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ASYMPTOTIC BEHAVIOR OF INTEGRAL CLOSURES,
QUINTASYMPTOTIC PRIMES AND

IDEAL TOPOLOGIES

REZA NAGHIPOUR AND PETER SCHENZEL

ABSTRACT. Let R be a Noetherian ring, N a finitely
generated R-module and I an ideal of R. It is shown that

the sequences AssR R/(In)
(N)
a , AssR(In)

(N)
a /(In+1)

(N)
a and

AssR(In)
(N)
a /(In)a, n = 1, 2, . . ., of associated prime ideals,

are increasing and ultimately constant for large n. Moreover,
it is shown that, if S is a multiplicatively closed subset

of R, then the topologies defined by (In)
(N)
a and S((In)

(N)
a ),

n ≥ 1, are equivalent if and only if S is disjoint from the
quintasymptotic primes of I. By using this, we also show
that, if (R,m) is local and N is quasi-unmixed, then the
local cohomology module HdimN

I (N) vanishes if and only
if there exists a multiplicatively closed subset S of R such

that m ∩ S ̸= ∅ and the topologies induced by (In)
(N)
a and

S((In)
(N)
a ), n ≥ 1, are equivalent.

1. Introduction. The important concept of the integral closure of
an ideal of a commutative Noetherian ring (with identity), developed
by Northcott and Rees in [15], is fundamental to a considerable body of
recent and current research both in commutative algebra and algebraic
geometry. Let R be a commutative ring (with identity) and I an ideal
of R. In the case when R is Noetherian, we denote by (I)a the integral
closure of I, i.e., (I)a is the ideal of R consisting of all elements x ∈ R
which satisfy

xn + r1x
n−1 + · · ·+ rn = 0,

where ri ∈ Ii, i = 1, . . . , n.

2010 AMS Mathematics subject classification. Primary 13B20, 13E05.
Keywords and phrases. Integral closure, ideal topologies, local cohomology,

quintasymptotic prime.
The first author is the corresponding author.
Received by the editors on June 27, 2016, and in revised form on February 28,

2017.
DOI:10.1216/RMJ-2018-48-2-551 Copyright c⃝2018 Rocky Mountain Mathematics Consortium

551



552 REZA NAGHIPOUR AND PETER SCHENZEL

In [16], Ratliff, Jr., showed that (when R is Noetherian), the
sequence of associated prime ideals

AssR R/(In)a, n = 1, 2, . . . ,

is increasing and ultimately constant; we use the notation A∗
a(I) to

denote AssR R/(In)a for large n.

The notion of integral closures of ideals of R relative to a Noetherian
R-module N was initiated by Sharp, et al., in [22]. An element x ∈ R
is said to be integrally dependent on I relative to N if there exists a
positive integer n such that

xnN ⊆
n∑

i=1

xn−iIiN.

Then, the set

I(N)
a = {x ∈ R | x is integrally dependent on I relative to N}

is an ideal of R, called the integral closure of I relative to N ; in the

case N = R, I
(N)
a is the classical integral closure Ia of I. It is clear that

I ⊆ I
(N)
a . We say that I is integrally closed relative to N if I = I

(N)
a .

In Section 2, we show that, when R is a Noetherian ring and N is a
finitely generated R-module, the sequences

AssR R/(In)(N)
a ,

AssR(I
n)(N)

a /(In+1)(N)
a

and
AssR(I

n)(N)
a /((I +AnnR N)n)a, n = 1, 2, . . . ,

of associated primes are ultimately constant; we let

A∗
a(I,N) := AssR R/(In)(N)

a

and
C∗

a(I,N) := AssR(I
n)(N)

a /((I +AnnR N)n)a,

for large n. Pursuing this point of view further we shall show that

A∗
a(I +AnnR N) \ C∗

a(I,N) ⊆ A∗
a(I,N).
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In [10], McAdam studied the following, interesting set of prime
ideals of R associated with I,

Q
∗
(I) = {p ∈ SpecR : ∃ q ∈ mAss R̂p s.t. Rad(IR̂p + q) = pR̂p},

and he called Q
∗
(I) the set of quintasymptotic prime ideals of I.

On the other hand, Ahn in [1] extended the notion of quintasymp-
totic prime ideals to a finitely generated module over R. More precisely,
if N is a finitely generated R-module, then a prime ideal p of R is said
to be a quintasymptotic prime ideal of I with respect to N whenever

there exists a q ∈ mAssR̂p
N̂p such that Rad(IR̂p + q) = pR̂p. The set

of all quintasymptotic prime ideals of I with respect to N is denoted

by Q
∗
(I,N).

In Section 3, for a multiplicatively closed subset S of R, we examine
the equivalence between the topologies defined by the filtrations

{(In)(N)
a }n≥1, {S((In)(N)

a )}n≥1,

{S(((I +AnnR N)n)a)}n≥1, {S((I +AnnR N)n)}n≥1

by using the quintasymptotic prime ideals of I with respect to N . Some
of these results were established by Schenzel [17, 18], McAdam [10]
and Mehrvarz, et al., [12], in the case when N = R.

A typical result in this direction is the following.

Theorem 1.1. Let N be a finitely generated module over a Noetherian
ring R, and let I be an ideal of R. Let S be a multiplicatively closed

subset of R. Then, the topologies defined by (In)
(N)
a , S((In)

(N)
a ), S(((I+

AnnR N)n)a) and S((I +AnnR N)n), n ≥ 1, are equivalent if and only
if S is disjoint from each of the quintasymptotic prime ideals of I with
respect to N.

