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PERIODIC SOLUTION FOR SECOND ORDER
DAMPED DIFFERENTIAL EQUATIONS WITH
ATTRACTIVE-REPULSIVE SINGULARITIES

ZHIBO CHENG AND JINGLI REN

ABSTRACT. In this paper, we investigate a kind of
second-order nonlinear differential equation with attractive-
repulsive singularities. By applications of Green’s function
and Schauder’s fixed point theorem, we establish the exis-
tence of a positive periodic solution for this equation.

1. Introduction. In 1987, Lazer and Solimini [9] investigated the
model equations with singularity

(1.1) x′′ = −h(t)

xλ
+ f(t)

and

(1.2) x′′ =
g(t)

xλ
+ f(t),

where λ > 0, g, h and f were periodic functions with period ω. Equa-
tion (1.1) was determined to have an attractive singularity, whereas
equation (1.2) had a repulsive singularity. The authors provided neces-
sary and sufficient conditions for the existence of periodic solutions of
equations (1.1) and (1.2) with continuous positive functions h, g and a
continuous forcing term f .

Lazer and Solimini’s work has attracted the attention of many
scholars in singular differential equations [2]–[7], [11, 13, 14, 16, 17].
Most of their work concentrated on repulsive singularity [3, 4, 5, 11,
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13, 14, 16] or attractive singularity [2, 6, 7, 17]. In 2010, Hakl and
Torres [8] investigated a kind of second-order differential equation with
attractive-repulsive singularities

(1.3) x′′ =
g(t)

xκ1
− h(t)

xκ2
+ f(t).

By the method of lower and upper solutions, the authors obtained the
existence of a periodic solution for equation (1.3).

In the aforementioned, the authors investigated repulsive singularity
or attractive singularity. However, there has been little research on
attractive-repulsive singularities. Motivated by [8], in this paper, we
discuss the existence of a positive periodic solution for the following
differential equation with attractive-repulsive singularities

(1.4) x′′ + p(t)x′ + q(t)x = f(t, x) + e(t),

where e ∈ L1(R) is an ω-periodic function, and p, q ∈ C(R,R) are ω-
periodic functions; f ∈ Car(R×R+,R) is an L2-Carathéodory function,
which means that it is measurable in the first variable and continuous in
the second variable; for every 0 < r < s, there exists an hr,s ∈ L2[0, ω]
such that |f(t, x)| ≤ hr,s(t) for all x ∈ [r, s] and almost every t ∈ [0, ω];
and f is an ω-periodic function on t. The nonlinear term f of equation
(1.4) may have an attractive-repulsive singularity at origin.

Attractive-repulsive singularities can be regarded as a generalized
Lennard-Jones force [1, 10], and they are widely used in molecular
dynamics to model the interaction between atomic particles [12]. Thus,
it is worthwhile and interesting to explore this topic.

The paper is organized as follows. In Section 2, Green’s function is
given and some useful properties for Green’s function are obtained.
In Section 3, we find the periodic solution for equation (1.4) with
attractive-repulsive singularities. We prove that a weak singularity
enables the achievement of new existence criteria through a basic
application of Schauder’s fixed point theorem.

To conclude this introduction, some notation is presented as follows.
We write d(t) ≻ 0 if d(t) ≥ 0 for almost every t ∈ [0, ω], and it is
positive in a set of positive measure. For a given function e ∈ L1[0, ω],
we denote the essential supremum and infimum by e∗ and e∗, if they
exist. Let X = {ϕ ∈ C(R,R) : ϕ(t + ω) = ϕ(t)} with the maximum
norm ∥ϕ∥ = max0≤t≤ω |ϕ(t)|. Obviously, X is a Banach space.
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2. Green’s function. Firstly, we consider

(2.1)

{
x′′ + p(t)x′ + q(t)x = h(t),

x(0) = x(ω), x′(0) = x′(ω),

where h ∈ C(R,R+) is an ω-periodic function. The solution of equation
(2.1) is written as

x(t) =

∫ ω

0

G(t, s)h(s) ds.

In 2005, Wang, Lian and Ge [15] discussed the sign of G(t, s); they
obtained G(t, s) > 0 for all (t, s) ∈ [0, ω] × [0, ω] when the following
conditions are satisfied:

(A1) there are continuous ω-periodic functions a and b such that∫ ω

0

b(s) ds > 0,

∫ ω

0

a(s) ds > 0

and

a(t) + b(t) = p(t), a′(t) + a(t)b(t) = q(t) for t ∈ R.

