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CHARACTERIZATION OF A TWO-PARAMETER
MATRIX VALUED BMO BY COMMUTATOR

WITH THE HILBERT TRANSFORM

DARÍO MENA

ABSTRACT. In this paper, we prove that the space of
two parameter matrix-valued BMO functions can be charac-
terized by considering iterated commutators with the Hilbert
transform. Specifically, we prove that

∥B∥BMO.∥[[MB , H1], H2]∥L2(R2;Cd)→L2(R2;Cd).∥B∥BMO.

The upper estimate relies on Petermichl’s representation of
the Hilbert transform as an average of dyadic shifts and
the boundedness of certain paraproduct operators, while
the lower bound follows Ferguson and Lacey’s proof for the
scalar case.

1. Introduction. It is well known [4] that the space of functions of
bounded mean oscillation (BMO) can be characterized by commutators
with the Hilbert transform, and, in general, with the Riesz transforms.
Given b ∈ BMO, let Mb represent the multiplication operator Mb(f) =
bf , if H represents the Hilbert transform, defined as

Hf(x) = p.v.
1

π

∫
R

f(y)

x− y
dy.

Then, we have

∥b∥BMO . ∥[Mb,H]∥L2→L2 . ∥b∥BMO.

The study of the norm of the commutator has several implications in the
characterization of Hankel operators, the problem of factorization and
weak factorization of function spaces and the div-curl problem. Several
extensions and generalizations have been made in different settings. In
the two-parameter version of this result, the upper bound was shown
by Ferguson and Sadosky [7], while the lower bound was proved by

2010 AMS Mathematics subject classification. Primary 42B20.
Keywords and phrases. BMO, matrix-valued, commutators, paraproducts.
Received by the editors on April 28, 2016, and in revised form on January 20,

2017.
DOI:10.1216/RMJ-2018-48-2-529 Copyright c⃝2018 Rocky Mountain Mathematics Consortium

529



530 DARÍO MENA

Ferguson and Lacey [6]. The formulation in this case is the following:
if Hi represents the Hilbert transform in the ith variable, then

∥b∥BMO . ∥[[Mb,H1],H2]∥L2→L2 . ∥b∥BMO.

Here, we consider the product BMO of Chang and Fefferman [3].
These results were later extended to the multi-parameter case by Lacey
and Terwilleger [10]. Here, we wish to obtain the same characterization
in the two-parameter case for a matrix-valued BMO function. In the
one-parameter setting, we have the desired characterization due to
[14, 16].

Consider the collection D of dyadic intervals, that is,

D := {[k2−j , (k + 1)2−j) : j, k ∈ Z},

and the collection of “shifted” dyadic intervals,

Dα, r = {α+ r[k2j , (k + 1)2j) : k, j ∈ Z} for α, r ∈ R.

Definition 1.1. The dyadic Haar function is defined as

hI :=
1√
|I|

(1I− − 1I+),

where I− and I+ represent the left and right half of the interval I,

respectively. Also, denote h1
J = 1I/

√
|I| (as the non-cancelative Haar

function). The family {hI : I ∈ D} (or I ∈ Dα, r), is an orthonormal
basis for L2(R;Cd); here, for two Banach spaces X and Y, we use the
notation Lp(X;Y ) to denote the set{

f : X −→ Y :

∫
X

∥f∥pY < ∞
}
.

Definition 1.2. The dyadic Haar shift is defined as

Xα, r(hI) =
1√
2
(hI− − hI+),

and extended to a general function f by

Xα, r(f) =
∑

I∈Dα, r

⟨f, hI⟩Xα, r(hI) =
∑

I∈Dα, r

⟨f, hI⟩
1√
2
(hI− − hI+).
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Note that Xα, r is bounded from L2(R;Cd) to L2(R;Cd), with
operator norm 1. As proven by Petermichl [16], the kernel for the
Hilbert transform can be written as an average of dyadic shifts, in
particular,

K(t, x) = lim
L→∞

1

2 logL

∫ L

1/L

lim
R→∞

1

2R

∫ R

−R

Kα, r(t, x) dα
dr

r
,

where
Kα, r(t, x) =

∑
I∈Dα, r

hI(t)Xα, r(hI(x)).