The proof of Theorem 1.1 is given in Theorem 3.11. One of our tools
for proving Theorem 1.1 is the following, which is a characterization of

the quintasymptotic prime ideals of I with respect toN . We use I
⟨N⟩
a to

denote the union I
(N)
a :R s, where s varies in R\∪ {p ∈ mAssR N/IN};

in particular, for every integer k ≥ 1 and every prime ideal p of R,

(pk)⟨N⟩
a =

∪
s∈R\p

((pk)(N)
a :R s).
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Proposition 1.2. Let R be a Noetherian ring, and let N be a finitely
generated R-module. Let I ⊆ p be ideals of R such that p ∈ Supp(N).

Then, p ∈ Q
∗
(I,N) if and only if there exists an integer k ≥ 0 such

that, for all integers m ≥ 0,

(Im)(N)
a :R ⟨p⟩ * (pk)⟨N⟩

a .

Finally, in this section, we derive the next consequence of Theo-
rem 1.1.

Corollary 1.3. Let R be a Noetherian ring, N a finitely generated R-
module and I an ideal of R. Then the following conditions are equiv-
alent :

(i) Q
∗
(I,N) = mAssR N/IN .

(ii) The topologies defined by {(In)(N)
a }n≥0 and {(In)⟨N⟩

a }n≥0 are
equivalent.

For any ideal I of R and any R-module N , the ith local cohomology
module of N with respect to I is defined by

Hi
I(N) := lim−→ExtiR(R/In, N).

The reader is referred to [2] for basic properties of local cohomology
modules. The purpose of Section 4 is to characterize the equivalence

between the topologies defined by (In)
(N)
a and S((In)

(N)
a ), n ≥ 1, in

terms of the top local cohomology module HdimN
I (N). This will

generalize the main result of Marti-Farre [7] as an extension of the
main results of Call [3, Corollary 1.4], Call and Sharp [4] and Schenzel
[19, Corollary 4.3].

Theorem 1.4. If (R,m) is a local (Noetherian) ring and N a finitely
generated quasi-unmixed R-module of dimension d, then Hd

I (N) = 0
if and only if there exists a multiplicatively closed subset S of R such

that m ∩ S ̸= ∅, and the topologies induced by (In)
(N)
a and S((In)

(N)
a ),

n ≥ 1, are equivalent.

The result in Theorem 1.4 is proven in Theorem 4.1. Pursuing this
point of view further we show that the support of the (d − 1)th local
cohomology module of a finitely generated R-module N is always finite
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(d = dimN), which will then be strengthened into a generalized version
of a corresponding one by Marley [6, Corollaries 2.4 and 2.5] and by
Naghipour and Sedghi [14, Corollary 3.3].

Theorem 1.5. Assume that R is a Noetherian ring. Let N be a
finitely generated R-module of dimension d and I an ideal of R. Then,

Supp(Hd
I (N)) ⊆ Q

∗
(I,N). Moreover, if (R,m) is local, then

Supp(Hd−1
I (N)) ⊆ Q

∗
(I,N) ∪ {m}.

The proof of Theorem 1.5 is given in Corollaries 4.2 and 4.3.

Throughout the paper, all rings are commutative, with identity,
unless otherwise specified. We shall use R to denote such a ring, I an
ideal of R and N a non-zero module over R. If (R,m) is a Noetherian

local ring and N a finitely generated R-module, then R̂ (respectively,

N̂) denotes the completion of R (respectively, N) with respect to the
m-adic topology. Then, N is said to be quasi-unmixed if, for every

p ∈ mAssR̂ N̂ , the condition dim R̂/p = dimN is satisfied. For any
ideal J of R, the radical of J , denoted by Rad(J), is defined to be the
set {a ∈ R : an ∈ J for some n ∈ N}. Moreover, we use V (J) to denote
the set of prime ideals of R containing J . Finally, for any R-module L,
we shall use mAssR L to denote the set of minimal elements of AssR L.
For any unexplained notation or terminology, we refer the reader to
[8, 13].

2. Asymptotic behavior of integral closures of ideals. The
purpose of this section is to study the asymptotic behavior of the
integral closure of ideals with respect to a finitely generated module N
over a Noetherian ring R. More precisely, we show that the sequences

{AssR R/(In)(N)
a }n≥1,

{AssR(I
n)(N)

a /(In+1)(N)
a }n≥1,

{AssR(In)(N)
a /((I +AnnR N)n)a}n≥1,

of associated prime ideals are ultimately constant; and, pursuing this
point of view further, we show that A∗

a(I + AnnR N) \ C∗
a(I,N) ⊆

A∗
a(I,N).
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Lemma 2.1. Let R be a ring (not necessarily Noetherian) and N a
Noetherian R-module. Then, for any ideal I of R, the following state-
ments hold :

(i) Ia +AnnRN ⊆ I
(N)
a .

(ii) 0
(N)
a = Rad(AnnR N).

(iii) I
(N)
a /AnnR N = (I+AnnR N/AnnR N)a; so that Rad(I

(N)
a ) =

Rad(I +AnnR N).

(iv) For any multiplicatively closed subset S of R, (S−1I)
(S−1N)
a =

S−1(I
(N)
a ).

(v) ∩n≥1(I
n)

(N)
a = ∩{p ∈ mAssR N | p+ I ̸= R}. In particular, if

R is local, then∩
n≥1

(In)(N)
a = Rad(AnnR N).

(vi) (I
(N)
a J

(N)
a )

(N)
a = (IJ)

(N)
a , where J is a second ideal of R.

Proof. (i) and (ii) follow from the definition. For the proof of (iii),
see [22, Remark 1.6]. Statement (iv) follows from (iii) and [21,
Lemma 2.3]. In order to show (v), use (iii) and [9, Lemma 3.11].
Finally, in order to prove (vi), use (iii) and the fact that (KL)a =
(KaLa)a for all ideals K and L of R. �

The next corollary extends McAdam’s result [10, Lemma 1.4].

