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THE FIBERING MAP APPROACH TO A
p(x)-LAPLACIAN EQUATION WITH SINGULAR

NONLINEARITIES AND NONLINEAR
NEUMANN BOUNDARY CONDITIONS

KAMEL SAOUDI

ABSTRACT. The purpose of this paper is to study
the singular Neumann problem involving the p(x)-Laplace
operator:

(Pλ)


−∆p(x)u+ |u|p(x)−2u =

λa(x)

uδ(x)
in Ω,

u > 0 in Ω,

|∇u|p(x)−2 ∂u

∂ν
= b(x)uq(x)−2u on ∂Ω,

where Ω ⊂ RN , N ≥ 2, is a bounded domain with C2 bound-
ary, λ is a positive parameter, a, b ∈ C(Ω) are non-negative
weight functions with compact support in Ω and δ(x),

p(x), q(x) ∈ C(Ω) are assumed to satisfy the assumptions
(A0)–(A1) in Section 1. We employ the Nehari manifold
approach and some variational techniques in order to show
the multiplicity of positive solutions for the p(x)-Laplacian
singular problems.

1. Introduction. In the present paper, we investigate the existence
of solutions for the following inhomogeneous singular equation involving
the p(x)-Laplace operator:

(Pλ)


−∆p(x)u+ |u|p(x)−2u = λa(x)

uδ(x) in Ω,

u > 0 in Ω,

|∇u|p(x)−2 ∂u
∂ν = b(x)uq(x)−2u, on ∂Ω.
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Here, Ω ⊂ RN , N ≥ 2, is a bounded domain with C2 boundary,
λ is a positive parameter and a, b ∈ C(Ω) are non-negative weight
functions with compact support in Ω. For any continuous and bounded
function β, we define β+ := ess supβ(x) and β− := ess inf β(x). We as-
sume the following on δ(x), p(x) and q(x) :

(A0) δ(x), p(x), q(x) ∈ C(Ω) such that 0 < 1−δ(x) < p(x) < q(x) <
p∗(x):

p∗(x) =
Np(x)

N − p(x)
.

(A1) 0 < 1− δ− ≤ 1− δ+ < p− ≤ p+ < q− ≤ q+.

The operator ∆p(x)u := div(|∇u|p(x)−2∇u) is called p(x)-Laplace
where p is a continuous non-constant function. This differential op-
erator is a natural generalization of the p-Laplace operator ∆pu :=
div(|∇u|p−2∇u), where p > 1 is a real constant. However, the p(x)-
Laplace operator possesses more complicated non-linearity than the p-
Laplace operator, due to the fact that ∆p(x) is not homogeneous. This
fact implies some difficulties; for example, we cannot use the Lagrange
multiplier theorem in many problems involving this operator.

The study of differential and partial differential equations involving
the variable exponent is a new and interesting topic. The interest in
studying such problems was stimulated by their applications in elastic
mechanics, fluid dynamics, electrorheological fluids, image processing,
flow in porous media, calculus of variations, non-linear elasticity theory,
heterogeneous porous media models (see [1, 5]). These physical prob-
lems were facilitated by the development of Lebesgue and Sobolev
spaces with the variable exponent.

At this point, we briefly recall literature concerning related singular
equations involving the p(x)-Laplace operator. Unfortunately, results
for p(x)-Laplace equations with singular non-linearity are rare. Zhang
[22] obtained the existence and the boundary asymptotic behavior of
solutions to the purely singular p(x)-Laplace equation. Saoudi [18]
has extended the results of existence for more general problems. Fan
[7], using the critical point theory, investigated the existence and
multiplicity of solutions for the p(x)-Laplacian Dirichlet problem with
singular coefficients. Saoudi and Ghanmi [19] and Saoudi, Kratou
and Al Sadhan [21], using various methods, especially variational
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techniques, investigated the existence and multiplicity of solutions for
the singular p(x)-Laplacian Dirichlet problem and the singular p(x)-
Laplacian Neumann problem, respectively.

At this point, when p(x) = p = constant, problem (Pλ) has also
been studied with different elliptic operators. We refer the reader to
the monographs of Ghergu and Radulescu [10] for a more general pre-
sentation of these results and the survey article of Crandall, Rabinowitz
and Tartar [3]. After this paper, many authors considered the singu-
lar sub and super-critical problem using the technique used in [3] or
a combination of this approach with Nehari’s and Perron’s methods.
We would like to mention Coclite and Palmieri [2], Haitao [12], Hi-
rano, Saccon and Shioji [13], Giacomoni and Saoudi [11], Dhanya,
Giacomoni, Prashanth and Saoudi [4], Saoudi and Kratou [20], and
the references therein.

Nevertheless, some interesting papers on the application of the
Nehari manifold method in variable exponent problems have recently
been published; among others, we would like to mention [15, 16, 17].

