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ON THE PARAMETRIC REPRESENTATION
OF UNIVALENT FUNCTIONS ON THE POLYDISC

SEBASTIAN SCHLEISSINGER

ABSTRACT. We consider support points of the class
S0(Dn) of normalized univalent mappings on the polydisc
Dn with parametric representation, and we prove sharp
estimates for coefficients of degree 2.

1. Introduction. Let D = {z ∈ C | |z| < 1} be the unit disc,
and let f : D → C be a univalent mapping normalized with f(z) =
z +

∑
n≥2 anz

n. The Bieberbach conjecture (see [4]) states that

|an| ≤ n for all n ≥ 2.

Loewner has proved the case n = 3 in [29] by introducing a new tool for
the study of univalent functions, a “parametric representation” for f
via a certain differential equation. The Bieberbach conjecture has been
completely proved by de Branges, see [10]. Univalent functions and
Loewner theory have also been studied in higher dimensions. A general
theory for certain complex manifolds was established in [6].

For n ≥ 2, the most studied subdomains of Cn are the polydisc
Dn and the Euclidean unit ball Bn. In addition, Loewner theory can
be studied on these domains and, in particular, normalized univalent
functions may be defined having a parametric representation. These
functions form a compact set and naturally lead to extremal problems,
e.g., finding coefficient bounds.

While there is much recent research on extremal problems for func-
tions with parametric representation on Bn [5, 8, 9, 16]–[19, 25, 40],
the case of the polydisc gained only little interest since Poreda’s intro-
duction of the class S0(Dn) in 1987 [38, 39].
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In what follows, we recapitulate the definition and some basic
properties of S0(Dn) in Section 2. In Section 3, we prove some state-
ments for general support points of S0(Dn) and, in Section 4, we prove
estimates for all coefficients of degree 2 and give several examples
showing that these estimates are sharp.

2. The classes M(Dn) and S0(Dn). We denote by H(Dn,Cn) the
set of all holomorphic mappings f : Dn → Cn. Furthermore, we let
S(Dn) be the set of all univalent functions f ∈ H(Dn,Cn) with f(0) = 0
and Df(0) = In. This class is not compact when n ≥ 2, as the simple
examples

(z1, z2) 7−→ (z1 + nz22 , z2), n ∈ N,

show. In [38], Poreda introduced the class S0(Dn) as the set of all
f ∈ S(Dn) having “parametric representation.” Later, Kohr defined
the corresponding class S0(Bn) for the unit ball, see [27], which has
been extensively studied since its introduction.

The class S0(Dn) is defined via Loewner’s differential equation.
First, the following set

M(Dn) :=

{
h ∈ H(Dn,Cn) | h(0) = 0, Dh(0) = −In,

Re

(
hj(z)

zj

)
≤ 0 when ∥z∥∞ = |zj | > 0

}
may be considered.

Remark 2.1. For n = 1, we have

M(D) = {z 7−→ −zp(z) | p ∈ P},

where P denotes the Carathéodory class of all holomorphic functions
p : D → C with Re (p(z)) > 0 for all z ∈ D and p(0) = 1. The class P
can be characterized by the Riesz-Herglotz representation formula:

P =

{∫
∂D

u+ z

u− z
µ(du) | µ is a probability measure on ∂D

}
.

A simple consequence is the following coefficient bound (Carathéodory’s
lemma): write p(z) = 1 +

∑
n≥1 cnz

n. Then,

(2.1) |cn| ≤ 2 for all n ≥ 1.
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Equality holds, e.g., if p(z) = (u+ z)/(u− z) for some u ∈ ∂D, i.e.,
when µ is a point measure; see [37, Corollary 2.3] for a complete
characterization.

The class M(Dn) is closely related to the class S∗(Dn) of all starlike
functions, i.e., those f ∈ S(Dn) such that f(Dn) is a starlike domain
with respect to 0.

Theorem 2.2 ([44]). Let f : Dn → Cn be locally biholomorphic, i.e.,
Df(z) is invertible for every z ∈ Dn, with f(0) = 0 and Df(0) = In.
Then, f ∈ S∗(Dn) if and only if the function z 7→ −(Df(z))−1 · f(z)
belongs to M(Dn).

Loosely speaking, the class S0(Dn) may be thought of as all map-
pings that can be written as an infinite composition of infinitesimal
starlike mappings on Dn. This idea is made precise by using a differ-
ential equation involving the class M(Dn).