Corollary 2.2. Let N and R be as in Lemma 2.1. Let I be an integrally
closed ideal with respect to N . Then, I has a primary decomposition,
each primary component of which is integrally closed with respect to N .

Proof. The result follows from Lemma 2.1 and [10, Lemma 1.4]. �

Lemma 2.3. Let R be a ring (not necessarily Noetherian) and N a
Noetherian R-module. If I is an ideal of R such that it is not contained
in any of the minimal prime ideals of AnnR N , then

((In)(N)
a :R Im)=((In)(N)

a :R (Im)a)=((In)(N)
a :R (Im)(N)

a )=(In−m)(N)
a

for all integers n ≥ m ≥ 0.
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Proof. In view of Lemma 2.1, it is sufficient to show that

((In)(N)
a :R Im) ⊆ (In−m)(N)

a .

Toward this end, let x ∈ R be such that Imx ⊆ (In)
(N)
a . In order to

simplify notation we denote the Noetherian ring R/AnnR N by R̃; the

natural image of x in R̃ is denoted by x̃ and, for each ideal J of R,

write J̃ for the ideal J +AnnR N/AnnR N . Then, by Lemma 2.1,

x̃ ∈ ((Ĩn)a :R̃ (Ĩ)m).

Now, it follows from [9, Lemma 11.27] that x ∈ (In−m)
(N)
a , as de-

sired. �

We are now ready to state and prove the main results of this section,
namely, we prove that the sequences of associated primes {AssR R/

(In)
(N)
a }n≥1, {AssR(I

n)
(N)
a /(In+1)

(N)
a }n≥1 and {AssR(I

n)
(N)
a /((I +

AnnR N)n)a}n≥1 are increasing and eventually become constant.

Theorem 2.4. Let I denote an ideal of a ring R (not necessarily
Noetherian), and let N be a Noetherian R-module. Then, the sequence
of associated primes

AssR R/(In)(N)
a , n = 1, 2, . . . ,

is increasing and ultimately constant. Moreover, if I is not contained
in any of the minimal prime ideals of AnnR N , then the sequence

AssR(I
n)(N)

a /(In+1)(N)
a , n = 1, 2, . . . ,

is also increasing and eventually constant.

Proof. First, assume that n ≥ 1 is an integer and p ∈ SpecR. In

order to simplify notation we will use R̃ to denote the commutative

Noetherian ring R/AnnR N , and, for each ideal J of R, we will write J̃

for the ideal J + AnnR N/AnnR N of R̃. Then, by Lemma 2.1, it is

easy to see that p ∈ AssR R/(In)
(N)
a if and only if p̃ ∈ AssR̃ R̃/(Ĩn)a.

Hence, it follows that∪
n≥1

AssR R/(In)(N)
a = {q ∩R | q ∈ A∗

a(Ĩ)}.
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Since, by Ratliff’s theorem [16], A∗
a(Ĩ) is finite, it follows that the set

∪n≥1 AssR R/(In)
(N)
a is finite. Moreover, since the sequence {AssR̃ R̃/

(Ĩn)a}n≥1 is increasing, it turns out that the sequence {AssR R/

(In)
(N)
a }n≥1 is increasing, and therefore, ultimately constant.

In order to prove the second part, we assume that I is not contained
in any of the minimal prime ideals of AnnR N . Suppose that p ∈
AssR R/(In+1)

(N)
a . Then, there exists an x ∈ R \ (In+1)

(N)
a such that

p = ((In+1)
(N)
a :R x). Since I ⊆ p, it follows that

Ix ⊆ (In+1)(N)
a .

Hence, by Lemma 2.3, x ∈ (In)
(N)
a , whence we obtain p ∈ AssR (In)

(N)
a /

(In+1)
(N)
a . Therefore, when I is not contained in any of the minimal

prime ideals of AnnR N , it follows that

AssR R/(In+1)(N)
a = AssR (In)(N)

a /(In+1)(N)
a

for all integers n ≥ 0. This finally completes the proof. �

Theorem 2.5. Suppose that R is a Noetherian ring. Let N denote a
finitely generated R-module, and let I be an ideal of R such that it is
not contained in any of the minimal prime ideals of AnnR N . Then,
the sequence

{AssR(I
n)(N)

a /(In)a}n≥1

is increasing and eventually constant.

Proof. Assume first that p ∈ AssR(I
n)

(N)
a /(In)a for some integer

n ≥ 1. Without loss of generality, we may assume that (R, p) is a local

ring. There exists an element x ∈ (In)
(N)
a such that p = ((In)a :R x).

Then, in view of Lemma 2.3, ((In+1)a :R Ix) is a proper ideal of R and

p ⊆ (In+1)a :R Ix. Thus, p = ((In+1)a :R Ix). Since Ix ⊆ (In+1)
(N)
a ,

it follows that p ∈ AssR(I
n+1)

(N)
a /(In+1)a. Therefore, the sequence

{AssR(In)(N)
a /(In)a}n≥1 is increasing. Due to the fact that∪

n≥1

AssR(I
n)(N)

a /(In)a ⊆ A∗
a(I),

and A∗
a(I) is finite, we deduce that it is eventually constant for large n.

�
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Corollary 2.6. Let R be a Noetherian ring, N a finitely generated R-
module and I an ideal of R such that it is not contained in any of the
minimal prime ideals of AnnR N . Then, the sequence

{AssR(I
n)(N)

a /((I +AnnR N)n)a}n≥1

is increasing and ultimately constant.

Proof. This follows from Theorem 2.5 where I is replaced by I +
AnnR N , since the integral closures with respect to N of their powers
are the same. �

Definition 2.7. Suppose that R is a Noetherian ring. Let I be an
ideal of R. Let N denote a finitely generated R-module. The eventual
constant values of the sequences

{AssR R/(In)(N)
a }n≥1 and {AssR(In)(N)

a /((I +AnnR N)n)a}n≥1

will be denoted by A∗
a(I,N) and C∗

a(I,N), respectively.

