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EXISTENCE OF SOLUTIONS FOR A NONLOCAL
FRACTIONAL BOUNDARY VALUE PROBLEM

ZHEN GAO AND MIN WANG

ABSTRACT. We study a nonlinear fractional boundary
value problem with nonlocal boundary conditions. An asso-
ciated Green’s function is constructed as a series of functions
by the perturbation approach. Criteria for the existence of
solutions are obtained based upon it.

1. Introduction. In this paper, we study the boundary value prob-
lem (BVP) consisting of the fractional differential equation

(1.1) −Dα
0+u+ a(t)u = w(t)f(u, s), 0 < t < 1, α > 2, α /∈ N,

and the nonlocal boundary conditions (BCs)

(1.2) u(k)(0) = 0, k = 0, 1, . . . , ⌊α⌋ − 1, u(1) =

∫ 1

0

u(s) dA(s),

where ⌊α⌋ denotes the integer part of α, and the following assumptions
are satisfied:

(i) a ∈ C[0, 1], w ∈ L[0, 1] with w(t) ̸≡ 0 almost everywhere on
[0, 1], and f ∈ C(R× [0, 1],R).

(ii) A : [0, 1] → R is a function of bounded variation, and∫ 1

0

u(s) dA(s)

denotes the Riemann-Stieltjes integral of u with respect to A.
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(iii) For u : [0, 1] → R, Dα
0+u is the αth Riemann-Liouville fractional

derivative of u, defined by

Dα
0+u(t) =

1

Γ(l − α)

dl

dtl

∫ t

0

(t− s)l−α−1u(s) ds, l = ⌊α⌋+ 1,

provided the right-hand side exists with Γ the Gamma function.

Remark 1.1. It is easy to see that the Riemann-Stieltjes integral in
BC (1.2)

u(1) =

∫ 1

0

u(s) dA(s)

covers the multi-point and integral BCs as special cases.

Fractional differential equations have extensive applications in sci-
ence and engineering. Many phenomena in viscoelasticity, porous me-
dia, and other fields, can be modeled by fractional differential equa-
tions. We refer the reader to [13, 17], and the references therein, for
some applications.

The existence of solutions is an essential problem for BVPs of
fractional differential equations. It has been studied by many authors,
see [2]–[12, 13, 14, 15, 16, 18, 20], and the references therein. Due
to certain special properties of the fractional calculus, critical point
theory can only be applied to study equations involving both the left
and right Riemann-Liouville fractional derivatives, see, for example,
[3]. To the best of our knowledge, if only the left (or right) Riemann-
Liouville fractional derivatives are involved, the only feasible approach
for studying the existence of solutions of a nonlinear BVP is to convert
the problem to an integral equation and use various techniques to find
the fixed points. In this approach, Green’s function plays an important
role in deriving the integral equation.

The special cases of BVP (1.1), (1.2) when a(t) ≡ 0 on [0, 1] was
studied by Feng, Zhang and Ge [4], Zhang and Han [20] and Tan,
Cheng and Zhang [16]. Henderson and Luca [11] further studied a
system of coupled nonlocal fractional BVPs. The general case of BVP
(1.1), (1.2) with a(t) ̸≡ 0 has not yet been considered by many scholars.
Graef, Kong, Kong and Wang [7] studied a special case of BVP (1.1),
(1.2) with a(t) ≡ a > 0. However, a very strong restriction on the BC
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is imposed in [7] due to some technical needs in the proofs; see [7] for
details.

It is notable that, in much literature, Green’s functions are con-
structed by a standard method: the solution of a linear BVP is first
expressed as an integral with unknown parameters; then, the unknown
parameters are determined using the BCs. Finally, one part of the in-
tegral is taken as the associated Green’s function for the BVP. This
method is very effective if the equation in the BVP contains exactly
one term of u, i.e.,

(1.3) −Dα
0+u = 0,

see, for example, [4, Lemma 2.1]. However, if the equation contains
multiple terms of u or its derivative(s), e.g.,

(1.4) −Dα
0+u+ a(t)u = 0,

certain restrictions on BCs must be imposed so that the unknown
parameters in the integral can be determined. For the general form
of BC (1.2), it is difficult to construct the associated Green’s function
via the standard method. In fact, this is the main obstacle to studying
the general case of BVP (1.1), (1.2). It is natural for us to explore new
techniques for deriving Green’s function.

