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ORTHOGONAL RATIONAL FUNCTIONS ON THE
EXTENDED REAL LINE AND ANALYTIC ON THE

UPPER HALF PLANE

XU XU AND LAIYI ZHU

ABSTRACT. Let {αk}∞k=1 be an arbitrary sequence of
complex numbers in the upper half plane. We generalize the
orthogonal rational functions ϕn based upon those points
and obtain the Nevanlinna measure, together with the Riesz
and Poisson kernels, for Carathéodory functions F (z) on
the upper half plane. Then, we study the relation between
ORFs and their functions of the second kind as well as
their interpolation properties. Further, by using a linear
transformation, we generate a new class of rational functions
and state the necessary conditions for guaranteeing their
orthogonality.

1. Introduction. The fundamental properties of orthogonal poly-
nomials were studied by Szegő in the 1920s. Based on his results and
methods, more research has been done on orthogonal rational functions
(ORFs) since the 1960s.

Generally, to study the orthogonal rational functions, we fix a
sequence of poles based on complex numbers {αk}∞k=1 on the entire
extended complex plane. In this way, we can define an n-dimensional
space of rational functions Ln consisting of the rational functions of
degree n with given poles.

Some fundamental theoretical results for orthogonal rational func-
tions on the unit circle and on the extended real line can be found in
[1, Chapters 2–10]. For the unit circle case, the fact that the poles at
infinity are outside of the closed unit disk guarantees that the ration-
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al functions are analytic inside of the unit circle. This allows us to
transfer properties of polynomials to rational functions. The authors
of [7] did a significant job in exploring the ORFs on the unit circle.
In addition, several results of orthogonal rational functions with pre-
scribed complex poles on the subset of the real line are discussed in
[2, 3, 6, 8]. The results about interpolation properties and asymp-
totic behaviors for the orthonormal rational functions can be found in
Pan’s papers [11, 12, 13]. Furthermore, characterization theorems for
log integrable measures associated with orthonormal rational functions
and convergence theorems for multipoint Padé approximations may be
found in [1, 10]. In addition, by shifting the coefficients in the recur-
rence relation, we can obtain a new type of rational function, called the
associated rational functions (ARFs). ARFs on the subset of the real
line and the unit circle were studied in [4, 5, 7].

In this paper, we shall attempt to obtain the Nevanlinna measure
for Carathéodory functions, which is related to orthogonal rational
functions ϕn on the upper half plane, i.e., which means to obtain a
positive definite linear inner product for a given Carathéodory function.
Next, we introduce the recurrence relation as in [7] and the functions
of the second kind as well as their relations with the ORFs. Then,
we study the functions −ψn(z)/ϕn(z) and ψ∗

n(z)/ϕ
∗
n(z), which are

the interpolants to a Carathéodory function F (z) at some points of
{αk}nk=1. Finally, we construct a new class of rational functions
based on the given ORFs and discuss the necessary conditions for the
orthogonality of this new class of functions.

2. Kernels for Carathéodory functions. We use the following
notation, for brief,

T = {z : |z| = 1}, D = {z : |z| < 1},
U = {z ∈ C : Im z > 0}, U c = {z ∈ C : Im z < 0}.

The complex number field is denoted by C. The real axis is denoted R.
The real and imaginary parts of a complex z are denoted Re z and
Im z, respectively. The set of complex functions holomorphic on U is
denoted by H(U).

Let {αk}∞k=0 be an arbitrary sequence of complex numbers in U . We
define the following expressions:

ωk(z) = z − αk, ω∗
k(z) = ωk∗(z) = z − αk.
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The Blaschke factors for {αk}∞k=0 are

ζk(z) = ηk
ω∗
k(z)

ωk(z)
,

where

ηk =


|1 + αk

2|
1 + αk

2
αk ̸= i,

1 αk = i.

We consider the rational function spaces with poles αk, k = 1, 2,
. . . , which can be defined by the span of the following Blaschke prod-
ucts

B−1(z) = ζ0
−1(z), Bk(z) = Bk−1(z)ζk(z), k = 0, 1, 2, . . . .

L−1 = {0}, L0 = C,

Ln := L{α1, . . . , αn} = span {B0, . . . , Bn}, n ≥ 1.