(A2)

(∫ ω

0

p(s) ds)2 ≥ 4ω2 exp

(
1

ω

∫ ω

0

ln q(s) ds

)
.

Obviously, condition (A2) is hard restrictive for G(t, s) > 0. In the
following, we consider G(t, s) > 0 for all (t, s) ∈ [0, ω] × [0, ω] if only
condition (A1) is satisfied. From (A1), equation (2.1) is transformed
into

(2.2)

{
y′ + b(t)y = h(t),

y(0) = y(ω),

and

(2.3)

{
x′ + a(t)x = y(t),

x(0) = x(ω).

The solution of equation (2.2) is written as

(2.4) y(t) =

∫ ω

0

G1(t, s)h(s) ds.
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The solution of equation (2.3) is written as

x(t) =

∫ ω

0

G2(t, s)y(s) ds.

In the following, we consider G1(t, s).

Lemma 2.1. The periodic boundary problem (2.2) is equivalent to the
integral equation

y(t) =

∫ ω

0

G1(t, s)h(s) ds,

where

(2.5) G1(t, s) =


e−

∫ t
s
b(τ) dτ

1− e−
∫ ω
0

b(τ) dτ
0 ≤ s ≤ t ≤ ω,

e−
∫ ω+t
s

b(τ) dτ

1− e−
∫ ω
0

b(τ) dτ
0 ≤ t < s ≤ ω.

Moreover, G1(t, s) > 0 for all (t, s) ∈ [0, ω]× [0, ω] if
∫ ω

0
b(t) dt > 0.

Proof. Firstly, it is easy to see that the associate homogeneous
equation of equation (2.2) has the solution

y(t) = Ce−
∫ t
0
b(τ) dτ .

Applying the method of variable parameters, we obtain

C ′(t) = e
∫ t
0
b(τ) dτh(t).

Since y(0) = y(ω), we have

C(t) =

∫ ω

0
e−

∫ ω
s

b(τ) dτh(s) ds

1− e−
∫ ω
0

b(τ) dτ
+

∫ t

0

e
∫ s
0
b(τ) dτh(s) ds.

Therefore, we have

y(t) =

∫ ω

0

G1(t, s)h(s) ds,

where G1(t, s) is as given in equation (2.5). Moreover, from equation
(2.5) and

∫ ω

0
b(t) dt > 0, we can get G1(t, s) > 0, for all (t, s) ∈ [0, ω]

× [0, ω]. �
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From the above, we know that the solution of equation (2.1) is
written as

x(t) =

∫ ω

0

G2(t, τ)

∫ ω

0

G1(τ, s)h(s) ds dτ

=

∫ ω

0

∫ ω

0

G2(t, τ)G1(τ, s)h(s) ds dτ

=

∫ ω

0

[ ∫ ω

0

G2(t, s)G1(s, τ) ds

]
h(τ) dτ

=

∫ ω

0

[ ∫ ω

0

G2(t, τ)G1(τ, s) dτ

]
h(s) ds.

Thus, by writing

(2.6) G(t, s) =

∫ ω

0

G2(t, τ)G1(τ, s) dτ,

we obtain

(2.7) x(t) =

∫ ω

0

G(t, s)h(s) ds.

Lemma 2.2. Assume that condition (A1) holds. Then, G(t, s) > 0 for
all (t, s) ∈ [0, ω]× [0, ω].

Proof. From Lemma 2.1, we know that G1(t, s) > 0. Therefore,
from equation (2.6), it is easy to see that G(t, s) > 0 for all (t, s) ∈
[0, ω]× [0, ω]. �

3. Periodic solution for equation (1.4) with attractive–re-
pulsive singularities. In this section, we establish the existence of the
positive periodic solution for equation (1.4) with attractive-repulsive
singularities by using Schauder’s fixed point theorem, which can be
found in [18, page 61].

Lemma 3.1. The compact operator A∗ : M∗ → M∗ has a fixed point
provided M∗ is a bounded, closed, convex and nonempty subset of a
Banach space X over R.
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We define the function γ : R → R by

γ(t) =

∫ ω

0

G(t, s)e(s) ds,

which is the unique ω-periodic solution of

x′′ + p(t)x′ + q(t)x = e(t).