We define a Herglotz vector field G as a mapping

G : Dn × [0,∞) −→ Cn

with G(·, t) ∈ M(Dn) for all t ≥ 0 such that G(z, ·) is measurable on
[0,∞) for all z ∈ Dn. The corresponding Loewner equation is given by

(2.2)
∂φs,t(z)

∂t
= G(φs,t(z), t) for almost all t ≥ s, φs,s(z) = z.

The solution t 7→ φs,t is a family of univalent functions φs,t :
Dn → Dn normalized by φs,t(0) = 0, Dφs,t(0) = es−tIn. The family
{φs,t}0≤s≤t satisfies the algebraic property

(2.3) φs,t = φu,t ◦ φs,u for all 0 ≤ s ≤ u ≤ t,

and is called an evolution family. This notion is closely related to
Loewner chains. We define a normalized Loewner chain on Dn as a
family {ft}t≥0 of univalent mappings ft : Dn → Cn with ft(0) = 0,
Dft(0) = etIn and fs(Dn) ⊆ ft(Dn) for all 0 ≤ s ≤ t.

Normalized Loewner chains may be constructed from (2.2) as fol-
lows.

Theorem 2.3 ([38]). Let G(z, t) be a Herglotz vector field. For every
s ≥ 0 and z ∈ Dn, let φs,t(z) be the solution of the initial value



984 SEBASTIAN SCHLEISSINGER

problem (2.2). Then, the limit

(2.4) lim
t→∞

etφs,t(z) =: fs(z)

exists for all s ≥ 0 locally uniformly on Dn and fs ∈ S(Dn). Further-
more, the functions {ft}t≥0 satisfy fs(z) = ft(φs,t(z)) for all z ∈ Dn

and 0 ≤ s ≤ t, and {ft}t≥0 is a normalized Loewner chain having the
property that {e−tft}t≥0 is a normal family on Dn. Finally, ft satisfies
the Loewner PDE

∂ft(z)

∂t
= −Dft(z)G(z, t)

for all z ∈ Dn and for almost all t ≥ 0.

The first element f0 ∈ S(Dn) of the Loewner chain in Theorem 2.3
is said to have parametric representation.

Definition 2.4.

S0(Dn) := {f ∈ S(Dn) | f has parametric representation}.

Proposition 2.5. Let G, φs,t and ft be defined as in Theorem 2.3.

(a) For all 0 ≤ s ≤ t, e−sfs ∈ S0(Dn) and et−sφs,t ∈ S0(Dn);

(b) f ∈ S0(Dn) if and only if there exists a normalized Loewner
chain {ft}t≥0 with f = f0 such that {e−tft}t≥0 is a normal family on
Dn;

(c) S∗(Dn) ⊂ S0(Dn).

Proof.

(a) Define H(z, τ) := G(z, τ + s) for τ ∈ [0, t− s] and H(z, τ) = −z
for τ > t− s. Denote the solution of (2.2) for the Herglotz vector field
H by ψs,t. Then, ψ(0, τ) = ψ(t− s, τ) ◦ψ(0, t− s) = e−τ+t−s ·ψ0,t−s =
e−τ+t−s · φs,t for τ > t− s. Hence, eτψ(0, τ) = et−s · φs,t → et−s · φs,t

as τ → ∞.

Similarly, the mapping e−sfs can be generated by the Herglotz vector
field H(z, t) = G(z, t+ s).

(b) See [21, Corollary 2.5].

(c) If f ∈ S∗(Dn), then {etf}t≥0 is a normalized Loewner chain,
and we conclude from (b) that f ∈ S0(Dn). The corresponding
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Herglotz vector field is constant with respect to time, i.e., G(z, t) =
−(Df(z))−1 · f(z). �

Elements of the class S0(Dn) enjoy the following inequalities, which
are known as the Koebe distortion theorem when n = 1.

Theorem 2.6 ([38, Theorems 1, 2]). If f ∈ S0(Dn), then

∥z∥∞
(1 + ∥z∥∞)2

≤ ∥f(z)∥∞ ≤ ∥z∥∞
(1− ∥z∥∞)2

for all z ∈ Dn.

In particular, (1/4)Dn ⊆ f(Dn) (Koebe quarter theorem for the class
S0(Dn)).

This can be used to prove:

Theorem 2.7 ([21, Theorem 2.9]). The class S0(Dn) is compact.

Remark 2.8. In one dimension, we have S0(D) = S(D) [37, Theo-
rem 6.1], which cannot be true in higher dimensions as S(Dn) is not
compact for n ≥ 2.