It is easy to see that A∗
a(I,N) and C∗

a(I,N) are stable under locali-
zation. Moreover,

mAssR N/IN ⊆ A∗
a(I,N) and A∗

a(0, N) = mAssR N.

Proposition 2.8. Let R be a Noetherian ring, I an ideal of R and N
a finitely generated R-module. Then, A∗

a(I + AnnR N) \ C∗
a(I,N) ⊆

A∗
a(I,N).

Proof. Let p ∈ A∗
a(I +AnnR N) \C∗

a(I,N). Since A∗
a(I +AnnR N),

C∗
a(I,N) and A∗

a(I,N) behave well under localization, we may assume
that (R, p) is a local ring. Let p = ((I + AnnR N)n)a :R x) for some

x ∈ R and for large n. Since p ⊆ ((In)
(N)
a :R x) and p /∈ C∗

a(I,N), it

follows that p = ((In)
(N)
a :R x). Hence, p ∈ A∗

a(I,N), as required. �

Remark 2.9. Let R be a Noetherian ring, N a finitely generated R-
module and I an ideal of R such that it is not contained in any

of the minimal prime ideals of AnnR N and (InRp)
(Np)
a = ((IRp +

AnnRp
Np)

n)a, for large n and for all p ∈ C∗
a(I,N). Then, (In)

(N)
a =

((I + AnnR N)n)a for large n. For this, let C∗
a(I,N) = {p1, . . . , pt}.
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Choose an integer k such that

C∗
a(I,N) = AssR(I

n)(N)
a /((I +AnnR N)n)a

for all n ≥ k, and let (InRpi)
(Npi

)
a = ((IRpi + AnnRpi

Npi
)n)a for all

i = 1, . . . , t. Now, if (In)
(N)
a ̸= ((I + AnnR N)n)a, then there exists

an x ∈ (In)
(N)
a \ ((I + AnnR N)n)a, and thus, ((I + AnnR N)n)a :R x

is a proper ideal of R. As R is Noetherian, there is an r ∈ R such
that p := ((I + AnnR N)n)a :R rx is a prime ideal of R, and hence,

p ∈ C∗
a(I,N). Thus, (InRp)

(Np)
a = ((IRp + AnnRp

Np)
n)a; therefore,

x/1 ∈ ((I + AnnR N)n)aRp. Hence, there is an s ∈ R \ p such that
sx ∈ ((I +AnnR N)n)a, that is, s ∈ ((I +AnnR N)n)a :R x ⊆ p, which
is a contradiction.

3. Quintasymptotic primes and ideal topologies. In this sec-

tion, we study the equivalence of the topologies defined by (In)
(N)
a ,

S((In)
(N)
a ), S(((I + AnnR N)n)a) and S((I + AnnR N)n), n ≥ 1, by

using the quintasymptotic prime ideals of I with respect to N . The
main results are Proposition 3.10 and Theorem 3.11. As a consequence,

we show that Q
∗
(I,N) = mAssR N/IN if and only if the topologies

(In)
(N)
a and (In)

⟨N⟩
a , n ≥ 1, are equivalent. We begin with the following

elementary result.

Lemma 3.1. Let R be a Noetherian ring and N a finitely generated R-
module. Let T be a faithfully flat Noetherian ring extension of R. Then,
for any ideal I of R,

(IT )(N⊗RT )
a ∩R = I(N)

a .

Proof. Let x ∈ (IT )
(N⊗RT )
a ∩R. Then, in view of [22, Corollary 1.5],

there is an integer n ≥ 1 such that

(IT + Tx)n+1(N ⊗R T ) = IT (IT + Tx)n(N ⊗R T ).

Hence,
(I +Rx)n+1(N ⊗R T ) = I(I +Rx)n(N ⊗R T ).

Therefore,

(I +Rx)n+1N ⊗R T = I(I +Rx)nN ⊗R T.
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Now, by faithful flatness, we deduce that (I+Rx)n+1N = I(I+Rx)nN ;

hence, x ∈ I
(N)
a , by [22, Corollary 1.5]. Therefore, the conclusion

follows since the opposite inclusion is clear by the faithful flatness of T
over R. �

Remark 3.2. Before continuing, let us fix some notation employed by
Schenzel [20] and McAdam [10], respectively, in the case N = R.

For any multiplicatively closed subset S of R and for each ideal J
of R, we use S(J) to denote the ideal ∪s∈S(J :R s). Note that

AssR R/S(J) = {p ∈ AssR R/J : p ∩ S = ∅}.

In the case where N is a finitely generated R-module and S = R\∪{p ∈
mAssR N/JN}, we use J⟨N⟩

a to denote the ideal S(J
(N)
a ), in particular,

for every integer k ≥ 1 and every prime ideal p of R, we have

(pk)⟨N⟩
a =

∪
s∈R\p

((pk)(N)
a :R s).

Proposition 3.3. Let R be a Noetherian ring, and let N be a finitely
generated R-module.

(i) If (R,m) is local and p ∈ mAssR N , then there exists an element
x ∈ R not in p such that, for every ideal J of R with m minimal over
J + p, x ∈ J +AnnR N or m ∈ AssR R/J +AnnR N .

(ii) If p ∈ SpecR and q ∈ mAssR N with q ⊆ p, then there is an
integer k ≥ 1 such that p ∈ AssR R/J + AnnR N for any ideal J of R

with J ⊆ (pk)
⟨N⟩
a and p ∈ mAssR R/J + q.