In this work, we generalize the results obtained in Rasouli [16] to the
p(x)-Laplacian equations involving singular nonlinearities by using the
Nehari manifold and the fibering map. We shall discuss the multiplicity
of positive solutions for the problem (Pλ) and prove the existence of at
least two positive solutions.

Here, we state our main results asserted in the following theorem.

Theorem 1.1. Assume that (A0)–(A1) holds. Then, there exists a λ0

> 0 such that problem (Pλ) has at least two non-negative solutions for
all λ ∈ (0, λ0).

This paper is organized as follows. In Section 2, we recall some basic
facts regarding the variable exponent Lebesgue and Sobolev spaces
which we will use later. In Section 3, we analyze the fibering map
related to the Euler functional associated to problem (Pλ). Proofs of
our results will be presented in Sections 4 and 5.

2. Generalized Lebesgue-Sobolev spaces setting. In order to
deal with the p(x)-Laplacian problem, we need to introduce some

functional spaces Lp(·)(Ω), W 1,p(·)(Ω), W
1,p(·)
0 (Ω) and properties of



930 KAMEL SAOUDI

the p(x)-Laplacian which we will use later. Denote by S(Ω) the set
of all measurable real-valued functions defined in Ω. Note that two
measurable functions are considered as the same element of S(Ω) when
they are almost everywhere equal. Let

Lp(·)(Ω) =

{
u ∈ S(Ω) :

∫
Ω

|u(x)|p(x)dx < ∞
}
,

with the norm

|u|p(·) = |u|Lp(·)(Ω) = inf

{
λ > 0 :

∫
Ω

∣∣∣∣u(x)λ

∣∣∣∣p(x)dx ≤ 1

}
.

The space (Lp(·)(Ω), | · |p(·)) becomes a Banach space. We call it a
variable exponent Lebesgue space. Moreover, this space is a separable,
reflexive and uniform convex Banach space, see [9, Theorems 1.6, 1.10,
1.14].

The variable exponent Sobolev space

W 1,p(·)(Ω) =
{
u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)

}
,

can be equipped with the norm

∥u∥ = |u|p(·) + |∇u|p(·) for all u ∈ W 1,p(·)(Ω).

Note that W
1,p(·)
0 (Ω) is the closure of C∞

0 (Ω) in W 1,p(·)(Ω). The spaces

W 1,p(·)(Ω) and W
1,p(·)
0 (Ω) are separable, reflexive and uniform convex

Banach spaces (see [9, Theorem 2.1]). The inclusion between Lebesgue
spaces also generalizes naturally: if 0 < |Ω| < ∞ and p1, p2 are variable
exponents such that p1(x) ≤ p2(x) almost everywhere in Ω, then there
exists the continuous embedding Lp2(x)(Ω) ↩→ Lp1(x)(Ω).

We denote by Lq(x)(Ω) the conjugate space of Lp(x)(Ω), where
1/q(x) + 1/p(x) = 1. For u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), the Hölder
type inequality:

(2.1)

∣∣∣∣ ∫
Ω

u(x)v(x) dx

∣∣∣∣ ≤ (
1

p−
+

1

q−

)
|u|p(x)|v|q(x)

holds.

An important role in manipulating the generalized Lebesgue spaces
is played by the modular of the Lp(x)(Ω) space, which is the mapping
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ρp(x) : L
p(x)(Ω) → R defined by

ρp(x)(u) =

∫
Ω

|u|p(x)dx.

If (un), u ∈ Lp(x)(Ω) and p+ < ∞, then the following relations hold.

∥u∥Lp(x) > 1 =⇒ ∥u∥p
−

Lp(x) ≤ ρp(x)(u) ≤ ∥u∥p
+

Lp(x) ,(2.2)

∥u∥Lp(x) < 1 =⇒ ∥u∥p
+

Lp(x) ≤ ρp(x)(u) ≤ ∥u∥p
−

Lp(x) ,(2.3)

∥un − u∥Lp(x) −→ 0 if and only if ρp(x)(un − u) −→ 0.(2.4)

The variable exponent Lebesgue-Sobolev space

W 1,p(·)(Ω) =
{
u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)

}
can be equipped with the norm

∥u∥ = |u|p(·) + |∇u|p(·) for all u ∈ W 1,p(·)(Ω).

Note that W
1,p(·)
0 (Ω) is the closure of C∞

0 (Ω) in W 1,p(·)(Ω) under the

norm ∥u∥ = |∇u|p(·).The spaces W 1,p(·)(Ω) and W
1,p(·)
0 (Ω) are sepa-

rable, reflexive and uniform convex Banach spaces (see [9, Theorem
2.1]).

The following result generalizes the well-known Sobolev embedding
theorem.