Case (I). γ∗ > 0.

Theorem 3.2. Suppose that condition (A1) holds. Furthermore, as-
sume that the following conditions hold :

(H1) there exist continuous, non-negative functions g(x) and ζ(t)
such that

0 ≤ f(t, x) ≤ ζ(t)g(x) for all (t, x) ∈ [0, ω]× (0,∞),

and g(x) > 0 is non-increasing in x ∈ (0,∞).

(H2) There exists a constant R > 0 such that

g(γ∗)Λ
∗ + γ∗ ≤ R,

where Λ(t) =
∫ ω

0
G(t, s)ζ(s) ds. If γ∗ > 0, then equation (1.4) has at

least one positive periodic solution.

Proof. An ω-periodic solution of equation (1.4) is merely a fixed
point of the map T : X → X, defined by

(Tx)(t) =

∫ ω

0

G(t, s)[f(s, x(s)) + e(s)] ds(3.1)

=

∫ ω

0

G(t, s)f(s, x(s)) ds+ γ(t).

Letting r := γ∗, we have R > r > 0 since R > γ∗. Now, we define
the set

(3.2) K = {x ∈ X : r ≤ x(t) ≤ R for all t}.

Obviously, K is a closed convex set.
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Next, we prove T (K) ⊂ K. In fact, for every x ∈ K, by applications
of the non-negative signs of G(t, s) and f(t, x), we have

(Tx)(t) =

∫ ω

0

G(t, s)f(s, x(s)) ds+ γ(t) ≥ γ∗ := r > 0.

On the other hand, for every x ∈ K, from conditions (H1) and (H2),
we have

(Tx)(t) =

∫ ω

0

G(t, s)f(s, x(s)) ds+ γ(t)

≤
∫ ω

0

G(t, s)ζ(s)g(x(s)) ds+ γ(t)

≤ g(r)Λ∗ + γ∗ ≤ R.

In conclusion, T (K) ⊂ K.

Let W be any bounded subset in K. Then for all x ∈ W , we have
from Lemma 2.2 that

∥Tx∥ = max
t∈[0,ω]

∣∣∣∣ ∫ ω

0

G(t, s)f(s, x(s)) ds+ γ(t)

∣∣∣∣
≤ max

t∈[0,ω]

∣∣∣∣ ∫ ω

0

G(t, s)f(s, x(s)) ds

∣∣∣∣+ γ∗

≤ M
√
ω

(∫ ω

0

|f(s, x(s))|2ds
)1/2

+ γ∗

≤ M
√
ω∥fR∥2 + γ∗ := N,

where

M := max
t∈[0,ω]

|G(t, s)|,

|fR| := max
r≤x(t)≤R

|f(t, x(t))|,

∥fR∥2 :=

(∫ ω

0

|fR|2dt
)1/2

.

The following holds:∣∣∣∣dTxdt

∣∣∣∣ = ∣∣∣∣ ∫ ω

0

∂G(t, s)

∂t
[f(s, x(s)) + e(s)] ds

∣∣∣∣
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≤
∫ ω

0

∣∣∣∣∂G(t, s)

∂t

∣∣∣∣|f(s, x(s)) + e(s)| ds

≤ B′(
√
ω∥fR∥2 + ∥e∥1) := N1,

where

B′ = max

∣∣∣∣∂G(t, s)

∂t

∣∣∣∣ for all (t, s) ∈ [0, ω]× [0, ω],

∥e∥1 =

∫ ω

0

|e(s)| ds.

Using the Arzela-Ascoli theorem, it is easy to show that T is compact
in K. Therefore, the proof is finished by Schauder’s fixed point the-
orem. �

In the following, we investigate equation (1.4) with attractive-
repulsive singularities.

Corollary 3.3. Suppose that condition (A1) holds. Assume that the
following condition also holds:

(F1) There exist continuous functions d(t) ≻ 0, α > 0, β > 0 and
µ > 0 such that

f(t, x) ≤ d(t)

xα
− µd(t)

xβ

for all x > 0 and almost every t. If γ∗ > 0, then there exists a positive
constant µ1 such that equation (1.4) has at least one positive periodic
solution for each 0 ≤ µ ≤ µ1.

Proof. We apply Theorem 3.2. We take

g(x) =
1

xα
, ζ(t) ≡ d(t).