Proof. In order to show (i), let

q1 ∩ · · · ∩ qt = AnnR N

be an irredundant primary decomposition of the ideal AnnR N with
q1 p-primary. (Note that p ∈ AssR R/AnnR N .) It follows from
p ∈ mAssR N that ∩t

i=2qi * p. Hence, there exists an element
x ∈ ∩t

i=2qi such that x /∈ p. Now, let J be any ideal of R such that
Rad(J + p) = m and m /∈ AssR R/J +AnnR N . It is sufficient to show
that x ∈ J +AnnR N . Toward this end, let

Q1 ∩ · · · ∩Ql = J +AnnR N
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be an irredundant primary decomposition of the ideal J + AnnR N ,
with Qi the pi-primary ideal, for all i = 1, . . . , l. Then, m ̸= pi, for
all i = 1, . . . , l, and thus, it follows from Rad(J + p) = m that p * pi.
Hence, pv * pi, where v ≥ 1 is an integer such that pv ⊆ q1. Therefore,
since xq1 ⊆ AnnR N , it follows that xpv ⊆ Qi, for all i = 1, . . . , l.
Consequently, x ∈ Q1 ∩ · · · ∩Ql so that x ∈ J +AnnR N , as required.

In order to prove (ii), without loss of generality, we may assume

that (R, p) is local. Then, (pk)
⟨N⟩
a = (pk)

(N)
a . Now, let x be as in (i).

Then, in view of Lemma 2.1 (v), there exists an integer k ≥ 1 such that

x /∈ (pk)
(N)
a . Therefore, if J is an ideal of R such that J ⊆ (pk)

⟨N⟩
a and

p ∈ mAssR R/J+q, then x /∈ J+AnnR N , and thus, it follows from (i)
that p ∈ AssR R/J +AnnR N . �

Proposition 3.4. Let I be an ideal of a Noetherian ring R and S
a multiplicatively closed subset of R. Then, for any finitely generated
R-module N ,∩

n≥1

S((In)(N)
a ) =

∩
{p ∈ mAssR N | (I + p) ∩ S = ∅}.

Proof. Let x ∈ ∩n≥1S((I
n)

(N)
a ). Then, for all n ≥ 1, there exists an

s ∈ S such that sx ∈ (In)
(N)
a . Now, let p ∈ mAssR N be such that

(p+ I) ∩ S = ∅. Then, it follows from Lemma 2.1 (v) that x ∈ p.

Conversely, suppose that x∈p for all p∈mAssR N with (p+I)∩S=∅.
Then, by virtue of Lemma 2.1 (v), x/1 ∈ (S−1In)

(S−1N)
a for all n ≥ 1.

Hence, in view of Lemma 2.1 (iv), x/1 ∈ S−1((In)
(N)
a ), and thus, sx

∈ (In)
(N)
a for some s ∈ S. Consequently, we have x ∈ S((In)

(N)
a ), as

required. �

Theorem 3.5. Let R be a Noetherian ring, and let N be a finitely
generated R-module. Let I and J be ideals of R. Then:∩

n≥1

((In)(N)
a :R ⟨J⟩) =

∩
{p ∈ mAssR N | J * Rad(I + p)}.

Proof. In view of Theorem 2.4 the set A∗
a(I,N) := ∪n≥1 AssR R/

(In)
(N)
a is finite. Let A∗

a(I,N) = {p1, . . . , pt}. Let r be an integer
such that 0 ≤ r ≤ t and J * ∪r

i=1pi; however, J ⊆ ∩t
i=r+1pj . Then,
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there exists an element s ∈ J such that s /∈ ∪r
i=1pi. Suppose that

S = {si | i ≥ 0}. Then, it is easily seen that

((In)(N)
a :R ⟨J⟩) = S((In)(N)

a )

for each integer n ≥ 1. Now, in view of Proposition 3.4, it is sufficient
to show that J ⊆ Rad(I + p) if and only if s ∈ Rad(I + p) for each
p ∈ mAssR N . In order to do so, since s ∈ J , one direction is clear.
For the other direction, let q be a minimal prime ideal over I + p.
Then, since s ∈ Rad(I + p) and I + p ⊆ q, we have s ∈ q, and hence,
in view of the choice of s, it suffices to show that q ∈ A∗

a(I,N). By
virtue of Lemma 2.1, we may assume that R is local with maximal
ideal q. Let x be as in Proposition 3.3. Then, by Lemma 2.1, there is

an integer n ≥ 1 such that x /∈ (In)
(N)
a . Now, it is easy to see that q

is minimal over (In)
(N)
a + p. Therefore, it follows from Proposition 3.3

that q ∈ AssR R/(In)
(N)
a , and thus, q ∈ A∗

a(I,N), as required. �

Corollary 3.6. Let R be a Noetherian ring and I an ideal of R. Let N
be a finitely generated R-module and p ∈ mAssR N . Then, mAssR R/
(I + p) ⊆ A∗

a(I,N).

Proof. The assertion follows from the last argument in the proof of
Theorem 3.5. �

Corollary 3.7. Let (R,m) be a local (Noetherian) ring, and let N be
a finitely generated R-module. Then, for any proper ideal I of R,∩

n≥1

((In)(N)
a :R ⟨m⟩) =

∩
{p ∈ mAssR N | Rad(I + p) $ m}.

Proof. The assertion follows from Theorem 3.5. �

Proposition 3.8. Let (R,m) be a local (Noetherian) ring, I a proper
ideal of R and N a finitely generated R-module. Then, the following
conditions are equivalent :

(i) for all p ∈ mAssR N,Rad(I + p) ̸= m.
(ii) ∩n≥1(((I +AnnR N)n)a :R ⟨m⟩) ⊆ Rad(AnnR N).
(iii) ∩n≥1((I +AnnR N)n :R ⟨m⟩) ⊆ Rad(AnnR N).

(iv) ∩n≥1((I
n)

(N)
a :R ⟨m⟩) = Rad(AnnR N).
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Proof.