Theorem 2.1 ([8, 14]). Let Ω ⊂ RN be an open bounded domain with
Lipschitz boundary, and assume that p ∈ C(Ω) with p(x) > 1 for each
x ∈ Ω. If r ∈ C(Ω) and p(x) ≤ r(x) ≤ p∗(x) for all x ∈ Ω, then
there exists a continuous embedding W 1,p(x)(Ω) ↩→ Lr(x)(Ω). Also, the
embedding is compact r(x) < p∗(x) almost everywhere in Ω, where

p∗(x) =

{
Np(x)/N − p(x) if p(x) < N,

+∞ if p(x) ≥ N.

The next three theorems play an important role in the present paper.

Theorem 2.2. Assume that the boundary of Ω possesses the cone
property and p ∈ C(Ω). Suppose that a ∈ Lα(x), a(x) > 0 for x ∈ Ω,
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α ∈ C(Ω) and α− > 1, α−
0 ≤ α0(x) ≤ α+

0 (1/α(x) + 1/α0(x) = 1). If
δ ∈ C(Ω) and

(2.5) 0 < 1− δ(x) <
α(x)− 1

α(x)
p∗(x) for all x ∈ Ω,

then the embedding from W 1,p(x)(Ω) to L
1−δ(x)
a(x) (Ω) is compact. More-

over, there is a constant c1 > 0 such that the inequality

(2.6)

∫
Ω

a(x)|u|1−δ(x)dx ≤ c1(∥u∥1−δ−+ ∥u∥1−δ+)

holds.

Proof. We must assume that our proof of the embedding from

W 1,p(x)(Ω) ↩−→↩−→ L
1−δ(x)
a(x) (Ω)

is similar to [7]. Let u ∈ W 1,p(x)(Ω), and set

r(x) =
α(x)

α(x)− 1
(1− δ(x)) = α0(x)(1− δ(x)).

Then, (2.5) implies that r(x) < p∗(x). Hence, by Theorem 2.1, we have
the embedding W 1,p(x)(Ω) ↩→↩→ Lr(x)(Ω). Thus, for u ∈ W 1,p(x)(Ω),
we have |u|1−δ(x) ∈ Lα0(x)(Ω). From (2.1),∫

Ω

a(x)|u|1−δ(x)dx ≤ c2|a|α(x)∥u|1−δ(x)| < ∞.

This implies that W 1,p(x)(Ω) ⊂ L1−δ(x)(Ω). Moreover, if

un ⇀ 0 weakly in W 1,p(x)(Ω),

then, from above,

un −→ 0 strongly in Lr(x)(Ω).

Thus, it follows that∫
Ω

a(x)|un|1−δ(x)dx ≤ c2|a|α(x)∥un|1−δ(x)| −→ 0,

which implies that |un|1−δ(x),a(x) → 0, and hence, we can deduce

W 1,p(x)(Ω) ↩−→↩−→ L
1−δ(x)
a(x) (Ω).
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Now, we show that inequality (2.6) holds. Firstly, from above, we
have ∫

Ω

a(x)|u|1−δ(x)dx ≤ c3|a|α(x)∥u|1−δ(x)| < ∞.

Since 1− δ− ≤ 1− δ(x) ≤ 1− δ+ and |u|1−δ(x) ≤ |u|1−δ− + |u|1−δ+ , we
have ∫

Ω

a(x)|u|1−δ(x)dx ≤
∫
Ω

a(x)|u|1−δ−dx+

∫
Ω

a(x)|u|1−δ+dx.

Moreover, from (2.1)–(2.4) and the condition p(x) < (1 − δ−)α0(x) ≤
(1− δ+)α0(x) < p∗(x), we have
(2.7)∫

Ω

a(x)|u|1−δ−dx ≤ c4|a|α(x)∥u|1−δ(x)|α0(x) = c4|a|α(x)|u|1−δ−

(1−δ−)α0(x)

≤ c4∥u∥1−δ− .

Similarly, we have

(2.8)

∫
Ω

a(x)|u|1−δ+dx ≤ c5∥u∥1−δ+ .

Therefore, by (2.7) and (2.8), it follows that∫
Ω

a(x)|u|1−δ(x)dx ≤ c6(∥u∥1−δ−+ ∥u∥1−δ+).

The proof of Theorem 2.3 is now complete. �

Theorem 2.3 ([16]). Assume that the boundary of Ω− possesses the
cone property and p ∈ C(Ω). Suppose that b ∈ Lγ(x), b(x) > 0 for
x ∈ Ω, γ ∈ C(Ω) and γ− > 1, γ−

0 ≤ γ0(x) ≤ γ+
0 (1/γ(x)+1/γ0(x) = 1).