For any complex function, the substar conjugation is defined as:

f∗(z) = f(z).

Similarly, we can define the superstar transform for f ∈ Ln \ Ln−1 as

(2.1) f∗(z) = Bn(z)f∗(z).

The class of positive real functions, known as the class of Carathéodory
functions, C-functions for short, is defined as:

F ∈ H(U), ReF (z) > 0, z ∈ U.

We mark this class of functions on the upper half plane as C(U).

There are two important kernels which are related to the C-function
known as the Riesz-Herglotz kernel and the Poisson kernel. The ex-
pressions for these kernels was given in [1, pages 27–29] when α0 = i.
Thus, it is easy to use a conformal map to deduct a more general case
when α0 is chosen randomly in U . We have that

D(t, z) =
1

i Imα0

(Imα0)
2 + (z − Reα0)(t− Reα0)

t− z

=
ω∗
0(t)ω0(z) + ω∗

0(z)ω0(t)

ω0(α0)(t− z)
,
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while

P (t, z) =
Im z

Imα0

|t− α0|2

(1 + t2)|t− z|2
=

1

1 + t2
ωz(z)ω0(t)ω

∗
0(t)

ω0(α0)ωz(t)ω∗
z(t)

.

In addition, we define

(2.2) Pn(t) = P (t, αn) =
Imαn

Imα0

|t− α0|2

(1 + t2)|t− αn|2
.

3. Nevanlinna measure and representation. According to the
Nevanlinna representation, F (z) ∈ C(U) can be written as

F (z) = ic− ibz +

∫
R
D(t, z) dµ̃(t), b ≥ 0,

where µ̃ is a finite positive measure, called the Nevanlinna measure of
F (z).

Now we give the form of µ̃ based on D(t, z).

Theorem 3.1. For F (z) ∈ C(U), there exists a positive measure µ on
R which satisfies ∫

R

dµ(t)

1 + t2
<∞,

such that

ReF (z) = b Im z +

∫
R
P (t− Re z) dµ(t)

= b Im z +
1

π

∫
R

Im z

|t− z|2
dµ(t), b ≥ 0.

Thus,

F (z) = ic− ibz +

∫
R
D(t, z) dµ̃(t), c ∈ R,

where

dµ̃(t) =
1

π

Imα0 dµ(t)

|t− α0|2
, α0 ∈ U.
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Proof. Define Ω(z) = ic− ibz +
∫
RD(t, z) dµ̃(t). As a function with

respect to t, for |t| > 2|z|,

|D(t, z)| = 1

Imα0

|(Imα0)
2 + (z − Reα0)(t− Reα0)|

|t− z|

≤ |α0|
|z|

+
|z − Reα0|

Imα0

(
1 +

|z − Reα0|
|z|

)
.

Since ∫
R

Imα0 dµ(t)

|t− α0|2
=

∫
R

Imα0(1 + t2)

|t− α0|2
dµ(t)

(1 + t2)
,

and, for |t| > 2|α0|,

Imα0(1 + t2)

|t− α0|2
= Imα0

∣∣∣∣ t− i

t− α0

∣∣∣∣2 = Imα0

∣∣∣∣1 + α0 − i

t− α0

∣∣∣∣2
≤ Imα0

(
1 +

|α0 − i|
|α0|

)2

.

Hence,
∫
R Imα0 dµ(t)/|t− α0|2 < +∞,

ReΩ(z) = b Im z +
1

π

∫
R

Im z dµ(t)

|t− z|2
, Ω(z) ∈ H(U),

in which case,

F (z) = ic− ibz +

∫
R
D(t, z) dµ̃(t), c ∈ R, α0 ∈ U, b ≥ 0,

where

dµ̃(t) =
1

π

Imα0 dµ(t)

|t− α0|2
. �

The correspondence between F (z) and µ can be one-to-one if we
assume that the positive measure is normalized (

∫
R dµ̃(t) = 1), and we

shall also normalize the C-function by F (α0) = 1. By taking b = c = 0,
we have

F (z) =

∫
R
D(t, z) dµ̃(t), α0 ∈ U,

where

dµ̃(t) =
1

π

Imα0 dµ(t)

|t− α0|2
.
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In this paper, we use the normalized Nevanlinna representation with
which we associate a Hermitian positive definite linear inner product
HF with the form

HF {f} =

∫
R
f(t) dµ̃(t)

and
⟨f, g⟩ = HF {fg∗}, g∗(t) = g(t) for t ∈ R.