Recently, Graef, et al., [8, 9, 10] proposed a “perturbation ap-
proach” for constructing the Green’s functions for BVPs consisting of
equation (1.4) and various separated BCs. This approach constructs
the Green’s functions as a function series without parameter determi-
nation, and hence, has less restrictions on the BCs. In this paper, we
first utilize the perturbation approach for deriving the Green’s func-
tion for BVP (1.4), (1.2). The perturbation approach is summarized
as a lemma (Section 3, Lemma 3.2). With this lemma, we are able to
construct the Green’s functions for a large family of BVPs. This is our
main contribution of the paper. Then, we study the nonlinear BVP
(1.1), (1.2) by the fixed point theory.

This paper is organized as follows: after this introduction, our main
results are stated in Section 2. All of the proofs are given in Section 3.

2. Main results. We first consider the Green’s function for BVP
(1.4), (1.2). The following notation is needed. Let Λ ∈ R and G0 ∈
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C([0, 1]× [0, 1],R) be defined by

Λ =

∫ 1

0

tα−1 dA(t)

and

G0(t, s) =


[t(1− s)]α−1 − (t− s)α−1

Γ(α)
0 ≤ s ≤ t ≤ 1,

[t(1− s)]α−1

Γ(α)
0 ≤ t ≤ s ≤ 1.

Then, define GA : [0, 1] → R by

GA(s) =

∫ 1

0

G0(t, s) dA(t).

Throughout this paper, we assume

(H1) 0 ≤ Λ < 1 and GA(s) ≥ 0 on [0, 1].

Define

(2.1) H0(t, s) =
tα−1

1− Λ
GA(s) + G0(t, s)

and

(2.2) H0 =
maxs∈[0,1] |GA(s)|

1− Λ
+

1

Γ(α− 1)
.

Remark 2.1. It is known that H0 ∈ C([0, 1]× [0, 1],R) is the Green’s
function for BVP (1.3), (1.2) and H0(t, s) ≥ 0 on [0, 1] × [0, 1] when
(H1) holds; the reader is referred to [16, 20] for more properties of H0.

Let H : [0, 1]× [0, 1] → R be defined by

(2.3) H(t, s) =

∞∑
n=0

(−1)nHn(t, s),

with H0 defined by (2.1) and Hn : [0, 1] × [0, 1] → R, n = 1, 2, . . .,
defined by

Hn(t, s) =

∫ 1

0

a(τ)H0(t, τ)Hn−1(τ, s) dτ, n ≥ 1.
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We also need the assumption:

(H2) a := maxt∈[0,1] |a(t)| < H
−1

0 with H0 defined by (2.2).

Then, we obtain the following result.

Theorem 2.2. Assume that (H1) and (H2) hold. Then, H, defined
by (2.3) as a series of functions, is uniformly convergent for (t, s) ∈
[0, 1] × [0, 1] and continuous on [0, 1] × [0, 1]. Furthermore, H is the
Green’s function for BVP (1.4), (1.2) with

|H(t, s)| ≤ H0

1− aH0

on [0, 1]× [0, 1], where H0 is defined by (2.2).

With Theorem 2.2, we are ready to study the nonlinear BVP (1.1),
(1.2). Let

(2.4) U = max
t∈[0,1]

∫ 1

0

|H(t, s)w(s)| ds,

where H is defined by (2.3). For any u ∈ C[0, 1], define ∥u∥ =
maxt∈[0,1] |u(t)|.

Theorem 2.3. Assume that (H1) and (H2) hold. If there exist M > 0
and κ ∈ [0, U−1) such that

(2.5) max
(x,t)∈[−M,M ]×[0,1]

|f(x, t)| ≤M/U,

and, for any x1, x2 with |xi| ≤M , i = 1, 2,

(2.6) |f(x1, t)− f(x2, t)| ≤ κ|x1 − x2|, t ∈ [0, 1],

then:

(a) BVP (1.1), (1.2) has a unique solution u ∈ C[0, 1] with ∥u∥ ≤M .

(b) For any u0 ∈ C[0, 1] with ∥u0∥ ≤ M , the sequence {un} defined
by

un+1 =

∫ 1

0

H(t, s)w(s)f(un(s), s) ds, n = 0, 1, 2, . . . ,

satisfies ∥un − u∥ → 0 as n→ 0.
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Remark 2.4.

(a) Theorem 2.3 ensures that BVP (1.1), (1.2) has exactly one solu-
tion u with ∥u∥ ≤ M . BVP (1.1), (1.2) may or may not have other
solutions in {u ∈ C[0, 1] | ∥u∥ > M}.

(b) It is well known that, if f satisfies the global Lipschitz condition
with respect to x, i.e., (2.6) holds for all x1, x2 ∈ (−∞,∞), then, by
the contraction mapping theorem, BVP (1.1), (1.2) has exactly one
solution. Our conditions in Theorem 2.3 are different from the global
Lipschitz condition. For example,

f(x) = x3, −∞ < x <∞,

satisfies the conditions in Theorem 2.3 but not the global Lipschitz
condition.