If q ∈ C(Ω) and

1 < q(x) <
γ(x)− 1

γ(x)
p∗∂(x) for all x ∈ Ω(2.9)

or

1 < γ(x) <
Nγ(x)

Nγ(x)− r(x)(N − p(x))
,
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then the embedding from W 1,p(x)(Ω) to L
q(x)
b(x)(∂Ω) is compact. More-

over, there is a constant c7 > 0 such that the inequality

(2.10)

∫
∂Ω

b(x)|u|q(x)dx ≤ c7(∥u∥q
−
+ ∥u∥q

+

)

holds.

Theorem 2.4. Assume that the boundary of Ω possesses the cone
property and p ∈ C(Ω). Let u ∈ W 1,p(x)(Ω). Then, there are positive
constants c8, c9, c10, c11 > 0 such that the following inequalities hold :∫

Ω

a(x)|u|1−δ(x)dx ≤

{
c8∥u∥1−δ− if ∥u∥ > 1,

c9∥u∥1−δ+ if ∥u∥ < 1.∫
∂Ω

b(x)|u|q(x)dx ≤

{
c10∥u∥q

+

if ∥u∥ > 1,

c11∥u∥q
−

if ∥u∥ < 1.

Proof. The results of Theorem 2.4 follow immediately from the con-
clusions of Theorems 2.2 and 2.3, respectively. �

3. Fibering map analysis for (Pλ). Associated to the problem
(Pλ), we define the functional Eλ : W 1,p(x)(Ω) → R, given by

Eλ(u)
def
=

∫
Ω

|∇u|p(x)

p(x)
dx+

∫
Ω

|u|p(x)

p(x)
dx(3.1)

− λ

∫
Ω

a(x)|u|1−δ(x)

1− δ(x)
dx

∫
∂Ω

b(x)
|u|q(x)

q(x)
dx.

Note that Eλ,µ is not a C1 functional in W , and hence, classical
variational methods are not applicable. Through a new cut-off func-
tional (see [21, Lemma A.3]) we are able to recover the availability of
the variational method. Precisely, we obtain the C1-differentiability of
the associated cut-off functional.

Definition 3.1. u ∈ W 1,p(x)(Ω) is called a generalized solution of
problem (Pλ) if, for all φ ∈ C∞

0 (Ω),

(3.2)

∫
Ω

|∇u|p(x)−2∇u∇φdx+

∫
Ω

|u|p(x)−2uφdx

= λ

∫
Ω

a(x)|u|−δ(x)φdx+

∫
∂Ω

b(x)|u|q(x)−1φdx.
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In many problems, such as (Pλ), Eλ is not bounded below on
W 1,p(x)(Ω), but it is bounded below on the corresponding Nehari
manifold, defined by

Nλ := {u ∈ W 1,p(x)(Ω) \ {0} : ⟨E′
λ(u), u⟩ = 0}.

Then, u ∈ Nλ if and only if

(3.3)

∫
Ω

|∇u|p(x)

p(x)
dx+

∫
Ω

|u|p(x)

p(x)
dx

− λ

∫
Ω

a(x)
|u|1−δ(x)

1− δ(x)
dx

−
∫
∂Ω

b(x)
|u|q(x)

q(x)
dx = 0.

We note that Nλ contains every solution of problem (Pλ).

Now, we know that the Nehari manifold is closely related to the
behavior of the functions Φu : [0,∞) → R, defined as

Φu(t) = Eλ(tu).

Such maps are called fiber maps and were introduced by Drabek and
Pohozaev in [6]. For u ∈ W 1,p(x)(Ω) \ {0}, we have

Φu(t) =

∫
Ω

tp(x)|∇u|p(x)

p(x)
dx+

∫
Ω

tp(x)|u|p(x)

p(x)
dx

− λ

∫
Ω

a(x)t1−δ(x)|u|1−δ(x)

1− δ(x)
dx−

∫
∂Ω

b(x)tq(x)

q(x)
|u|q(x) dx,

Φ′
u(t) =

∫
Ω

tp(x)−1|∇u|p(x) dx+

∫
Ω

tp(x)−1|u|p(x) dx

− λ

∫
Ω

a(x)t−δ(x)|u|1−δ(x) dx−
∫
∂Ω

b(x)tq(x)−1|u|q(x) dx,

Φ′′
u(t) =

∫
Ω

(p(x)− 1)tp(x)−2|∇u|p(x) dx+

∫
Ω

(p(x)− 1)tp(x)−2|u|p(x) dx

− λ

∫
Ω

a(x)δ(x)t−δ(x)−1|u|1−δ(x) dx

−
∫
∂Ω

b(x)(q(x)− 1)tq(x)−2|u|q(x) dx.
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Then, it is easy to see that tu ∈ Nλ if and only if Φ′
u(t) = 0 and, in

particular, u ∈ Nλ if and only if Φ′
u(1) = 0. Thus, it is natural to split

Nλ into three parts corresponding to local minima, local maxima and
points of inflection, defined as follows:

N+
λ = {u ∈ Nλ : Φ′′

u(1) > 0}

= {tu ∈ W 1,p(x)(Ω) \ {0} : Φ′
u(t) = 0,Φ′′

u(t) > 0},
N−

λ = {u ∈ Nλ : Φ′′
u(1) < 0}

= {tu ∈ W 1,p(x)(Ω) \ {0} : Φ′
u(t) = 0,Φ′′

u(t) < 0},
N 0

λ = {u ∈ Nλ : Φ′′
u(1) = 0}

= {tu ∈ W 1,p(x)(Ω) \ {0} : Φ′
u(t) = 0,Φ′′

u(t) = 0}.