There is a somehow geometric property for domains related to
S0(Dn), called asymptotic starlikeness. This notion was introduced
by Poreda in [39]. He showed that this property is a necessary
condition for a domain to be the image of a function f ∈ S0(Dn).
Under some further assumptions, this condition is also sufficient. In
[15, Theorem 3.1], it is shown that f : Bn → Cn has parametric
representation on the unit ball if and only if f is univalent, normalized
and f(Bn) is an asymptotically starlike domain.

We summarize some further properties of the class S0(Dn). Propo-
sition 2.5 (b) will be essential for the proof of Theorem 3.3.

Theorem 2.9. Let f ∈ S0(Dn), and let {ft}t≥0 be a normalized Loew-
ner chain with f = f0 such that {e−tft}t≥0 is a normal family. Then

(a)
∪

t≥0 ft(Dn) = Cn;

(b) f(Dn) is a Runge domain;

(c) for n ≥ 2, S∗(Dn) ∩ Aut(Cn) is dense in S∗(Dn) and S0(Dn) ∩
Aut(Cn) is dense in S0(Dn).
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Here, we do not distinguish between f ∈ Aut(Cn) and its restriction
f |Dn to Dn to simplify notation.

Proof.

(a) Proposition 2.5 (a) and Theorem 2.6 imply∪
t≥0

ft(Dn) ⊇
∪
t≥0

(
et

4
· Dn

)
= Cn.

(b) Consequently, the Loewner chain {ft}t≥0 extends f(Dn) to the
Runge domain Cn. This is a special case of the “semicontinuous
holomorphic extendability” (to Cn) defined in [11] by Docquier and
Grauert. They proved that this impies that f(Dn) is a Runge domain,
see [11, Satz 19]. We also refer to [2, Theorem 4.2] for an English
reference.

(c) We start with the case f ∈ S∗(Dn). Since f maps Dn onto
a Runge domain, it can be approximated locally uniformly on Dn by
a sequence (gk)k ⊂ Aut(Cn), see [1, Theorem 2.1]. We may assume
that gk(0) = 0 and Dgk(0) = In. Now, we also have fr := (1/r)f(rz) ∈
S∗(Dn) for every r ∈ (0, 1) and gk,r := (1/r)gk(rz) converges uniformly
on Dn to fr as k → ∞. We have −(Dfr)

−1 · fr ∈ M(Dn), and thus,
−(Dgk,r)

−1 · gk,r ∈ M(Dn) for all k large enough, say k ≥ Kr. Hence,
gk,r ∈ S∗(Dn) for all k ≥ Kr. Consequently, the sequence (gKrm ,rm)m,
with rm = 1−1/m, belongs to S∗(Dn)∩Aut(Cn) and converges locally
uniformly on Dn to f .

Next, let f be an arbitrary mapping from S0(Dn). Then,

f = lim
t→∞

etφ0,t,

where φ0,t is a solution to (2.2) with a Herglotz vector field G. Thus,
it suffices to approximate eTφ0,T for every T > 0 by automorphisms
of Aut(Cn) that belong to S0(Dn). First, we approximate G by a
sequence of piecewise constant Herglotz vector fields Gk such that
the corresponding solution φk

0,T of (2.2) for Gk at time t = T > 0
converges locally uniformly on Dn to φ0,T as k → ∞. We can
further assume that every constant has the form −(Dg)−1 · g for some
g ∈ Aut(Cn) ∩ S∗(Dn). Due to property (2.3), the mapping φk

0,T is

a composition of automorphisms of Cn, so φk
0,T ∈ Aut(Cn). With

Proposition 2.5 (a), we conclude that eTφk
0,T ∈ S0(Dn)∩Aut(Cn). �
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3. Extreme and support points of S0(Dn). Let X be a locally
convex C–vector space and E ⊂ X. The set exE of extreme points and
the set suppE of support points of E are defined as follows:

• x ∈ exE if the representation x = ta + (1 − t)b with t ∈ [0, 1],
a, b ∈ E, always implies x = a = b;

• x ∈ suppE if there exists a continuous linear functional L :
X → C such that ReL is non-constant on E and

ReL(x) = max
y∈E

ReL(y).

The class S0(Dn) is a nonempty compact subset of the locally convex
vector space H(Dn,Cn). Thus, the Krein-Milman theorem implies that
exS0(Dn) is nonempty. Of course, suppS0(Dn) is nonempty also: let
f = (f1, . . . , fn) ∈ H(Dn,Cn). Then, the evaluation L(f) = f1(z0),
z0 ∈ Dn \ {0}, is an example for a continuous linear functional on
H(Dn,Cn) such that ReL is non-constant on S0(Dn).