The next result on the existence of solutions is obtained when a
weaker condition than Theorem 2.3 is used.

Theorem 2.5. Assume that (H1) and (H2) hold. If there exists an
M > 0 such that (2.5) holds, then BVP (1.1), (1.2) has at least one
solution u ∈ C[0, 1] with ∥u∥ ≤M .

3. Proofs. We first present a general result to construct the Green’s
functions for BVPs consisting of equation (1.4) and given BCs. The
following lemma on the spectral theory in Banach spaces will be needed.
See [19, page 795, 57b, 57d] for details.

Lemma 3.1. Let X be a Banach space and A : X → X a linear op-
erator with the operator norm ∥A∥ and the spectral radius r(A) of A.
Then:

(a) r(A) ≤ ∥A∥;
(b) if r(A) < 1, then (I − A)−1 exists and

(I − A)−1 =

∞∑
n=0

An,

where I stands for the identity operator.
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In the sequel, we let X = C[0, 1] be the Banach space with the
standard maximum norm. Consider a BVP{

−Dα
0+u = 0 0 < t < 1,

B[u] = 0,
(3.1)

where B[u] = 0 denotes the given BCs. They may either be local or
nonlocal BCs. Assume that G0 ∈ C([0, 1] × [0, 1],R) is the Green’s
function for BVP (3.1) with

(3.2) |G0(t, s)| ≤ ϕ(t)ψ(s) on [0, 1]× [0, 1].

Define the series G : [0, 1]× [0, 1] → R by

(3.3) G(t, s) =

∞∑
n=0

(−1)nGn(t, s),

where G0 is the Green’s function for BVP (3.1) and
(3.4)

Gn(t, s) =

∫ 1

0

a(s)G0(t, τ)Gn−1(τ, s) dτ, a ∈ C[0, 1], n = 1, 2, . . . .

Let a = maxt∈[0,1] |a(t)|, ϕ = maxt∈[0,1] ϕ(t) and ψ = maxs∈[0,1] ψ(s).
Then, we obtain the following result.

Lemma 3.2. Assume that a < (ϕψ)−1. Then, the series G defined by
(3.3) is continuous and uniformly convergent on [0, 1]× [0, 1]. Further-
more, G is the Green’s function for the BVP

(3.5)

{
−Dα

0+u+ a(t)u = 0 0 < t < 1,

B[u] = 0,

and

(3.6) |G(t, s)| ≤ ϕψ

1− aϕψ
on [0, 1]× [0, 1].

Proof. For any h ∈ C[0, 1], assume that u is the solution of the BVP
consisting of the equation

(3.7) −Dα
0+u+ a(t)u = h(t)
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and the BC
B[u] = 0.

Then, u must satisfy

(3.8) u(t) =

∫ 1

0

G0(t, s)[h(s)− a(s)u(s)] ds,

where G0 is the Green’s function for BVP (3.1).

Define A and B : X → X by

(3.9)

(Aµ)(t) =
∫ 1

0

a(s)G0(t, s)µ(s) ds,

(Bµ)(t) =
∫ 1

0

G0(t, s)µ(s) ds.

Then, equation (3.8) becomes

(3.10) (I +A)u = Bh.

Note that, for any µ ∈ X with ∥µ∥ = 1 and t ∈ [0, 1], by (3.2),

|(Aµ)(t)| =
∣∣∣∣ ∫ 1

0

a(s)G0(t, s)µ(s) ds

∣∣∣∣ ≤ ∫ 1

0

aϕ(t)ψ(s)∥µ∥ ds ≤ aϕψ.

Therefore, ∥A∥ < 1 when a < (ϕψ)−1. From (3.10) and Lemma 3.1,

(3.11) u =

∞∑
0

(−1)nAnBh.

We claim that

(3.12) (AnBh)(t) =
∫ 1

0

Gn(t, s)h(s) ds, n = 0, 1, 2, . . . ,

where Gn is defined by (3.4). It is easy to see that (3.12) holds when
n = 0. Assume that (3.12) holds for n = m− 1. Then, by (3.4), (3.9),
(3.12) and Fubini’s theorem,

(AmBh)(t) = A(Am−1Bh)(t)

=

∫ 1

0

a(τ)G0(t, τ)

∫ 1

0

Gm−1(τ, s)h(s) ds dτ
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=

∫ 1

0

∫ 1

0

a(τ)G0(t, τ)Gm−1(τ, s) dτh(s) ds

=

∫ 1

0

Gm(t, s)h(s) ds.

By induction, (3.12) holds for all n = 0, 1, 2, . . . .