Our first result is the following:

Lemma 3.2. Eλ is coercive and bounded below on Nλ.

Proof. Let u ∈ Nλ and ∥u∥ > 1. Then, using (2.2)–(2.4) and the
embeddings in Theorem 2.1, we estimate Eλ(u) as follows:

Eλ(u) =

∫
Ω

|∇u|p(x)

p(x)
dx+

∫
Ω

|u|p(x)

p(x)
dx

− λ

∫
Ω

a(x)|u|1−δ(x)

1− δ(x)
dx−

∫
∂Ω

b(x)|u|q(x)

q(x)
dx

≥
(

1

p+
− 1

q−

)∫
Ω

(|∇u|p(x) + |u|p(x)) dx

− λ

(
1

q−
− 1

1− δ+

)∫
Ω

|u|1−δ(x)dx

≥
(

1

p+
− 1

q−

)
∥u∥p

−
− λc8

(
1

q−
− 1

1− δ+

)
∥u∥1−δ+ .

Hence, noting p− > 1 − δ+, it is seen that Eλ(u) → ∞ as ∥u∥ → ∞.
This implies that Eλ is coercive and bounded below on Nλ. The proof
of Lemma 3.2 is now complete. �

Lemma 3.3. Let u be a local minimizer for Eλ on subsets N+
λ or N−

λ

of Nλ such that u /∈ N 0
λ . Then, u is a critical point of Eλ.
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Proof. Since u is a local minimizer for Eλ under the constraint

(3.4) Iλ(u) := ⟨E′
λ(u), u⟩ = 0,

then, applying the theory of Lagrange multipliers, we get the existence
of µ ∈ R such that

E′
λ(u) = µI ′λ,µ(u).

Thus, we have

⟨E′
λ(u), u⟩ = µ⟨I ′λ(u), u⟩ = µΦ′′

u(1) = 0.

However, u /∈ N 0
λ , and thus, Φ′′

u(1) ̸= 0. Hence, µ = 0. This completes
the proof of Lemma 3.3. �

Now, we prove the following crucial lemma.

Lemma 3.4. There exists a λ0 such that, for λ ∈ (0, λ0), we have
N±

λ ̸= ∅ and N 0
λ = {0}.

Proof. Firstly, using Lemma 3.3, we conclude that N±
λ are non-

empty for λ ∈ (0, λ0). Now, we proceed by contradiction to prove that
N 0

λ = {0} for all λ ∈ (0, λ0). Let us suppose that there exists a u ∈ N 0
λ

such that ∥u∥ > 1. Then, from the definition of N 0
λ , it follows that∫

Ω

|∇u|p(x) dx+

∫
Ω

|u|p(x) dx

− λ

∫
Ω

a(x)|u|1−δ(x) dx−
∫
∂Ω

b(x)|u|q(x) dx = 0.

Combining the above equality with (3.4), we obtain

0 = ⟨I ′λ(u), u⟩

=

∫
Ω

p(x)|∇u|p(x) dx+

∫
Ω

p(x)|u|p(x) dx

− λ

∫
Ω

a(x)(1− δ(x))|u|1−δ(x) dx−
∫
∂Ω

b(x)q(x)|u|q(x) dx

≥ p−
∫
Ω

|∇u|p(x) dx+ p−
∫
Ω

|u|p(x) dx

− (1− δ+)

(∫
Ω

|∇u|p(x) dx+

∫
Ω

|u|p(x) dx−
∫
∂Ω

b(x)q(x)|u|r(x) dx
)
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− q+
∫
∂Ω

b(x)|u|q(x) dx

≥ (p− − (1− δ+))

(∫
Ω

|∇u|p(x) dx+

∫
Ω

|u|p(x) dx
)

+ ((1− δ+)− q+)

∫
∂Ω

b(x)|u|q(x) dx.

Using, Theorem 2.4, we obtain that

0 ≥ (p− − (1− δ+))∥u∥p
−
+ c10((1− δ+)− q+)∥u∥q

+

,

which implies that

(3.5) ∥u∥ ≥ c10

(
p− − (1− δ+)

q+ − (1− δ+)

)1/(q+−p−)

.