4. Orthogonal rational functions and functions of the second
kind. We say that two rational functions f, g ∈ L are orthogonal with
respect to HF (⊥F ) if

HF {fg∗} = 0.

Moreover, ϕn ∈ Ln \ {0} are called orthonormal, if

HF {ϕnϕn∗} = 1.

According to [1, Chapter 3], all the zeros of the orthonormal basis ϕn
are in U , while the zeros of ϕ∗n are in U c. We can associate the so-called
functions of the second kind in terms of the given orthogonal rational
functions ϕn as

(4.1) ψn(z) = HF {D(t, z)[ϕn(t)− ϕn(z)]}+HF {ϕn(t)}, n ≥ 0.

From [1, Lemma 4.2.1], ψn(z) also belong to Ln. In [7, Theorem 4],
a recurrence relation was derived for ORFs and their functions of the
second kind on the unit circle. The upper half plane case follows the
same relation; therefore, we just state the theorem below.

Theorem 4.1. Let ϕn ∈ Ln \ {0} and ϕn ⊥F Ln−1 for a given C-
function F satisfy F (α0) = 1, and let ψn denote the rational function
of the second kind of ϕn. Then, ϕn and ψn follow a recurrence relation
as:(

ϕn(z) ψn(z)
ϕ∗n(z) −ψ∗

n(z)

)
= en

(
λn 0

0 λnηn−1ηn

)
ωn−1(z)

ωn(z)

×
(

1 µn

µn 1

)(
ζn−1(z) 0

0 1

)(
ϕn−1(z) ψn−1(z)
ϕ∗n−1(z) −ψ∗

n−1(z)

)
, n > 0,
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where
µn ∈ U, |λn| = 1, en > 0,

with initial conditions ϕ0 = ψ0 ∈ C \ {0}.

We can also draw the relation between ϕn and their second kind
functions ψn, similarly to those which were raised in [7, Theorems 5,
6] for the unit disk. Trivially, the adaptations to the proof yield similar
results for the upper half plane case.

Theorem 4.2. Suppose that ϕn ∈ Ln \ {0} and ϕn ⊥F Ln−1 for a
certain C-function F with F (α0) = 1, and let ψn ∈ Ln \ {0} denote the
rational function of the second kind. Then

(ϕ∗nψn + ϕnψ
∗
n)(z) = (1 + z2) dnPn(z)Bn(z), dn > 0.

The next theorem is used in order to verify whether the definition
in the next section is well defined.

Theorem 4.3. Suppose that F is a C-function with F (α0) = 1, and
let ϕn and ψn be in Ln \ {0}. ϕn ⊥F Ln−1, and ψn is the rational
function of the second kind of ϕn. Then, ϕn and ψn satisfy :{

(ϕnF + ψn)(z) = ζ0(z)Bn−1(z)gn(z)

(ϕ∗nF − ψ∗
n)(z) = ζ0(z)Bn(z)hn(z),

where gn, hn ∈ H(U), gn(αn) ̸= 0.

5. Interpolation properties. In order to study the interpolation
properties of orthogonal rational functions, we first consider ϕn as the
orthonormal basis functions of Ln with respect to the measure µ̃. Then,
we begin with the next theorem. The idea of this theorem is inspired
by [1, Chapter 6], [9, page 199].

Theorem 5.1. For any f, g ∈ Ln, we can define the measure µ̃n by

dµ̃n(t) =
(1 + t2)Pn(t)

|ϕn(t)|2
Imα0

π|t− α0|2
dt.
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The inner products with respect to µ̃ and µ̃n are the same, i.e.,

1

π

∫
R
f(t)g(t)

(1 + t2)Pn(t)

|ϕn(t)|2
Imα0

|t− α0|2
dt =

1

π

∫
R
f(t)g(t)

Imα0

|t− α0|2
dµ(t).