Therefore, it is sufficient to prove the upper bound for the commutator
with the shift [MB ,X]; the estimates do not depend upon α or r.

Let B be a function with values in the space of d × d matrices.
We consider the commutator [MB ,H] acting upon a vector-valued
function f by

[MB ,H]f = BH(f)−H(Bf).

The result obtained by Petermichl is based on a decomposition in
paraproducts and uses the estimates obtained by Katz [8] and Nazarov,
Treil and Volberg [15], independently. We have

∥[MB, H]∥L2(R;Cd)→L2(R;Cd) . log(1 + d)∥B∥.

Motivated by this result, we wish to find a generalization in a two-
parameter setting, with the corresponding definition of the product
BMO space [3]. The main result of the paper can be stated as follows.

Theorem 1.3. Let B be a d× d matrix-valued BMO function on R2.
If MB denotes the operator multiplication by B, and Hi represents the
Hilbert transform in the ith parameter, for i = 1, 2, then the norm of
the iterated commutator [[MB,H1],H2] satisfies

d−2∥B∥BMO . ∥[[MB ,H1],H2]∥L2(R2,Cd)→L2(R2,Cd) . d3∥B∥BMO.

This paper is organized as follows. Section 2 contains the proof of the
upper bound for the norm of the commutator using a decomposition in
paraproducts. Section 3 contains the proof of the lower bound that
relies on the proof for the scalar case by Ferguson and Lacey [6].
Throughout the paper, we use the notation A . B to indicate that
there is a positive constant C such that A ≤ CB.
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2. Upper bound. Consider R = D × D the class of rectangles
consisting on products of dyadic intervals. Given a subset E of R2,
denote by R(E) the family of dyadic rectangles contained in E.

Consider the wavelet wI constructed by Meyer [11] and the two-
parameter wavelet vR(x, y) = wI(x)wJ(y) for R = I ×J , with all of its
properties listed in [6]. We begin by giving definitions for the product
BMO and the product dyadic BMO.

Definition 2.1. A function B is in BMO(R2) if and only if there are
constants C1 and C2 such that, for any open set U ⊆ R2, we have(

1

|U |
∑

R∈R(U)

⟨B, vR⟩⟨B, vR⟩∗
)1/2

≤ C1Id

and (
1

|U |
∑

R∈R(U)

⟨B, vR⟩∗⟨B, vR⟩
)1/2

≤ C2Id.

The inequalities are considered in the sense of operators, Id the iden-
tity d× d matrix. The BMO-norm is defined as the smallest constant,
denoted by ∥B∥BMO, for which the two inequalities are satisfied simul-
taneously. If we take the supremum only over rectangles U , we obtain
the rectangular BMO-norm, denoted by ∥B∥BMOrec .

If hI represents the Haar function associated to a dyadic interval I,
define

hR(x, y) = hI(x)hJ (y) for R = I × J,

that is, hR = hI ⊗hJ . The family {hR}R∈R is an orthonormal basis for
L2(R2,Cd). We have the following definition of dyadic BMO. Note that
it is the same definition, instead considering the Haar wavelet rather
than the Meyer wavelet.

Definition 2.2. A matrix-valued function B is in BMOd(R2) (dyadic
BMO) if and only if there are constants C1 and C2 such that, for any
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open subset U of the plane, we have(
1

|U |
∑

R∈R(U)

⟨B, hR⟩⟨B, hR⟩∗
)1/2

≤ C1Id

and (
1

|U |
∑

R∈R(U)

⟨B, hR⟩∗⟨B, hR⟩
)1/2

≤ C2Id,

where the inequality is in the sense of operators, and the corresponding
norm ∥B∥BMOd

is, again, the best constant for the two inequalities.