(i) ⇒ (ii). In view of Corollary 3.7,∩
n≥1

((In)(N)
a :R ⟨m⟩) = Rad(AnnR N).

Hence, as∩
n≥1

(((I +AnnR N)n)a :R ⟨m⟩) ⊆
∩
n≥1

((In)(N)
a :R ⟨m⟩),

it follows that (ii) holds.

(ii) ⇒ (iii). Follows directly.

(iii) ⇒ (iv). Suppose the contrary, that is, (iv) is not true. Then,

Rad(AnnR N) $
∩
n≥1

((In)(N)
a :R ⟨m⟩).

Hence, according to Corollary 3.7, there exists a p ∈ mAssR N such
that Rad(I + p) = m. Moreover, applying the assumption, it is easily
seen that Rad(I +AnnR N) ̸= m. Therefore,

Rad((I +AnnR N)n :R ⟨m⟩+ p) = m,

for each integer n ≥ 1.

Now, let x be as in Proposition 3.3. Since m /∈ AssR R/((I +
AnnR N)n :R ⟨m⟩), it follows that

x ∈
∩
n≥1

((I +AnnR N)n :R ⟨m⟩).

Thus, x ∈ Rad(AnnR N), i.e., x ∈ p, a contradiction.

(iv) ⇒ (i). Follows from Corollary 3.7. �

Theorem 3.9. Let (R,m) be a local (Noetherian) ring, let N be a
finitely generated R-module and let I be an ideal of R. Then, the
following conditions are equivalent :

(i) ∩n≥1((I
nR̂)

(N̂)
a :R̂ ⟨mR̂⟩) = Rad(AnnR̂ N̂).

(ii) For all integers n ≥ 1, there exists an integer k ≥ 1 such that

(I +AnnR N)k :R ⟨m⟩ ⊆ (mn)(N)
a .
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(iii) For all integers n ≥ 1, there exists an integer k ≥ 1 such that

((I +AnnR N)k)a :R ⟨m⟩ ⊆ (mn)(N)
a .

(iv) For all integers n ≥ 1, there exists an integer k ≥ 1 such that

(Ik)(N)
a :R ⟨m⟩ ⊆ (mn)(N)

a .

Proof. Without loss of generality, we may assume that (R,m) is a

complete local ring as follows by virtue of the faithful flatness of R̂.
Now, suppose that (i) is satisfied. Then,∩

n≥1

((In)(N)
a :R ⟨m⟩/Rad(AnnA N)) = 0.

Since R/AnnR N is a complete local ring, Chevalley’s theorem [13,
Theorem 30.1] states that, for all n ≥ 1, there exists an integer k ≥ 1
such that

((Ik)(N)
a :R ⟨m⟩)/Rad(AnnA N) ⊆ (m/Rad(AnnR N))n.

Therefore,

((Ik)(N)
a :R ⟨m⟩) ⊆ mn +Rad(AnnR N) ⊆ (mn)(N)

a ,

and thus, statement (iv) is shown to be true.

Conclusions (iv)⇒ (iii) and (iii)⇒ (ii) follow directly. Thus, in order
to complete the proof, it is enough to show that (ii) ⇒ (i). Toward this
end, suppose that, for all n ≥ 1, there exists an integer k ≥ 1 such that

(I +AnnR N)k :R ⟨m⟩ ⊆ (mn)(N)
a .

Then, in view of Lemma 2.1, we have∩
k≥1

((I +AnnR N)k :R ⟨m⟩) ⊆ Rad(AnnR N).

Now, use Proposition 3.8 to complete the proof. �

We are now ready to prove the first main result of this section. In
fact, there is a characterization of the quintasymptotic prime ideals of I
with respect to N , which is a generalization of [10, Proposition 3.5].

Proposition 3.10. Let R be a Noetherian ring, and let N be a finitely
generated R-module. Let I ⊆ p be ideals of R such that p ∈ Supp(N).
Then, the following conditions are equivalent :
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(i) p ∈ Q
∗
(I,N).

(ii) There exists an integer k ≥ 0 such that p ∈ AssR R/J+AnnR N

for any ideal J of R with I ⊆ Rad(J) and J ⊆ (pk)
⟨N⟩
a .

(iii) There exists an integer k ≥ 0 such that, for all integers m ≥ 0,

(I +AnnR N)m :R ⟨p⟩ * (pk)⟨N⟩
a .

(iv) There exists an integer k ≥ 0 such that, for all integers m ≥ 0,

((I +AnnR N)m)a :R ⟨p⟩ * (pk)⟨N⟩
a .

(v) There exists an integer k ≥ 0 such that, for all integers m ≥ 0,

(Im)(N)
a :R ⟨p⟩ * (pk)⟨N⟩

a .

Proof.

(i) ⇒ (ii). Let p ∈ Q
∗
(I,N). Then, there exists a prime ideal

q ∈ mAssR̂p
N̂p such that Rad(IR̂p + q) = pR̂p. Now, let k be as in

Proposition 3.3 (ii), applied to q ∈ mAssR̂p
N̂p. Let J be any ideal of R

such that I ⊆ Rad(J) and J ⊆ (pk)
⟨N⟩
a . Then, IR̂p ⊆ Rad(JR̂p) and

JR̂p ⊆ (pkR̂p)
(N̂p)
a by virtue of Lemma 3.1. Since pR̂p is the maximal

ideal of R̂p, it follows that (pR̂p)
(N̂p)
a = pR̂p, and thus, JR̂p is a proper

ideal of R̂p. Thus, Rad(JR̂p + q) = pR̂p. Hence, Proposition 3.3 shows

that pR̂p ∈ AssR̂p
R̂p/JR̂p+AnnR̂p

N̂p, and thus, by [8, Theorem 23.2],

we have p ∈ AssR R/J +AnnR N , that is, (ii) holds.