Similarly, since u ∈ Nλ, we have∫
Ω

|∇u|p(x)dx+

∫
Ω

|u|p(x)dx

− λ

∫
Ω

a(x)|u|1−δ(x)dx−
∫
Ω

b(x)|u|q(x)dx = 0

and, since u ∈ N 0
λ , we obtain

p+
∫
Ω

|∇u|p(x)dx+ p+
∫
Ω

|u|p(x)dx− λ(1− δ+)

∫
Ω

a(x)|u|1−δ(x)dx

− q−
∫
∂Ω

b(x)|u|q(x)dx ≥ 0.

Therefore,

p+
∫
Ω

|∇u|p(x)dx+ p+
∫
Ω

|u|p(x)dx− λ(1− δ+)

∫
Ω

a(x)|u|1−δ(x)dx

− q−
(∫

Ω

|∇u|p(x)dx+

∫
Ω

|u|p(x)dx− λ

∫
Ω

a(x)|u|1−δ(x)dx

)
≥ 0.

(p+ − q−)

(∫
Ω

|∇u|p(x)dx+

∫
Ω

|u|p(x)dx
)

+ λ(q− − (1− δ+))

∫
Ω

a(x)|u|1−δ(x)dx ≥ 0.
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Now, since ∥u∥ > 1, using Theorem 2.4, we get

(p+ − q−)∥u∥p
−
+ c8λ(q

− − (1− δ+))∥u∥1−δ+ ≥ 0,

and hence,

(3.6) ∥u∥ ≤ c8

(
λ
q− − (1− δ+)

q− − p+

)1/(p−−(1−δ+))

.

From (3.5) and (3.6),

c8λ

(
q− − (1− δ+)

q− − p+

)
≥ c10

(
p− − (1− δ+)

q+ − (1− δ+)

)(p−−(1−δ+))/(q+−p−)

,

and thus,

λ ≥ c10
c8

(
p− − (1− δ+)

q+ − (1− δ+)

)(p−−(1−δ+))/(q+−p−)(
q− − p+

q−(1− δ+)

)
.

Therefore, if λ is sufficiently small,

λ =

(
p− − (1− δ+)

q+ − (1− δ+)

)(p−−(1−δ+))/(q+−p−)(
q− − p+

q−(1− δ+)

)
,

we obtain ∥u∥ < 1, which is impossible. Thus, N 0
λ = {0} for all

λ ∈ (0, λ0). Therefore, the proof of Lemma 3.4 is now complete. �

4. Existence of a minimizer on N+
λ . In this section, we show

that the minimum of Eλ is achieved in N+
λ . In addition, we show that

this minimizer is also the first solution of (Pλ).

Theorem 4.1. For all λ ∈ (0, λ0), there exist uλ ∈ N+
λ satisfying

Eλ(uλ) = infu∈N+
λ
Eλ(u).

Proof. Assume that λ ∈ (0, λ0). Since Eλ is bounded below on
Nλ and also on N+

λ , then, there exists {uk} ⊂ N+
λ , a sequence such

that Eλ(un) → infu∈N+
λ
Eλ(u) as n → ∞. Since Eλ is coercive, {un}

is bounded in W 1,p(x)(Ω). Thus, we may assume, without loss of
generality, that un ⇀ u0 weakly in W 1,p(x)(Ω) and, by the compact
embedding, we have

un ⇀ u0 in L
1−δ(x)
a(x) (Ω)
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and
un ⇀ u0 in L

q(x)
b(x)(∂Ω).

Now, we will prove un → u0 strongly in W 1,p(x)(Ω). First, we show
that infu∈N+

λ
Eλ(u) < 0. Let u0 ∈ N+

λ . Then, we have ϕ′′
u0
(1) > 0,

which gives

p+
∫
Ω

|∇u|p(x)dx+ p+
∫
Ω

|u|p(x)dx

(4.1)

− λ(1− δ+)

∫
Ω

a(x)|u|1−δ(x)dx− q−
∫
∂Ω

b(x)|u|q(x)dx > 0.

On the other hand, from the definition of Eλ, we can write

Eλ(u) ≤
1

p−

(∫
Ω

|∇u|p(x)dx+

∫
Ω

|u|p(x)dx
)

(4.2)

− λ

1− δ+

∫
Ω

a(x)|u|1−δ(x)dx− 1

q+

∫
∂Ω

b(x)|u|q(x)dx.

Now, we multiply (3.4) by −(1− δ+), which yields:

− (1− δ+)

(∫
Ω

|∇u|p(x)dx+

∫
Ω

|u|p(x)dx
)

+ λ(1− δ+)

∫
Ω

a(x)|u|1−δ(x)dx+ (1− δ+)

·
∫
∂Ω

b(x)|u|q(x)dx = 0.