Firstly, we consider condition (H2) to be satisfied. We take R > 0 with

R ≥ Ψ∗

(γ∗)α
+ γ∗,

where Ψ(t) =
∫ ω

0
G(t, s) d(s) ds. Next, we consider condition (H1) also

to be satisfied. In fact, f(t, x) ≥ 0 if and only if µ ≤ xβ−α. If β ≤ α,
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then we have µ < Rβ−α. As a consequence, the result holds for

µ′
1 :=

(
Ψ∗

(γ∗)α
+ γ∗

)β−α

.

If β > α, then we have µ < rβ−α. As a consequence, the result holds
for

µ′′
2 := γβ−α

∗ .

Therefore, take µ1 = min{µ′
1, µ

′′
1}. For each µ < µ1, the result

holds. �

Case (II). γ∗ = 0.

Theorem 3.4. Suppose that condition (A1) holds and that f(t, x)
satisfies (H1). Furthermore, assume that the following conditions hold :

(H3) for each L > 0, there exists a continuous function ϕL ≻ 0 such
that f(t, x) ≥ ϕL(t) for all (t, x) ∈ [0, ω]× (0, L].

(H4) There exists a constant R > 0 such that R > (ΦR)∗ and

g((ΦR)∗)Λ
∗ + γ∗ ≤ R,

where ΦR(t) =
∫ ω

0
G(t, s)ϕR(s) ds. If γ∗ = 0, then equation (1.4) has

at least one positive periodic solution.

Proof. We follow the same strategy and notation as in the proof of
Theorem 3.2. Let R be the positive constant satisfying condition (H4),
and let r := (ΦR)∗; then we have R > r > 0 since R > (ΦR)∗.

Next, we prove that T (K) ⊂ K for all x ∈ K. In fact, for every
x ∈ K, using the fact that G(t, s) > 0 for all (t, s) ∈ [0, ω] × [0, ω],
together with condition (H3),

(Tx)(t) =

∫ ω

0

G(t, s)f(s, x(s)) ds+ γ(t)

≥
∫ ω

0

G(t, s)ϕR(s) ds+ γ(t)

≥ (ΦR)∗ := r > 0.
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On the other hand, for every x ∈ K, from conditions (H1) and (H4),
we have

(Tx)(t) =

∫ ω

0

G(t, s)f(s, x(s)) ds+ γ(t)

≤
∫ ω

0

G(t, s)ζ(s)g(x(s)) ds+ γ(t)

≤ g(r)Λ∗ + γ∗ ≤ R.

In conclusion, T (K) ⊂ K.

Meanwhile, using the Arzela-Ascoli theorem, it is easy to show that
T is compact in K. Therefore, by Schauder’s fixed point theorem, our
result is proven. �

Corollary 3.5. Suppose that condition (A1) holds. Assume, in addi-
tion, that the following condition holds:

(F2) there exist constants 0 < β < α < 1 and µ > 0 such that
(α+ β)α < 1 and

f(t, x) ≤ 1

xα
− µ

xβ

for all x > 0 and almost every t. If γ∗ = 0, then there exists a positive
constant µ2 such that equation (1.4) has at least one positive periodic
solution for each 0 ≤ µ ≤ µ2.

Proof. We apply Theorem 3.4. We take

ζ(t) = 1, g(x) =
1

xα
.

Firstly, we consider condition (H3) to be satisfied. Let

Q(x) =
1

xα
− µ

xβ
, x ∈ (0,+∞)

and

s1 = µ−1/(α−β), s2 =

(
α

µβ

)1/(α−β)

.

Since α > β, it can easily be verified that s1 < s2 and

Q(s1) = 0, Q′(s2) = 0, Q′(s) < 0, s ∈ (0, s2).

Therefore, Q(s) is decreasing in (0, s1) ⊂ (0, s2).
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On the other hand, we can choose µ > 0 small enough such that
R ∈ (0, s1). Thus,

min
s∈(0,R)

Q(s) = Q(R) > Q(s1) = 0.

This implies that condition (H3) is satisfied if we take

ϕR(t) ≡ Q(R).

The existence condition (H4) becomes

(3.3)

(
Rα+β

Rβ − µRα

)α

Υ∗ + γ∗ ≤ R,

where Υ(t) =
∫ ω

0
G(t, s) ds. Since (α + β)α < 1, we can choose R > 0

large enough so that equation (3.3) is satisfied.