(ii) ⇒ (iii). This follows easily from the fact that

p /∈ AssR R/((I +AnnR N)n :R ⟨p⟩),

for all integers n ≥ 0.

Conclusions (iii) ⇒ (iv) and (iv) ⇒ (v) follow directly.

(v) ⇒ (i). Toward this end, suppose that there is an integer k ≥ 0

such that ((Im)
(N)
a :R ⟨p⟩) * (pk)

⟨N⟩
a for all integers m ≥ 0. Then, by

Lemma 3.1,

((ImR̂p)
(N̂p)
a :R̂p

⟨pR̂p⟩) * (pkR̂p)
(N̂p)
a .

Hence, in view of Proposition 3.8, there is a q ∈ mAssR̂p
N̂p such that

Rad(IR̂p + q) = pR̂p, and thus, p ∈ Q
∗
(I,N), as required. �
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We are now ready to state and prove the second main theorem of
this section, which is a characterization of the equivalence between the

topologies {(In)(N)
a }n≥1, {S((In)(N)

a )}n≥1, {S(((I +AnnR N)n)a)}n≥1

and {S((I+AnnR N)n)}n≥1 in terms of the quintasymptotic primes of I
with respect toN . This will generalize the main result of McAdam [10].

Theorem 3.11. Let R be a Noetherian ring, N a finitely generated R-
module and I an ideal of R. Then, for any multiplicatively closed subset
S of R, the following are equivalent :

(i) S ⊆ R \ ∪{p ∈ Q
∗
(I,N)}.

(ii) The topologies defined by {S((In)(N)
a )}n≥0 and {(In)(N)

a }n≥0

are equivalent.
(iii) The topology defined by {S(((I+AnnR N)n)a)}n≥0 is finer than

the topology defined by {(In)(N)
a }n≥0.

(iv) The topology defined by {S((I + AnnR N)n)}n≥0 is finer than

the topology defined by {(In)(N)
a }n≥0.

(v) For all p ∈ Supp(N) ∩ V (I), the topology defined by

{S((In)(N)
a )}n≥0

is finer than the topology defined by {(pn)⟨N⟩
a }n≥0.

(vi) For all p ∈ Supp(N) ∩ V (I), the topology defined by

{S(((I +AnnR N)n)a)}n≥0

is finer than the topology defined by {(pn)⟨N⟩
a }n≥0.

(vii) For all p ∈ Supp(N) ∩ V (I), the topology defined by

{S((I +AnnR N)n)}n≥0

is finer than the topology defined by {(pn)⟨N⟩
a }n≥0.

Proof.

(i)⇒ (ii). Let p∈SpecR with I+AnnR N⊆ p, and let l ≥ 1. We first

show that there exists an integerm ≥ 1 such that S((Im)
(N)
a ) ⊆ (pl)

⟨N⟩
a .

In order to do so, let S′ be the natural image of S in Rp. Since Q
∗
(I,N)

behaves well under localization, we have S′ ⊆ Rp\∪{q ∈ Q
∗
(IRp, Np)}.

Moreover, it is easy to see that S′((ImRp)
(Np)
a ) ⊆ (plRp)

⟨Np⟩
a implies

S((In)
(N)
a ) ⊆ (pn)

⟨N⟩
a . Therefore, we may assume that R is local with

maximal ideal p. Then, (pn)
⟨N⟩
a = (pn)

(N)
a . From Lemma 3.1 and
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[1, Proposition 3.8], we may assume, in addition, that R is complete,
whence, in view of [1, Lemma 3.5], for any q ∈ mAssR N , S is disjoint

from I + q. Therefore, by Proposition 3.4, we have ∩n≥1S((I
n)

(N)
a ) =

Rad(AnnR N). Consequently,∩
n≥1

S((In)(N)
a )/Rad(AnnR N) = 0.

Since the ring R/Rad(AnnR N) is complete, Chevalley’s theorem [13,
Theorem 30.1] implies the existence of an integer m ≥ 1 such that

S((Im)(N)
a )/Rad(AnnR N) ⊆ (p/Rad(AnnR N))l.

Hence,
S((Im)(N)

a ) ⊆ pl +Rad(AnnR N) ⊆ (pl)(N)
a .

Now, in view of Corollary 2.2, we can consider q1 ∩ · · · ∩ qn a minimal

primary decomposition of (I l)
(N)
a where qi is pi-primary and integrally

closed with respect to N for every i = 1, . . . , n. Then, there exists an
integer li such that plii ⊆ qi for i = 1, . . . , n, and moreover, for some mi,

we have S((Imi)
(N)
a ) ⊆ (plii )

⟨N⟩
a . Let m = max{m1, . . . ,mn}. Then, we

deduce that S((Im)
(N)
a ) ⊆ (plii )

⟨N⟩
a for each 1 ≤ i ≤ n. On the other

hand, we have

(plii )
⟨N⟩
a ⊆

∪
s∈R\pi

((qi)
(N)
a :R s) = qi,

and therefore, S((Im)
(N)
a ) ⊆ ∩n

i=1qi. This completes the proof of (ii).

The implications (ii) ⇒ (iii) ⇒ (iv) follow directly.

(iv) ⇒ (v). It is sufficient to show that

S ⊆ R \
∪

{p ∈ Q
∗
(I,N)}.

In order to do so, let p ∈ Q
∗
(I,N). Then, by Proposition 3.10, there

exists an integer k ≥ 0 such that ((I + AnnR N)m :R ⟨p⟩) * (pk)
⟨N⟩
a

for all integers m ≥ 0. On the other hand, by assumption, there is an

integer l ≥ 0 such that S((I +AnnR N)l) ⊆ (Ik)
(N)
a . Therefore,

(I +AnnR N)l :R ⟨p⟩ * S((I +AnnR N)l).