Adding the above equality to (4.1), we get
(4.3)∫

∂Ω

b(x)|u|1−δ(x)dx <
p+ − (1− δ+)

1− δ+ − q−

(∫
Ω

|∇u|p(x)dx+

∫
Ω

|u|p(x)dx
)
.

Moreover, using (3.4) with (4.2), we have

Eλ(u) ≤
(

1

p−
− 1

1− δ+

)(∫
Ω

|∇u|p(x)dx+

∫
Ω

|u|p(x)dx
)

(4.4)

−
(

1

q−
− 1

1− δ+

)∫
∂Ω

b(x)|u|q(x)dx.
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Hence, using (4.3) and (4.4), we obtain

Eλ(u) < −
(
(p− − q+)(p− − (1− δ+))

p−q+(1− δ+)

)
∥u∥p

−
< 0.

Now, we suppose that uk 9 u0 strongly in W 1,p(x)(Ω). Then,

∥u0∥p ≤ lim inf
n→∞

∥un∥p.

We now have, by compact embeddings:∫
Ω

a(x)u
1−δ(x)
0 dx = lim inf

n→∞

∫
Ω

a(x)u1−δ(x)
n dx

and ∫
∂Ω

b(x)u
q(x)
0 dx = lim inf

n→∞

∫
∂Ω

b(x)uq(x)
n dx.

Now, using (3.4) and Theorem 2.2, we have

Eλ(un) ≥
(

1

p+
− 1

q−

)(∫
Ω

|∇un|p(x)dx+

∫
Ω

|un|p(x)dx
)

+ λ

(
1

q−
− 1

1− δ+

)∫
Ω

a(x)|un|1−δ(x)dx.

Letting n to ∞, we obtain

lim
n→∞

Eλ(un) ≥
(

1

p−
− 1

q−

)
lim

n→∞

(∫
Ω

|∇un|p(x)dx+

∫
Ω

|un|p(x)dx
)

+ λ

(
1

q−
− 1

1− δ+

)
lim
n→∞

∫
Ω

a(x)|un|1−δ(x)dx.

Therefore, using Theorem 2.2, we obtain

inf
u∈N+

Eλ(u) >

(
1

p−
− 1

q−

)
∥u0∥p

−

+ λc1

(
1

q−
− 1

1− δ+

)
(∥u0∥1−δ− + ∥u0∥1−δ+) > 0

since p− > 1 − δ+ and ∥u0∥ > 1, a contradiction. Thus, un → u0

strongly in W 1,p(x)(Ω) and Eλ(u0) = infu∈N+
λ
Eλ(u). The proof of

Theorem 4.1 is now complete. �
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5. Existence of a minimizer on N−
λ . In this section, we shall

show the existence of the second solution by proving the existence of
the minimizer of Eλ on N−

λ .

Theorem 5.1. For all λ ∈ (0, λ0), there exist vλ ∈ N−
λ satisfying

Eλ(vλ) = infv∈N−
λ
Eλ(v).

Proof. Assume that λ ∈ (0, λ0). Since Eλ is bounded below on
Nλ, and thus, on N−

λ , there exists {vn} ⊂ N−
λ , a sequence such that

Eλ(vn) → infv∈N−
λ
Eλ(v) as n → ∞. Since Eλ is coercive, {vn}

is bounded in W 1,p(x)(Ω). Thus, we may assume, without loss of
generality, that vn ⇀ v0 weakly in W 1,p(x)(Ω) and, by the compact
embedding, we have

vn ⇀ v0 in L
1−δ(x)
a(x) (Ω)

and

vn ⇀ v0 in L
q(x)
b(x)(∂Ω).

Now, we will prove vn → v0 strongly in W 1,p(x)(Ω). First, we show
that infv∈N−

λ
Eλ(v) > 0. Let v0 ∈ N−

λ . Then, we have, from (3.4),∫
Ω

|∇v|p(x) dx+

∫
Ω

|v|p(x)dx(5.1)

− λ

∫
Ω

a(x)|v|1−δ(x)dx−
∫
∂Ω

b(x)|v|q(x)dx = 0.

On the other hand, from the definition of Eλ, we can write

Eλ(v) ≥
1

p−

(∫
Ω

|∇v|p(x)dx+

∫
Ω

|v|p(x)dx
)

(5.2)

− λ

1− δ+

∫
Ω

a(x)|v|1−δ(x)dx− 1

q+

∫
∂Ω

b(x)|v|q(x)dx.