Remark 3.1. Let f ∈ suppS0(Dn) be generated by the Herglotz
vector field G. Then, for almost every t ≥ 0, G(·, t) ∈ suppM(Dn).
This is a consequence of Pontryain’s maximum principle, see [40,
Theorem 1.5]. We have

suppM(D)=
{
− z

m∑
k=1

λk
eiαk+z

eiαk−z
| m ∈ N, αk ∈ R, λk ≥ 0,

m∑
k=1

λk=1

}
,

see [23, Theorem 1]. By using the Herglotz representation for the
class P, one obtains

exM(D) =
{
− z

eiα + z

eiα − z
| α ∈ R

}
.

There is no such formula for the higher-dimensional case. However,
Voda obtained that mappings of the form h(z) = −(z1p1(zj1), . . . , znpn
(zjn)) are extreme points of M(Dn), see [45, Proposition 2.2.1], where
each pk has the form pk(z) = (eiαk + z)/(eiαk − z) for some αk ∈ R. He
also notes [45, page 55] that there must be extreme points of M(Dn)
not having this form.



988 SEBASTIAN SCHLEISSINGER

Remark 3.2. Assume that a generator M ∈ M(Dn) has the special
form

M(z) = −p(z) · z.

Then, p : Dn → C must map 0 to 1 and Re (p(z)) > 0 for all z ∈ Dn.
The set of all those generators forms a convex and compact subset of
M(Dn). There is a Herglotz representation for p via certain measures
on (∂D)n, see [31, 32]. However, also in this case, it seems to be rather
difficult to determine extreme points of this class for n ≥ 2. In [33],
it is shown that there exists an extreme point whose corresponding
measure on (∂D)n is absolutely continuous when n ≥ 2, in contrast to
the extreme points for the case n = 1, which all correspond to point
measures on ∂D.

Extreme points as well as support points of the class S0(D) map D
onto Cminus a slit (which has increasing modulus when it runs through
the slit from its starting point to ∞), see [12, subsections 9.4-9.5].
In particular, they are unbounded mappings. It would be interesting
to find similar geometric properties of extreme and support points of
S0(Dn) when n ≥ 2. In this section, we prove the following statements
concerning support and extreme points of S0(Dn).

Theorem 3.3. Let f ∈ suppS0(Dn), and let {ft}t≥0 be a normalized
Loewner chain with f0 = f such that {e−tft}t≥0 is a normal family on
Dn. Then, e−tft ∈ suppS0(Dn) for all t ≥ 0.

Theorem 3.4. Let f ∈ exS0(Dn), and let {ft}t≥0 be a normalized
Loewner chain with f0 = f such that {e−tft}t≥0 is a normal family on
Dn. Then, e−tft ∈ exS0(Dn) for all t ≥ 0.

Our proof for Theorem 3.3 generalizes ideas from a proof for the case
n = 1, which is described in [24]; see also [42] for the case of the unit
ball. Theorem 3.4 is proved for the unit ball in [16, Theorem 2.1], and
we can simply adopt this proof for the polydisc.

First, we note that, given an evolution family φs,t associated to a
Herglotz vector field and a mapping G ∈ S0(Dn), then et−sG(φs,t) is
also in S0(Dn), which is mentioned in [16, proof of Theorem 2.1] for
the unit ball case.



UNIVALENT FUNCTIONS ON THE POLYDISC 989

Lemma 3.5. Let G ∈ S0(Dn) and t ≥ 0. Furthermore, let {fu}u≥0 be
a normalized Loewner chain such that {e−ufu}u≥0 is a normal family,
and let φs,t be the associated evolution family. Then, et−sG(φs,t) ∈
S0(Dn) for every 0 ≤ s ≤ t.

Proof. Let {G(·, u)}u≥0 be a normalized Loewner chain with G(·, 0)
= G such that {e−uG(·, u)}u≥0 is a normal family, and let F (z, u) :
Dn × [0,∞) → Cn be the mapping

F (z, u) =

{
et−sG(φs+u,t(z)) 0 ≤ u ≤ t− s,

et−sG(z, u+ s− t) u > t− s.

Then, {F (·, u)}u≥0 is a normalized Loewner chain, F (·, 0)=et−sG(φs,t)
and {e−uF (·, u)}u≥0 is a normal family. Thus,

et−sG(φs,t) ∈ S0(Dn). �

Proof of Theorem 3.4. Suppose that e−tft ̸∈ exS0(Dn) for some
t > 0. Then, e−tft = sa + (1 − s)b for some a, b ∈ S0(Dn) with
a ̸= b and s ∈ (0, 1). Since f = ft ◦ φ0,t, we have

f = s · (eta ◦ φ0,t) + (1− s) · (etb ◦ φ0,t).

