θn,

where νn = (2n+ 7)/2 and θn = n+ 5.

Proof. By applying (2.1), we have

(2.9) yn =
3D2(n)

D3(n)
+ n+ 3 +

n

yn−1
, n ≥ 4.

For n ≥ 3, let zn = D3(n). It follows from (1.2) that

zn+1 = (n+ 3 + xn−1)zn − [(n+ 2)xn−1 − n]zn−1(2.10)

− (n− 1)xn−1zn−2, n ≥ 5.

By using (2.10), we have

(2.11) yn = n+3+ xn−1 −
(n+ 2)xn−1 − n

yn−1
− (n− 1)xn−1

yn−1yn−2
, n ≥ 5.

We observe that νk ≤ yk ≤ θk for 8 ≤ k ≤ 10. For k ≥ 10, assume that
νk ≤ yk ≤ θk. It follows from (2.9) that

yk+1 ≥ k + 4 +
k + 1

θk
≥ 2k + 9

2
= νk+1.
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It follows from (2.11) that

yk+1 ≤ k + 4 + xk − (k + 3)xk − k − 1

k + 5
− kxk

(k + 4)(k + 5)

= k + 4 +
2xk + k + 1

k + 5
− kxk

(k + 4)(k + 5)

= k + 4 +
(k + 8)xk + (k + 1)(k + 4)

(k + 4)(k + 5)
.

By means of Lemma 2.2 we know that (2k + 5)/2 ≤ xk ≤ (2k + 7)/2.
Then, we derive

yk+1 ≤ k + 4 +
4k2 + 33k + 64

2k2 + 18k + 40
< k + 6 = θk+1.

Hence, we obtain νn ≤ yn ≤ θn for n ≥ 8. �

Lemma 2.4. For n ≥ 2, let pn = 2dn+1/D2(n). Then, the sequence
{pn}n≥2 is decreasing.

Proof. We prove by induction that the sequence {pn}n≥2 is decreas-
ing.

For n ≥ 2, set gn = dn+1/dn. We observe that p2 > p3 > p4 >
p5 > p6. For k ≥ 6, assume that pk−1 ≥ pk. By Lemma 2.2, we derive
gk+1/xk ≤ 1 for k ≥ 6. Due to pk+1 = pkgk+1/xk, we have pk ≥ pk+1.
Hence, the sequence {pn}n≥2 is decreasing. �

Lemma 2.5. For n ≥ 3, let qn = 3D2(n)/D3(n). Then, the sequence
{qn}n≥3 is decreasing.

The proof of Lemma 2.5 is similar to that of Lemma 2.4 and is
omitted here.

Lemma 2.6. ([7]). If both {an} and {bn} are log-convex, then so is
the sequence {an + bn}.

Theorem 2.7. The sequences {D2(n)}n≥2 and {D3(n)}n≥7 are log-

convex, and {
√
D2(n)}n≥2 and { 3

√
D2(n)}n≥7 are log-balanced.
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Proof. For n ≥ 2, let Un = (n − 2)D2(n) and Vn = nD2(n − 1),
n ≥ 3.

(i) In order to prove the log-convexity of {D2(n)}n≥2, we need to
show that the sequence {xn}n≥2 is increasing. We have from Lemma 2.2
that {xn}n≥6 is increasing. On the other hand, it is not difficult to
see that xk < xk+1 for 2 ≤ k ≤ 6. Then, the sequence {xn}n≥2 is
increasing.

Since the sequence {D2(n)}n≥2 is log-convex, {
√
D2(n)}n≥2 is also

log-convex. In order to prove the log-balancedness of {
√
D2(n)}n≥2,

we need to show that {
√
D2(n)/n!}n≥2 is log-concave. It is sufficient

to prove that the sequence {√xn/(n+ 1)}n≥2 is decreasing. It is
evident that

√
xn/(n+ 1) ≥ √

xn+1/(n+ 2) if and only if (n+2)2xn −
(n+ 1)2xn+1 ≥ 0. For n ≥ 6, it follows from Lemma 2.2 that

(n+ 2)2xn − (n+ 1)2xn+1 ≥ (2n+ 5)(n+ 2)2

2
− (2n+ 9)(n+ 1)2

2

=
8n+ 11

2
> 0.

On the other hand, we can verify that (k + 2)2xk ≥ (k + 1)2xk+1 for
2 ≤ k ≤ 5. Hence, the sequence {√xn/(n+ 1)}n≥2 is decreasing.

(ii) There is a recurrence relation for Dr(n) and Dr+1(n) in [12]

Dr+1(n) =
n− r

r + 1
Dr(n) +

n

r + 1
Dr(n− 1),

where r ∈ N and n ∈ N+. Then, we have

(2.12) D3(n) =
Un

3
+
Vn
3
.

In order to prove the log-convexity of {D3(n)}, we first show that {Un}
and {Vn} are both log-convex.

For n ≥ 3, set sn = Un+1/Un and tn = Vn+1/Vn, n ≥ 4. Now, we
prove that {sn}n≥8 and {tn}n≥8 are both increasing. It is obvious that

sn =
n− 1

n− 2
xn and tn =

n+ 1

n
xn−1.
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We note that

sn+1 − sn =
n(n− 2)xn+1 − (n− 1)2xn

(n− 1)(n− 2)
,

tn+1 − tn =
n(n+ 2)xn − (n+ 1)2xn−1

n(n+ 1)
.

It follows from (2.6) that

n(n− 2)xn+1 − (n2 − 2n+ 1)xn

≥ n(n− 2)

(
n+ 3 +

n+ 1

xn

)
− (n− 1)2xn

=
n(n− 2)(n+ 3)xn + n(n+ 1)(n− 2)− (n− 1)2x2n

xn
,

n(n+2)xn−(n+1)2xn−1 ≥
n(n+ 2)2xn−1 + n2(n+ 2)− (n+ 1)2x2n−1

xn−1
.