Proof. First, when f(t) = g(t) = ϕn(t), we have

⟨ϕn(t), ϕn(t)⟩µ̃n
=

1

π

∫
R

Imα0(1 + t2)Pn(t)

|t− α0|2
dt

=
1

π

∫
R

Imαn

|t− αn|2
dt = 1 = HF {ϕnϕn∗}.

Furthermore, taking f(t) = ϕn(t) and g(t) = ϕk(t), k < n, we have

⟨ϕn(t), ϕk(t)⟩µ̃n
=

1

π

∫
R

ϕk∗(t)

ϕn∗(t)

(1 + t2)Pn(t) Imα0

|t− α0|2
dt

=
1

π

∫
R

ϕ∗k(t)Bn\k(t)

ϕ∗n(t)

Imαn

|t− αn|2
dt.

where Bn\k(t) = Bn(t)/Bk(t).

As is known, the zeros of ϕ∗n lie in U c, which means that the integral
factor ϕ∗k(t)Bn\k(t)/ϕ

∗
n(t) is analytic in U ∪ R. This leads to the con-

clusion that
⟨ϕn(t), ϕk(t)⟩µ̃n

= 0 = HF {ϕnϕk∗}.

Deduct the recurrence formulas in [1, Theorem 4.1.6] to a more gen-
eral case on the upper half plane. The orthonormal function ϕn can be
uniquely expressed by the previous ϕk. Thus, the inner products with
respect to µ̃ and µ̃n are the same. �

This theorem shows that the Nevanlinna measure of the C-function
can be replaced by a rational measure with the inner product un-
changed. Later, we shall study the rational functions which interpolate
F (z) at some points of {αk}nk=1.

According to Theorem 4.2, when ϕn comprise the orthonormal basis
functions,

(ϕ∗nψn + ϕnψ
∗
n)(z) = 2(1 + z2)Pn(z)Bn(z).
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Hence,
ψn(z)

ϕn(z)
+
ψ∗
n(z)

ϕ∗n(z)
= 2(1 + z2)

Pn(z)Bn(z)

ϕn(z)ϕ∗n(z)
.

Also, ψ∗
n/ϕ

∗
n = ψn∗/ϕn∗ ∈ C(U). Then

Re
ψ∗
n(t)

ϕ∗n(t)
=

(1 + t2)Pn(t)

|ϕn(t)|2
, t ∈ R.

The Nevanlinna representation of ψ∗
n/ϕ

∗
n can be written as

ψ∗
n(z)

ϕ∗n(z)
=

1

π

∫
R
D(t, z) Re

ψ∗
n(t)

ϕ∗n(t)

Imα0

|t− α0|2
dµ(t) =

∫
R
D(t, z) dµ̃n(t).

Now, we consider the expression of the function −ψn(z)/ϕn(z).

Theorem 5.2. For z ∈ U c,

−ψn(z)

ϕn(z)
=

1

π

∫
R
D(t, z)

(1 + t2)Pn(t)

|ϕn(t)|2
Imα0

|t− α0|2
dt.

Proof. From (4.1) and Theorem 5.1, we have

ψn(z) =
1

π

∫
R
D(t, z)[ϕn(t)− ϕn(z)]

Imα0

|t− α0|2
dµ(t)

=
1

π

∫
R
D(t, z)[ϕn(t)− ϕn(z)]

(1 + t2)Pn(t)

|ϕn(t)|2
Imα0

|t− α0|2
dt.

We take a further look at the following part of ψn(z). It follows from
(2.1) and (2.2) that

1

π

∫
R
D(t, z)ϕn(t)

(1 + t2)Pn(t)

|ϕn(t)|2
Imα0

|t− α0|2
dt

=
1

π

∫
R
D(t, z)ϕn(t)

Imαn

|ϕn(t)|2|t− αn|2
dt

=
1

π

∫
R
D(t, z)

Imαn

ϕn∗(t)|t− αn|2
dt

=
1

π

∫
R
D(t, z)

Bn(t) Imαn

ϕ∗n(t)|t− αn|2
dt.
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Since the zeros of ϕ∗n(t) and the poles of Bn(t) lie in U
c, we obtain that

1

π

∫
R
D(t, z)ϕn(t)

(1 + t2)Pn(t)

|ϕn(t)|2
Imα0

|t− α0|2
dt = 0.