The functions eta ◦ φ0,t and etb ◦ φ0,t belong to S0(Dn) according to
Lemma 3.5. Thus, as f ∈ exS0(Dn), they are identical, and the identity
theorem implies a = b, a contradiction. �

Choosing G(z) = z in Lemma 3.5 shows that et−sφt−s ∈ S0(Dn).

Lemma 3.6. Let φs,t be defined as in Lemma 3.5, and let h =
et−sφs,t ∈ S0(Dn). Furthermore, let P : Cn → Cn be a polynomial
with P (0) = 0, DP (0) = 0. Then, there exists a δ > 0 such that

h+ εet−sP (es−th) ∈ S0(Dn) for all ε ∈ C with |ε| < δ.

Proof. Let gε(z) = z + εP (z). Obviously, we have gε(0) = 0,
Dgε(0) = In. Now, det(Dgε(z)) → 1 for ε → 0 uniformly on Dn;
thus, gε is locally biholomorphic for ε small enough. In this case, for
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every z ∈ Dn, we have:

[Dgε(z)]
−1 = [In + εDP (z)]−1 = In − εDP (z) + ε2DP (z)2 + · · ·

= In − ε (DP (z) + · · · )︸ ︷︷ ︸
:=U(z)∈Cn×n

.

Write [Dgε(z)]
−1gε(z) = z + εP (z) − εU(z)z − ε2U(z)P (z) = (In +

εM(z))z, with a matrix-valued function M(z).

Now,s we show that gε ∈ S∗(Dn) for |ε| small enough. Let
gj(z) be the jth component of −[Dgε(z)]

−1gε(z). For ε → 0,
the function gj(z)/zj converges uniformly to −1 on the set K :=

{z ∈ Dn | ∥z∥∞ = |zj | > 0}. Thus, there exists a δ > 0 such that

Re

(
gj(z)

zj

)
< 0

for all z ∈ K, j = 1, . . . , n and all ε ∈ C with |ε| < δ. Hence,
gε ∈ S∗(Dn) ⊂ S0(Dn) for all ε small enough by Theorem 2.2.

From Lemma 3.5, it follows that et−sgε(φs,t) = et−sgε(e
s−th) =

h+ εet−sP (es−th) ∈ S0(Dn). �

The next statement shows that a special class of bounded mappings
are not support points of S0(Dn).

Proposition 3.7. Let φs,t be defined as in Lemma 3.5, and let h =
et−sφs,t ∈ S0(Dn). Then, h is not a support point of S0(Dn).

Proof. Assume that h is a support point of S0(Dn), i.e., there is
a continuous linear functional L : H(Dn,Cn) → C such that ReL is
non-constant on S0(Dn) and

ReL(h) = max
g∈S0(Dn)

ReL(g).

Let P be a polynomial with P (0) = 0 and DP (0) = 0. Then, h +
εet−sP (es−th) ∈ S0(Dn) for all ε ∈ C small enough by Lemma 3.6.

We conclude

ReL(P (es−th)) = ReL(P (φs,t)) = 0;
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otherwise, we could choose ε such that ReL(h + εet−sP (es−th)) >
ReL(h). Now, φs,t(Dn) is a Runge domain by Theorem 2.9 (b). Hence,
we can write any analytic function g defined in Dn with g(0) = 0 and
Dg(0) = 0 as g = limk→∞ Pk(φs,t), where every Pk is a polynomial with
Pk(0) = 0 and DPk(0) = 0. The continuity of L implies ReL(g) = 0.
Hence, ReL is constant on S(Dn), a contradiction. �

Proof of Theorem 3.3. Let L be a continuous linear functional on
H(Dn,Cn) such that ReL is non-constant on S0(Dn) with

ReL(f) = max
g∈S0(Dn)

ReL(g).

Fix t ≥ 0. Then, f(z) = ft(φ0,t(z)) for all z ∈ Dn. Define the continu-
ous linear functional

J(g) := L(et · g ◦ φ0,t) for g ∈ H(Dn,Cn).

Now, we have
J(e−tft) = L(f)

and
Re J(g) ≤ Re J(e−tft) for all g ∈ H(Dn,Cn).