For any real number x, we define

φ(x) = −(n2 − 2n+ 1)x2 + n(n− 2)(n+ 3)x+ n(n+ 1)(n− 2),

ψ(x) = −(n+ 1)2x2 + n2(n+ 2)x+ n2(n+ 2).

It is obvious that

n(n− 2)xn+1 − (n2 − 2n+ 1)xn ≥ φ(xn)

xn
,

(n2 − 1)xn − n2xn−1 ≥ ψ(xn−1)

xn−1
.

We note that

φ′(x) = −2(n2 − 2n+ 1)x+ n(n− 2)(n+ 3),

ψ′(x) = −2(n+ 1)2x+ n2(n+ 2).

It is easy to verify that φ′(x) < 0 and ψ′(x) < 0 for x ∈ [λn,+∞),
where λn = (2n+ 5)/2. The functions φ(x) and ψ(x) are decreasing
on [λn,+∞). We have from Lemma 2.2 that λn ≤ xn ≤ λn+1 for n ≥ 6.
This implies

φ(xn) ≥ φ(λn+1),

ψ(xn−1) ≥ ψ(λn).



1040 FENG-ZHEN ZHAO

Since

φ(λn+1) =
2n3 − 11n2 − 22n− 49

4
> 0, n ≥ 8,

and

ψ(λn) =
2n3 − 11n2 − 50n+ 25

4
> 0, n ≥ 9,

the sequences {sn}n≥8 and {tn}n≥9 are both increasing. Then,
{Un}n≥8 and {Vn}n≥9 are log-convex. By means of (2.12) and Lem-
ma 2.6, we derive that the sequence {D3(n)}n≥9 is log-convex. We note
that {D3(7), D3(8), D3(9), D3(10)} is log-convex. Thus, {D3(n)}n≥7 is
log-convex.

Since the sequence {D3(n)}n≥7 is log-convex, { 3
√
D3(n)}n≥7 is also

log-convex. In order to prove the log-balancedness of { 3
√
D3(n)}n≥7,

we must show that the sequence { 3
√
D3(n)/n!}n≥7 is log-concave. Now,

we prove that the sequence { 3
√
yn/(n+ 1)}n≥7 is decreasing. It is clear

that
3
√
yn

n+ 1
≥

3
√
yn+1

n+ 2

if and only if (n+ 2)3yn − (n+ 1)3yn+1 ≥ 0. By using Lemma 2.3, we
obtain

(n+ 2)3yn − (n+ 1)3yn+1

≥ (n+ 2)3(2n+ 7)− (n+ 1)3(2n+ 12)

2

=
(n+ 16)(n+ 1)2 + (3n+ 4)(2n+ 7)

2
> 0, n ≥ 8.

On the other hand, we observe that 93y7 − 83y8 > 0. Then

3
√
yn

n+ 1
−

3
√
yn+1

n+ 2
> 0 for n ≥ 7.

This implies that { 3
√
yn/(n+1)}n≥7 is decreasing. Therefore, { 3

√
D3(n)/

n!}n≥7 is log-concave. �

Theorem 2.8. The sequence {nD2(n)}n≥6 is log-balanced, and the
sequence {D3(n)/(n− 1)!}n≥3 is log-concave.
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Proof. From the proof of Theorem 2.7, we know that the sequence
{(n − 2)D2(n)}n≥8 is log-convex. Since nD2(n) = (n − 2)D2(n) +
2D2(n), the sequence {nD2(n)}n≥8 is log-convex. On the other hand,
we can verify that {kD2(k)}6≤k≤9 is log-convex. Hence, the sequence
{nD2(n)}n≥6 is log-convex.

Now, we prove that the sequences {D2(n)/(n− 1)!}n≥6 and {D3(n)/
(n− 1)!}n≥3 are both log-concave. For n ≥ 2, let ρn = xn/n and pn =
2dn+1/D2(n). For n ≥ 3, let τn = yn/n and qn = 3D2(n)/D3(n). It is
evident that {ρn} (or {τn}) is the quotient sequence of {D2(n)/(n− 1)!}
(or {D3(n)/(n− 1)!}). In order to prove the log-concavity of {D2(n)/
(n− 1)!}n≥6 (or {D3(n)/(n− 1)!}n≥3), it is sufficient to show that the
sequence {ρn}n≥6 (or {τn}n≥3) is decreasing. Due to (2.6) (or (2.9)),
we have

ρn =
pn
n

+
n+ 2

n
+

1

xn−1
, n ≥ 3,

τn =
qn
n

+
n+ 3

n
+

1

yn−1
, n ≥ 4.

We have from Lemma 2.4 (or Lemma 2.5) that the sequence {pn}n≥2

(or {qn}n≥3) is decreasing. On the other hand, we note that {1/n}n≥1,
{(n+ 2)/n}n≥1 and {1/xn−1}n≥3 are decreasing. Then, the sequence
{ρn}n≥6 is decreasing. Using a similar method, we derive that {τn}n≥8

is decreasing. We observe that {τk}3≤k≤8 is decreasing. Hence, the
sequence {τn}n≥3 is increasing.

Since {nD2(n)}n≥6 is log-convex and {D2(n)/(n− 1)!}n≥6 is log-
concave, {nD2(n)}n≥6 is log-balanced. �

3. Conclusions. We have discussed the log-behavior of the se-
quence {Dr(n)}n≥r of the r-derangement numbers. We mainly proved
that {D2(n)}n≥2 and {D3(n)}n≥7 are log-convex. Our future work is
to study the log-behavior of various recurrence sequences appearing in
combinatorics.
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