Finally, we consider condition (H1) to be satisfied. In fact, f(t, x)
≥ 0 if and only if µ < xβ−α, (H1) verified for any µ < Rβ−α since
β < α. As a consequence, the result holds for µ2 := Rβ−α. �

Case (III). γ∗ ≤ 0.

Theorem 3.6. Suppose that condition (A1) holds. In addition, suppose
that f(t, x) satisfies conditions (H1) and (H3). Furthermore, assume
that the following condition holds:

(H5) there exists an R > 0 such that R > (ΦR)∗ + γ∗ > 0, and

g((ΦR)∗ + γ∗)Λ
∗ ≤ R.

If γ∗ ≤ 0, then equation (1.4) has at least one positive periodic solution.

Proof. We follow the same strategy and notation as in the proof of
Theorem 3.2. Let R be the positive constant satisfying condition (H4),
and let r := (ΦR)∗+γ∗; then, we have R > r > 0 since R > (ΦR)∗+γ∗.

Next, we prove that T (K) ⊂ K for all x ∈ K. In fact, for every
x ∈ K, using the fact that G(t, s) > 0 for all (t, s) ∈ [0, ω] × [0, ω],
together with condition (H3),

(Tx)(t) =

∫ ω

0

G(t, s)f(s, x(s)) ds+ γ(t)
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≥
∫ ω

0

G(t, s)ϕR(s) ds+ γ(t)

≥ (ΦR)∗ + γ∗ := r > 0.

On the other hand, for every x ∈ K, from conditions (H1) and (H5),
we have

(Tx)(t) =

∫ ω

0

G(t, s)f(s, x(s)) ds+ γ(t)

≤
∫ ω

0

G(t, s)ζ(s)g(x(s)) ds+ γ(t)

≤ g(r)Λ∗ ≤ R,

since γ∗ ≤ 0. In conclusion, T (K) ⊂ K.

Meanwhile, using the Arzela-Ascoli theorem, it is easy to show that
T is compact in K. Therefore, by Schauder’s fixed point theorem, our
result is proven. �

Corollary 3.7. Assume that condition (A1) holds. Assume, in addi-
tion, that the following condition holds:

(F3) there exist continuous functions c(t), d(t) ≻ 0, 0 < β < α < 1,
ρ > 0 and µ > 0 such that ρα < 1 and

c(t)

xρ
≤ f(t, x) ≤ d(t)

xα
− µd(t)

xβ

for all x > 0 and almost every t. If γ∗ ≤ 0 and

γ∗ ≥
(
αρ

C∗

(Ψ∗)ρ

)1/(1−αρ)(
1− 1

αρ

)
,

here C(t) :=
∫ ω

0
G(t, s)c(s) ds. Then, there exists a positive constant

µ3 such that equation (1.4) has at least one positive periodic solution
for each 0 ≤ µ ≤ µ3.

Proof. We apply Theorem 3.6. Take

ϕR(t) =
c(t)

Rρ
, ζ(t) = d(t), g(x) =

1

xα
.

Then, condition (H1) is satisfied.
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Next, we consider condition (H5) to be satisfied. Taking R = Ψ∗/rα,
then (ΦR)∗ + γ∗ > 0 holds if r verifies

C∗

(Ψ∗)ρ
(r)αρ + γ∗ ≥ r,

or equivalently,

γ∗ ≥ f(r) := r − C∗

(Ψ∗)ρ
(r)αρ.

The function f(r) possesses a minimum at

r0 :=

(
αρ

C∗

(Ψ∗)ρ

)1/(1−αρ)

.

Let r = r0. Then, (ΦR)∗ + γ∗ > 0 holds if γ∗ ≥ f(r0), which is merely
the condition

γ∗ ≥
(
αρ

C∗

(Ψ∗)ρ

)1/(1−αρ)(
1− 1

αρ

)
.

Then, condition (H5) directly holds by the choice of R, and it would
remain to prove that R = Ψ∗/(r0)

ρ > r0. This is easily verified through
elementary computations.

Finally, we consider that condition (H3) is satisfied. In fact, d(t)/xα

− µd(t)/xβ ≥ c(t)/Rρ if and only if

µ ≤ xβ−α − c(t)

d(t)

xβ

Rρ
.