Furthermore, Re J is not constant on S0(Dn): as etφ0,t is not a support
point of S0(Dn) by Proposition 3.7, we have Re J(id) = ReL(etφ0,t) <
ReL(f) = Re J(e−tft). �

4. Coefficients of degree 2. In this section, we consider the
coefficient functionals for coefficients of degree 2. Let (f1, . . . , fn) ∈
S0(Dn). By taking a permutation of the functions f1, . . . , fn (and the
variables z1, . . . , zn), we again obtain a mapping in S0(Dn). Hence, it
is sufficient to consider only the coefficients of f1. We write

f1(z) = z1 +
∑
|α|≥2

Aαz
α.

Here, we use multi-indices α = (α1, . . . , αn) ∈ Nn
0 with |α| := α1+ · · ·+

αn, z
α := zα1

1 · . . . · zαn
n .

We are interested in the continuous linear functional f 7→ Aα and
the maximum of ReAα over S0(Dn). First, we note that

max
f∈S0(Dn)

Re (Aα) = max
f∈S0(Dn)

|Aα|.
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This can be seen by the following lemma which implies that we can
always “rotate” functions from S0(Dn) such that Aα ∈ (0,∞).

Lemma 4.1.

(a) Let h ∈ M(Dn) and j(z) = (e−iα1h1, . . . , e
−iα1hn)(e

iα1z1, . . . ,
eiαnzn) for some α1, . . . , αn ∈ R. Then, j ∈ M(Dn).

(b) Let f ∈ S0(Dn) and g(z) = (e−iα1f1, . . . , e
−iα1fn)(e

iα1z1, . . . ,
eiαnzn) for some α1, . . . , αn ∈ R. Then, g ∈ S0(Dn).

Proof. (a) follows directly from the definition of M(Dn), and (b)
can be shown by using (a). �

Remark 4.2. The following version of the Bieberbach conjecture for
the class S0(Dn) was suggested in [14]:

(4.1)

∥∥∥∥ 1

k!
Dkf(0)(w,w, . . . , w)

∥∥∥∥
∞

≤ k for all k ≥ 2 and w ∈ ∂Dn.

Obviously, it is sufficient to consider the component function f1 only.
For w ∈ ∂Dn, let fw : D → C and fw(λ) = f1(λw). Then, the above
conjecture is equivalent to:∣∣∣∣ 1k!f (k)w (0)

∣∣∣∣ ≤ k for all k ≥ 2 and w ∈ ∂Dn.

We refer to [28] and the references therein for results concerning this
estimate. The conjecture is known to be true for n = 2, see [38,
Theorem 3]. In particular, by choosing w to be a standard unit vector,
we obtain

(4.2) |Aα| ≤ 2

for all α with αj = 2 for some j = 1, . . . , n and αk = 0, otherwise.
Of course, the estimate for |D2f1(0)(w,w)| also implies estimates for
the coefficients of the polynomial D2f1(0)(w,w), thus for all Aα with
|α| = 2.

We will prove the following sharp estimates for Aα with |α| = 2.
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Theorem 4.3. Let n ≥ 2 and (f1, . . . , fn) ∈ S0(Dn),

f1(z) = z1 +
∑
|α|≥2

Aαz
α.

Then, the following statements hold :

(a) |Aα| ≤ 2 for all α with |α| = 2 and α1 ̸= 0. This estimate is
sharp for all such α due to the mappings

F1(z) =

(
z1

(1− z1)2
, z2, . . . , zn

)
for α = (2, 0, . . . , 0),

F2(z) = (z1(1 + z2)
2, z2, . . . , zn),

F3(z) =

(
z1(1 + z2)

1− z2
,

z2
1− z2

, z3, . . . , zn

)
for α = (1, 1, 0, . . . , 0).

(b) |Aα| ≤ 1 for all α with |α| = 2 and α1 = 0. This estimate is
sharp for all such α due to the mappings

F4(z) = (z1 + z22 , z2, . . . , zn),

F5(z) =

(
z1 − z1z2 + z22

1− z2
,

z2
1− z2

, z3, . . . , zn

)
for α = (0, 2, 0, . . . , 0),

F6(z) = (z1 + z2z3, z2, . . . , zn),

F7(z) =

(
z1 +

z2z3(log(1 + z2)− log(1 + z3))

z2 − z3
,

z2
1 + z2

,
z3

1 + z3
, z4, . . . , zn

)
for α = (0, 1, 1, 0 . . . , 0).

The examples F2, . . . , F7, which all belong to S∗(Dn) (see the proof
of Theorem 4.3), yield the following corollary.