Similarly, we can prove by induction that

|Gn(t, s)| ≤ an(ϕψ)n+1, n = 0, 1, 2, . . . .

Since aϕψ < 1, for any (t, s) ∈ [0, 1]× [0, 1], we have

(3.13)
∞∑

n=0

|(−1)nGn(t, s)| ≤
∞∑

n=0

an(ϕψ)n+1 =
ϕψ

1− aϕψ
.

Therefore, G is absolutely convergent on [0, 1]× [0, 1]. Then, by (3.3),
(3.11) and (3.12),

(3.14) u(t) =
∞∑
0

(−1)n
∫ 1

0

Gn(t, s)h(s) ds =

∫ 1

0

G(t, s)h(s) ds.

On the other hand, assume that u is defined by (3.14). Then, we
may reverse the above procedure to show that u is a solution of the
BVP consisting of equation (3.7) and the BC

B[u] = 0.

Therefore, G, defined by (3.3), is the Green’s function for the BVP
(3.5). Inequality (3.6) follows from (3.3) and (3.13). �

Remark 3.3. It is easy to see that Lemma 3.2 is independent of
the BCs. As long as the Green’s function for BVP (3.1) is known,
the Green’s function for BVP (3.5) may be constructed as a series of
functions by Lemma 3.2.

The next lemma on the bounds of the Green’s function H0 will be
necessary to prove Theorem 2.2, see [16, Lemma 2.4] for details.

Lemma 3.4. Assume that (H1) holds. Then, for any (t, s) ∈ [0, 1] ×
[0, 1],
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(3.15) 0 ≤ tα−1GA(s)

1− Λ
≤ H0(t, s) ≤ H0t

α−1,

where H0 and H0 are defined by (2.1) and (2.2).

Proof of Theorem 2.2. Theorem 2.2 immediately follows from Lemma
3.2 by Remark 2.1 and (3.15) with ϕ = 1 and ψ = H0. �

In order to prove Theorem 2.3, we will need the following lemma.
The reader is referred to [19, page 17, Theorem 1.A] for details.

Lemma 3.5. Suppose that

(i) K is a closed nonempty set in a complete metric space (X, d).

(ii) There exists an operator T : K → K, i.e., K is mapped onto
itself by T .

(iii) T is κ-contractive, i.e.,

d(Tx, Ty) ≤ κd(x, y)

for all x, y ∈ K and for a fixed κ ∈ [0, 1). Then, we may conclude the
following :

(a) T has exactly one fixed point x in K, i.e.,

Tx = x.

(b) The sequence {xn} of successive approximations

xn+1 = Txn, x0 ∈ K, n = 0, 1, 2, . . . ,

converges to the fixed point x for an arbitrary choice of initial point x0
in K.

Proof of Theorem 2.3. For any u ∈ X, define T : X → X by

(3.16) (Tu)(t) =

∫ 1

0

H(t, s)w(s)f(u(s), s) ds,

where H is defined by (2.3). It is easy to see that T is completely
continuous and u is a fixed point of T if and only if u is a solution of
BVP (1.1), (1.2).



NONLOCAL BOUNDARY VALUE PROBLEMS 841

Let K = {u ∈ X | ∥u∥ ≤M}. For any u ∈ K and t ∈ [0, 1],

|(Tu)(t)| =
∣∣∣∣ ∫ 1

0

H(t, s)w(s)f(u(s), s) ds

∣∣∣∣
≤

∫ 1

0

|H(t, s)w(s)||f(u(s), s)| ds.

From (2.4) and (2.5),

|(Tu)(t)| ≤
∫ 1

0

|H(t, s)w(s)|M
U
ds =M.

Therefore, ∥Tu∥ ≤M , i.e., TK ⊂ K.

For any u1 and u2 ∈ K, t ∈ [0, 1],

|(Tu1)(t)− (Tu2)(t)| =
∣∣∣∣ ∫ 1

0

H(t, s)w(s)[f(u1(s), s) ds−f(u2(s), s)] ds
∣∣∣∣

≤
∫ 1

0

|H(t, s)w(s)||f(u1(s), s)−f(u2(s), s)| ds.

By (2.6),

|(Tu1)(t)− (Tu2)(t)| ≤
∫ 1

0

|H(t, s)w(s)|κ|u1(s)− u2(s)| ds

≤ Uκ∥u1 − u2∥ < ∥u1 − u2∥.

Hence, ∥Tu1 − Tu2∥ < ∥u1 − u2∥. Then, parts (a) and (b) follow from
Lemma 3.5. �

Theorem 2.5 is proven by Schauder’s fixed point theorem. We omit
the details.
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