(H3) is verified for any µ ≤ Rβ−α − (c(t)/d(t))Rβ−ρ since β < α. As a
consequence, the result holds for

µ3 :=
(Ψ∗)β−α

(αρ(C∗/((Ψ∗)ρ)))α(β−α)/(1−αρ)
− c∗
d∗

(Ψ∗)β−ρ

(αρ(C∗/(Ψ∗)ρ))α(β−ρ)/(1−αρ)
.

�

On the other hand, condition (H1) implies, in particular, that the
nonlinearity f(t, x) is non-negative for all values (t, x), which is quite
a difficult restriction. In the following, we show how to avoid this
restriction for γ∗ > 0.
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Theorem 3.8. Suppose that condition (A1) holds. Assume that the
following conditions hold :

(H6) for each L > l > 0, there exists a continuous function ϕ̂l ≺ 0

such that f(t, x) ≥ ϕ̂l(t) for all (t, x) ∈ [0, ω]× [l, L].

(H7) There exist continuous, non-negative functions g(x) and ζ(t)
such that

f(t, x) ≤ ζ(t)g(x) for all (t, x) ∈ [0, ω]× (0,∞),

and g(x) > 0 is non-increasing in x ∈ (0,∞).

(H8) There exist positive constants R > r > 0 such that R > (Φ̂r)∗
+ γ∗ > 0 and

g((Φ̂r)∗ + γ∗)Λ
∗ + γ∗ ≤ R,

where Φ̂r =
∫ ω

0
G(t, s)ϕ̂r(s) ds.

If γ∗ > 0, then equation (1.4) has at least one positive periodic
solution.

Proof. We follow the same strategy and notation as in the proof of
Theorem 3.2. Let R be the positive constant satisfying condition (H8),

and let r := (Φ̂r)∗+ γ∗; then, we have R > r > 0 since R > (Φ̂r)∗+ γ∗.

Next, we prove that T (K) ⊂ K for all x ∈ K. In fact, for every
x ∈ K, using the fact that G(t, s) > 0 for all (t, s) ∈ [0, ω] × [0, ω],
together with condition (H6),

(Tx)(t) =

∫ ω

0

G(t, s)f(s, x(s)) ds+ γ(t)

≥
∫ ω

0

G(t, s)ϕ̂r(s) ds+ γ(t)

≥ (Φ̂r)∗ + γ∗ := r > 0.

On the other hand, for every x ∈ K, from conditions (H7) and (H8),
we have

(Tx)(t) =

∫ ω

0

G(t, s)f(s, x(s)) ds+ γ(t)

≤
∫ ω

0

G(t, s)ζ(s)g(x(s)) ds+ γ(t) ≤ g(r)Λ∗ + γ∗ ≤ R.

In conclusion, T (K) ⊂ K.
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Meanwhile, using the Arzela-Ascoli theorem, it is easy to show that
T is compact in K. Therefore, by Schauder’s fixed point theorem, our
result is proven. �

Corollary 3.9. Suppose that condition (A1) holds. Assume that the
following condition holds:

(F4) there exist continuous functions b(t), d(t) ≻ 0 and constants α,
µ > 0 such that

−c(t)

xβ
≤ f(t, x) ≤ d(t)

xα
− µd(t)

xβ

for all x > 0 and almost every t. If

γ∗ > (βC∗)1/(β+1)

(
1 +

1

β

)
,

then equation (1.4) has at least one positive periodic solution.

Proof. We apply Theorem 3.6. We take

ζ(t) = d(t), ϕ̂l(t) = −c(t)

rβ
, g(x) =

1

xα
.

Then, conditions (H6) and (H7) are satisfied, and the existence condi-
tion (H8) is also satisfied if r verifies

(3.4) − C∗

rβ
+ γ∗ ≥ r,

or equivalently,

γ∗ ≥ f1(r) := r +
C∗

rβ
.

The function f(r) possesses a minimum at r1 := (βC∗)1/(1+β). Let

r = r1. Then, (Φ̂r)∗ + γ∗ > 0 holds in equation (3.4) if γ∗ ≥ f(r1),
which is merely the condition

γ∗ ≥ (βC∗)1/(β+1)

(
1 +

1

β

)
.

Moreover, we choose R such that (Ψ∗/rα1 ) + γ∗ ≤ R. �
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