Hence,

−ψn(z)

ϕn(z)
=

1

π

∫
R
D(t, z)

(1 + t2)Pn(t)

|ϕn(t)|2
Imα0

|t− α0|2
dt

holds for z ∈ U c. �

Theorem 5.2 was proven for the orthogonal rational function on the
unit circle with α0 = 0 in [13, Theorem 4].

Moreover, by [1, Theorem 6.1.4], we come to the conclusion that,
for the orthonormal functions ϕn and their functions of the second
kind ψn, −ψn(z)/ϕn(z) interpolate F (z) at the points {αk}n−1

k=1 while
ψ∗
n(z)/ϕ

∗
n(z) interpolate F (z) at the points {αk}nk=1.

In fact, when we set a fairly mild assumption on orthogonal basis
functions ϕn, they do not need to be orthonormal. We can still ob-
tain similar interpolation properties with Theorem 4.3 in the previous
section.

6. A new class of ORFs. We study a new class of ORFs generated
by a given sequence of ORFs analogously to what was discussed in [7].
In order to define this new class of ORFs, we should consider spaces

based on different complex sequences. We have the spaces LN and L̃r

of rational functions in the same fashion as in the previous section, and

LN+n := L{α1, . . . , αN , α̂1, . . . , α̂n},

L̃r+n := L{α̃1, . . . , α̃r, α̂1, . . . , α̂n}.

We can then use the next theorem to define a new class of rational
functions. This method replaces the first N poles of the initial ORFs
by r new poles and retains the remainder of the poles of the ORFs.

Theorem 6.1. Suppose ϕN+n ∈ LN+n \ {0} and ϕN+n ⊥F LN+n−1,
ψN+n denote their functions of the second kind. Let A, B, C and D

be the rational functions in LN · L̃τ , satisfying :

τA :=
A∗(z)

A(z)
= −B

∗(z)

B(z)
= −C

∗(z)

C(z)
=
D∗(z)

D(z)
,
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where |τA| = 1. At the same time, assuming that

(A−BF )(z) = ζ0(z)BN−1(z)g(z), g ∈ H(U),

(C −DF )(z) = ζ0(z)BN−1(z)ĝ(z), ĝ ∈ H(U),

then we can generate rational functions Wr+n, Xr+n, Yr+n and Zr+n

in L̃r+n, given by(
Wr+n(z) Xr+n(z)
Yr+n(z) −Zr+n(z)

)
=

(
ϕN+n(z) ψN+n(z)
ϕ∗N+n(z) −ψ∗

N+n(z)

)(
A(z) C(z)
B(z) D(z)

)
× {cn(1 + z2)PN (z)BN (z)}−1, cn ∈ R0.

Furthermore, W ∗
r+n(z) = τAYr+n(z) and X

∗
r+n(z) = τAZr+n(z).

However, we cannot guarantee the orthogonality of this new sequence
of rational functions. In order to ensure the orthogonality, we must add
more conditions to the previous theorem.

Theorem 6.2. Let Wr+n(z) and Xr+n(z) ̸= 0, together with the func-
tions A, B, C and D be defined as in Theorem 6.1. Assuming that
α̃r = αN , as well as

(A−BF )(z) = ζ0(z)BN−1(z)g(z), g ∈ H(U),

with g(α) ̸= 0, α ∈ {α̃1, . . . , α̃r, α̂1, . . . , α̂n}

(AD −BC)(z) = ζ0(z)BN−1(z)ζ̃0(z)B̃rf(z), f(z) ∈ H(U) \ {0}.

In addition, we define a C-function F̃ , with F̃ (α̃0) = 1:

F̃ (z) =
−C(z) +D(z)F (z)

A(z)−B(z)F (z)
.

Then, Wr+n ⊥F̃ L̃r+n−1, respectively, Xr+n ⊥1/F̃ L̃r+n−1, and Xr+n,

respectively, Wr+n, is the function of the second kind of Wr+n with

respect to F̃ , respectively, of Xr+n with respect to 1/F̃ .

The proofs of the previous two theorems are similar to those in [7];
therefore, we omit the proofs here.
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