Then, it is readily seen that p ∩ S = ∅, as required.
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Conclusions (v) ⇒ (vi) ⇒ (vii) follow directly. Finally, an argument
similar to that used in the proof of the implication (iv) ⇒ (v) shows
that (vii) ⇒ (ii) holds. �

An immediate consequence of Theorem 3.11 is the following corol-
lary.

Corollary 3.12. Let R be a Noetherian ring, N a finitely generated R-
module and I an ideal of R. Then the following conditions are equiv-
alent :

(i) Q
∗
(I,N) = mAssR N/IN .

(ii) The topologies defined by {(In)(N)
a }n≥0 and {(In)⟨N⟩

a }n≥0 are
equivalent.

Proof. Let S=R\∪{p∈mAssR N/IN}. Then, S((In)(N)
a )=(In)

⟨N⟩
a .

Now, if

Q
∗
(I,N) = mAssR N/IN,

then
S = R \ ∪{p ∈ Q

∗
(I,N)}.

Hence, Theorem 3.11 implies that the topologies defined by {(In)(N)
a }n≥0

and {(In)⟨N⟩
a }n≥0 are equivalent. Conversely, if these topologies are

equivalent, then, it follows from Theorem 3.11 that S ⊆ R \ ∪ {p ∈
Q

∗
(I,N)}, and thus, Q

∗
(I,N) ⊆ mAssR N/IN . On the other hand,

using [1, Lemma 3.5], it is easily seen that mAssR N/IN ⊆ Q
∗
(I,N),

and thus, Q
∗
(I,N) = mAssR N/IN . This completes the proof. �

4. Local cohomology and ideal topologies. The purpose of this
section is to establish equivalence between the topologies defined by

{(In)(N)
a }n≥1 and {S((In)(N)

a )}n≥1 in terms of the vanishing of the top
local cohomology module HdimN

I (N). This will generalize the main
result of Marti-Farre [7], as an extension of the main results of [3,
Corollary 1.4], [4] and [19, Corollary 4.3].

Theorem 4.1. Let (R,m) be a local (Noetherian) ring, N a finitely
generated R-module of dimension d and I an ideal of R. Consider the
following conditions:
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(i) there exists a multiplicatively closed subset S of R such that m∩
S ̸= ∅ and such that the topologies defined by {S((In)(N)

a )}n≥0

and {(In)(N)
a }n≥0 are equivalent.

(ii) Hd
I (N) = 0.

Then, (i) ⇒ (ii), and these conditions are equivalent whenever N is
quasi-unmixed.

Proof. We begin with the proof of the implication (i) ⇒ (ii). From

Theorem 3.11, we have S ⊆ R\∪{p ∈ Q
∗
(I,N)}. Then, m /∈ Q

∗
(I,N).

Therefore, for all q ∈ mAssR̂ N̂ , we have dim R̂/IR̂ + q > 0. By the
Lichtenbaum-Hartshorne theorem, see [5, Corollary 3.4], it follows that
Hd

I (N) = 0.

Now, assume that N is quasi-unmixed and that (ii) holds. We show

that (i) is true. Toward this end, let S = R\∪{p ∈ Q
∗
(I,N)}. Then, in

view of Theorem 3.11, the topologies defined by {S((In)(N)
a )}n≥0 and

{(In)(N)
a }n≥0 are equivalent. Hence, it is sufficient to show that m∩S ̸=

∅. Suppose the contrary, namely, m ∩ S = ∅. Then, m ∈ Q
∗
(I,N).

Thus, there exists a q∈mAssR̂ N̂ such that mR̂ = Rad(IR̂+ q). As N

is quasi-unmixed, it follows that dim R̂/IR̂ + q = 0 for some q ∈
mAssR̂ N̂ such that dim R̂/q = d. Now, use [5, Corollary 3.4] to see

that Hd
I (N) ̸= 0, which is a contradiction. �

The final results will be a strengthened and generalized version
of corresponding results by Marley [6, Corollaries 2.4 and 2.5] and
Naghipour and Sedghi [14, Corollary 3.3].

Corollary 4.2. Assume that R is a Noetherian ring. Let N be a
finitely generated R-module of dimension d and I an ideal of R. Then,

Supp(Hd
I (N)) ⊆ Q

∗
(I,N). Moreover, the equality holds whenever N is

Cohen-Macaulay.

Proof. Let p ∈ Supp(Hd
I (N)). Then, Hd

IRp
(Np) ̸= 0, and thus,

dimNp= d. Hence, in view of the Lichtenbaum-Hartshorne theorem,

[5, Corollary 3.4], there exists a q ∈ mAssR̂p
N̂p such that pR̂p =

Rad(IR̂p + q). Thus, p ∈ Q
∗
(I,N), and therefore, Supp(Hd

I (N)) ⊆
Q

∗
(I,N).
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In order to prove the second assertion, let p ∈ Q
∗
(I,N). Then, there

exists a q ∈ mAssR̂p
N̂p such that pR̂p = Rad(IR̂p+q). Now, since N is

Cohen-Macaulay, we deduce that dim R̂p/q = dim N̂p, whence, in view
of the Lichtenbaum-Hartshorne theorem, Hd

IRp
(Np) ̸= 0, and thus,

p ∈ Supp(Hd
I (N)). �

Corollary 4.3. Let (R,m) be a local (Noetherian) ring, N a finitely
generated R-module of dimension d and I an ideal of R. Then:

Supp(Hd−1
I (N)) ⊆ Q

∗
(I,N) ∪ {m}.

Therefore, AssR Hd−1
I (N) is a finite set.

Proof. Let p ∈ Supp(Hd−1
I (N)) be such that p ̸= m. Then, Hd−1

IRp

(Np) ̸= 0, and thus, dimNp = d − 1. Now, from the proof of

Corollary 4.2, we have p ∈ Q
∗
(I,N), as required. �
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