Therefore, using (5.1) and (5.2), we obtain:

Eλ(v) ≥
1

p−

(∫
Ω

|∇v|p(x)dx+

∫
Ω

|v|p(x)dx
)
− λ

1−δ+

∫
Ω

a(x)|v|1−δ(x)dx

− 1

q+

(∫
Ω

|∇v|p(x) dx+

∫
Ω

|v|p(x)dx− λ

∫
Ω

a(x)|v|1−δ(x)dx

)



FIBERING MAP FOR A p(x)-LAPLACIAN EQUATION 943

≥
(

1

p−
− 1

q+

)(∫
Ω

|∇v|p(x)dx+

∫
Ω

|v|p(x)dx
)

+ λ

(
1

q+
− 1

1− δ+

)∫
Ω

a(x)|v|1−δ(x)dx

≥
(

1

p−
−− 1

q+

)
∥v∥p

−
+ λc8

(
1

q+
− 1

1− δ+

)
∥v∥1−δ+

≥
[(

1

p−
− 1

q+

)
+ λc8

(
1

q+
− 1

1− δ+

)]
∥v∥p−

since p− > 1− δ+. Consequently, if we choose

λ <
(p−(1− δ+))q+

c8p−(q+ − (1− δ+))
,

we obtain Eλ(v) > 0. Moreover, since N+
λ ∩ N−

λ = ∅, the fact that

infv∈N−
λ
Eλ(v) < 0, we obtain v ∈ N−

λ . Moreover, if v0 ∈ N−
λ , there

exists a t0 such that t0v0 ∈ N−
λ , and thus, Eλ(t0v0) ≤ Eλ(v0). In fact,

since

I ′λ(v) =

∫
Ω

p(x)|∇v|p(x)dx+

∫
Ω

p(x)|v|p(x)dx

− λ

∫
Ω

a(x)(1− δ(x))|v|1−δ(x)dx−
∫
∂Ω

b(x)q(x)|v|q(x)dx,

then

I ′λ(t0v0) =

∫
Ω

p(x)|∇t0v0|p(x)dx+

∫
Ω

p(x)|t0v0|p(x)dx

− λ

∫
Ω

a(x)(1−δ(x))|t0v0|1−δ(x)dx−
∫
∂Ω

b(x)q(x)|t0v0|q(x)dx

≤ tp
+

0 p+
(∫

Ω

|∇v0|p(x)dx+

∫
Ω

|v0|p(x)dx
)

− λt1−δ+

0 (1−δ+)

∫
Ω

a(x)|v0|1−δ(x)dx−q−tq
+

0

∫
Ω

b(x)|v0|q(x)dx,

since 1− δ+ < p+ < q−, and, by the assumptions on a and b, it follows
that I ′λ(t0v0) < 0. Hence, by the definition of N−

λ , t0v0 ∈ N−
λ .

Now, we suppose that vn 9 v0 strongly in W 1,p(x)(Ω). Using the
fact that

∥v0∥p dx ≤ lim inf
n→∞

∥vn∥p,
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we obtain

Eλ(tv0) ≤ tp
+

0 p+
(∫

Ω

|∇v0|p(x)dx+

∫
Ω

|v0|p(x)dx
)

− λt1−δ+

0 (1− δ+)

∫
Ω

a(x)|v0|1−δ(x)dx

− q−tq
+

0

∫
Ω

b(x)|v0|q(x)dx

≤ lim
n→∞

[
tp

+

0 p+
(∫

Ω

|∇vn|p(x)dx+

∫
Ω

|vn|p(x)dx
)

− λt1−δ+

0 (1− δ+)

∫
Ω

a(x)|vn|1−δ(x)dx

− q−tq
+

0

∫
Ω

b(x)|vn|q(x)dx
]

≤ lim
n→∞

Eλ(tvn) ≤ lim
n→∞

Eλ(vn) = inf
v∈N−

λ

Eλ(v),

which contradicts tv0 ∈ N−
λ . Thus, vn → v0 strongly in W 1,p(x)(Ω)

and Eλ(v0) = infv∈N−
λ
Eλ(v). The proof of Theorem 5.1 is now com-

plete. �

Proof of Theorem 1.1. Now, to prove Theorem 1.1, we begin by
proving the existence of non-negative solutions. First, by Theorems
4.1 and 5.1, for all λ ∈ (0, λ0), there exist u0 ∈ N+

λ and v0 ∈ N−
λ ,

satisfying

Eλ(u0) = inf
u∈N+

λ

Eλ(u)

and

Eλ(v0) = inf
v∈N−

λ

Eλ(v).

Moreover, since Eλ(u0) = Eλ(|u0|) and |u0| ∈ N+
λ , and similarly,

Eλ(v0) = Eλ(|v0|) and |v0| ∈ N−
λ , we may thus assume u0, v0 ≥ 0.

From Lemma 3.3, u0 and v0 are critical points of Eλ on W 1,p(x)(Ω) and,
hence, are weak solutions of (Pλ). Finally, by the Harnack inequality,
due to [24], we obtain that u0 and v0 are positive solutions of (Pλ). It
remains to show that the solutions found in Theorems 4.1 and 5.1 are
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distinct. Since N−
λ ∩ N+

λ = ∅, then u0 and v0 are distinct. The proof
of Theorem 1.1 is now complete. �
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