Corollary 4.4. The functional ReAα, with |α| = 2 and α1 ̸= 2, is
maximized over S0(Dn) by bounded as well as unbounded mappings.
The bounded support points can be chosen to be restrictions of auto-
morphisms of Cn.

For n = 1 and every bounded f ∈ S(D), we find a Herglotz vector
field H and a time T > 0 such that the mapping e−T f : D → D
can be written as e−T f = φ0,T , where φ0,t solves (2.2) for H, see
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[37, subsection 6.1, Problem 3]. With Proposition 3.7, we obtain the
following statement about the reachable set of equation (2.2).

Corollary 4.5. For n ≥ 2, there exist bounded mappings f ∈ S0(Dn)
which do not have the form eTφ0,T , where T > 0 and φ0,t is a solution
to (2.2).

Question 4.6. Are there bounded mappings belonging to exS0(Dn) for
n ≥ 2?

5. Proof of Theorem 4.3. For the function f1(z) = z1 +
∑

|α|≥2

Aαz
α, the case |α| = 2 splits into essentially four cases, namely,

α = (2, 0, . . . , 0),

α = (1, 1, 0, . . . , 0),

α = (0, 2, 0, . . . , 0),

α = (0, 1, 1, 0, . . . , 0).

All other cases can be reduced to one of these four by changing the
order of some variables. Furthermore, the recursive structure of the
Loewner equation shows that variables zj with αj = 0 do not affect
our calculations for the coefficient Aα, see equation (5.3). Thus, we
will restrict to the cases n = 2 and n = 3, respectively, i.e., we consider
the cases

α = (2, 0),

α = (1, 1),

α = (0, 2),

α = (0, 1, 1).

First, we prove the following estimates with a technique called shearing
process noted by Bracci in [5].

Proposition 5.1. Let (h1, h2) ∈ M(D2),

h1(z) = −z1 +
∑
|α|≥2

cαz
α.
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(a) We have h1(z1, 0) ∈ M(D) and |c(n,0)| ≤ 2 for all n ≥ 2. This
estimate is sharp due to

H1(z) =

(
− z1

−1 + z1
−1− z1

,−z2
)

∈ M(D2).

(b) We have (−z1(1 −
∑

α2≥1 c(1,α2)z
α2
2 ), h2) ∈ M(D2) and |c(1,n)|

≤ 2 for all n ≥ 1. This estimate is sharp due to

H2(z) =

(
− z1

−1 + z2
−1− z2

,−z2
)
,

H3(z) =

(
− z1

−1 + z2
−1− z2

,−z2(1− z2)

)
∈ M(D2).

(c) We have (−z1 + c(0,2)z
2
2 , h2) ∈ M(D2) and |c(0,2)| ≤ 1. This

estimate is sharp due to

H4(z) = (−z1 + z22 ,−z2),
H5(z) = (−z1 + z22 ,−z2(1− z2)) ∈ M(D2).

(d) Assume that (h1, h2, h3) ∈ M(D3), h1(z) = −z1 +
∑

|α|≥2 cαz
α.

Then, |c0,1,1| ≤ 1. This estimate is sharp due to

H6(z) = (−z1 + z2z3,−z2,−z3),
H7(z) = (−z1 + z2z3,−z2(1 + z2),−z3(1 + z3)) ∈ M(D3).

Proof.

(a) This is merely the one-dimensional case, see Remark 2.1.

(b) Let z1 = xeiθ, z2 = yeiφ, with θ, φ ∈ R, x, y ∈ [0, 1), x ≥ y,
x > 0. Then, we have

0 ≥ Re (h1(z)/z1)

= −1 + Re

( ∑
|α|≥2

cαz
α/z1

)
= −1 +

∑
|α|≥2

xα1−1yα2Re (cαe
iθ(α1−1)+iφα2).
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Hence, integration with respect to θ over [0, 2π] leads to

0 ≥ −1 +
∑

|α|≥2,α1=1

yα2Re (cαe
iφα2)

= −1 + Re

( ∑
α2≥1

c(1,α2)z
α2
2

)
,

or

0 ≤ Re

(
1−

∑
α2≥1

c(1,α2)z
α2
2

)
.

Hence, the function

z2 7−→ 1−
∑
α2≥1

c(1,α2)z
α2
2

belongs to the class P, and (2.1) states

|c(1,α2)| ≤ 2.

(c) We can assume that c(0,2) ∈ R; otherwise, we apply a rotation

from Lemma 4.1 (a). Let z1 = xeiθ, z2 = yeiθ/2, for θ ∈ R, x, y ∈ [0, 1),
x ≥ y, x > 0. Then, we have

0 ≥ Re (h1(z)/z1)

= −1 + Re

( ∑
|α|≥2

cαz
α/z1

)
= −1 +

∑
|α|≥2

xα1−1yα2Re (cαe
iθ(α1−1+α2/2))

= −1 + c(0,2)y
2/x

+
∑
|α|≥2

α ̸=(0,2)

xα1−1yα2Re (cαe
iθ(α1−1+α2/2)).

The term α1−1+α2/2 is ̸= 0 for all α ̸= (0, 2) with |α| ≥ 2. Hence,
integration with respect to θ over [0, 4π] leads to

(5.1) 0 ≥ −1 + c(0,2)y
2/x
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for all x, y ∈ (0, 1) with 0 < x ≥ y. Since

Re ((−z1 + c(0,2)z
2
2)/z1) ≤ −1 + c(0,2)|z2|2/|z1|

for all (z1, z2) ∈ D2, z1 ̸= 0, we conclude that (−z1+c(0,2)z22 , h2) belongs
to M(D2). Inequality (5.1) is clearly satisfied for all x, y ∈ (0, 1) with
0 < x ≥ y if and only if |c(0,2)| ≤ 1.

(d) Now we use a rotation from Lemma 4.1 (a) to achieve that c(0,1,1),

ic(0,3,0) ∈ R. Let z1 = xeiφ, z2 = yeiφ/3, z3 = wei2φ/3 for φ ∈ R, x, y,
w ∈ [0, 1), x ≥ y, x ≥ w, x > 0. Then, we have

0 ≥ Re (h1(z)/z1) = −1 + Re

( ∑
|α|≥2

cαz
α/z1

)
= −1 +

∑
|α|≥2

xα1−1yα2wα3Re (cαe
iφ(α1−1+α2/3+2α3/3))

= −1 + c(0,1,1)
yw

x
+

∑
|α|≥2

α ̸=(0,1,1)

xα1−1yα2wα3Re (cαe
iφ(α1−1+α2/3+2α3/3)).

The term α1 − 1 + α2/3 + 2α3/3 in the last sum is = 0 only for
α = (0, 3, 0). Hence, integration with respect to θ over [0, 6π] leads
to

(5.2) 0 ≥ −1 + c(0,1,1)
yw

x
+
y3

x
Re (c(0,3,0)) = −1 + c(0,1,1)

yw

x
.

Hence,
|c(0,1,1)| ≤ 1.

It is easy to verify that H1, . . . , H7 all belong to M(Dn) by using the
very definition of M(Dn). �

Proof of Theorem 4.3. Let f ∈ S0(Dn) with f = lim etφ0,t for a
corresponding evolution family {φs,t}0≤s≤t with associated Herglotz
vector field H. We now prove the coefficient estimate for Aα by com-
paring coefficients in the Loewner equation (2.2) for t 7→ φ0,t, together
with the coefficient estimates from Proposition 5.1. Since these steps
are the same for each case, we only consider case (c), i.e., α = (0, 2).
Let φ0,t = (w1,t, w2,t), and write

w1,t(z) = e−tz1 +
∑
|α|≥2

aα(t)z
α.
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Furthermore, we write H(·, t) = (h1,t, h2,t) with

h1,t(z) = −z1 +
∑
α

cα(t)z
α.

The Loewner equation yields (ẏ is used for ∂y/∂t)

(5.3) ẇ1,t = h1,t(w1,t, w2,t) = −w1,t + c(0,2)(t)w
2
2,t + · · · .

As w2,t(z) = e−tz2 + · · · , comparing the coefficients for z22 gives

ȧ(0,2)(t) = −a(0,2)(t) + c(0,2)(t)e
−2t, a(0,2)(0) = 0,

which implies

eta(0,2)(t) =

∫ t

0

c(0,2)(s)e
−s ds.

With Proposition 5.1 (c), we obtain

|eta(0,2)(t)| ≤
∫ t

0

|c(0,2)(s)|e−s ds ≤
∫ t

0

e−s ds = 1− e−t.

Hence, |A(0,2)| = limt→∞ |eta(0,2)(t)| = 1.

Finally, we prove that the mappings F1, . . . , F5 belong to S0(Dn).
Let Hj , j = 1, . . . , 7, be the mappings from Proposition 5.1. It is
easy to verify that −(DFj)

−1Fj = Hj . Hence, by Theorem 2.2, Fj ∈
S∗(Dn) ⊂ S0(Dn). �
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