It is known that ∥B∥BMOd
≤ ∥B∥BMO [18]. In that paper, the proof

of the inequality was given in the multiparameter setting, for Hilbert
space-valued functions, by means of the dual inequality ∥f∥H1 ≤ ∥f∥H1

d

[18, Estimate 2.3]. The duality in the dyadic case is discussed in the
proof of Proposition 2.4. Using this fact, for the proof of the upper
bound, it is sufficient to consider the dyadic version of BMO for the

computations. For the rest of this section, we use B̂(R) to denote the
Haar coefficient of the function B, associated to the function hR, that
is,

f̂(R) = ⟨f, hR⟩ =
∫
R2

f(x, y)hR(x, y) dx dy.

Since B̂(R)B̂(R)∗ is a positive semi-definite matrix, we have√√√√ 1

|U |
∑

R∈R(U)

∥B̂(R)∥2 ≃

√√√√Tr

(
1

|U |
∑

R∈R(U)

B̂(R)B̂(R)∗
)

≤ Tr

√√√√ 1

|U |
∑

R∈R(U)

B̂(R)B̂(R)∗.

Therefore, if we consider the two inequalities√√√√ 1

|U |
∑

R∈R(U)

B̂(R)B̂(R)∗ ≤ CId
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or √√√√ 1

|U |
∑

R∈R(U)

B̂(R)∗B̂(R) ≤ CId,

taking the trace on both sides, we obtain

(2.1)

√√√√ 1

|U |
∑

R∈R(U)

∥B̂(R)∥2 ≤ Cd.

The initial computations are similar to those found in [5]. Here, we
need simplified versions since we are only dealing with the biparameter
Hilbert transform; differences will arise when we deal with the various
paraproducts that result from this process due to the BMO symbol
being a matrix (which implies losing commutativity and requiring the
use of matrix norms). Similar computations are used in [9], and these
ideas may also be implemented in our case. Although we can use some
equivalent results from [12, 13] to deal with the boundedness of the
paraproducts, those arising from our computations can be given self-
contained proofs of their boundedness.

The dyadic shift operator

X(f) =
∑
I∈D

f̂(I)
1√
2
(hI− − hI+)

corresponds to the operator S1,0 described by Dalenc and Ou [5], given
by

S1,0f =
∑
K∈D

(0)∑
I⊆K

(1)∑
J⊆K

aIJK⟨f, hI⟩hJ ,

where

aIJK =

{
1/

√
2 if J = K−,

−1/
√
2 if J = K+.

Here, the symbol
(k)∑
I⊆J
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represents summing over those dyadic intervals I such that I ⊆ J and

|I| = 2−k|J |. Let Ĩ represent the parent of the dyadic interval I, that

is, the unique dyadic interval containing I with |Ĩ| = 2|I|. Then, the
shift can also be expressed in a simpler way by

(2.2) X(f) =
∑
I∈D

aI f̂(Ĩ)hI ,

where

aI =
1√
2
if I = Ĩ− and − 1√

2
if I = Ĩ+.

If we have

B =
∑
I∈D

B̂(I)hI and f =
∑
J∈D

f̂(J)hJ ,

then
Bf =

∑
I

∑
J

B̂(I)hI f̂(J)hJ .

Therefore, the commutator

[MB ,X](f) = MBX(f)−X(MBf) = BX(f)−X(Bf),

can be written as

[MB,X](f) =
∑
I,J

B̂(I)f̂(J)hIX(hJ)−
∑
I,J

B̂(I)f̂(J)X(hIhJ)

=
∑
I,J

B̂(I)f̂(J)[MhI
,X](hJ).

Note that the terms are non-zero only when I ∩ J ̸= ∅. If J ( I, we
have that hI is constant in I ∩ J . Therefore, for every x ∈ I ∩ J , we
have

[MhI
,X](hJ ) = hI(x)X(hJ(x))−X(hI(x)hJ(x))

= hI(x)X(hJ(x))− hI(x)X(hJ(x)) = 0.

Then, the only non-trivial terms are those for which I ⊂ J .
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We consider the two-parameter commutator [[MB ,H1],H2] acting
on a vector-valued function f by

[[MB ,H1],H2]f = BH1(H2(f))−H1(B(H2(f)))

−H2(BH1(f)) +H2(H1(Bf)),

where H1 and H2 represent the Hilbert transform on the first and
second variables, respectively, that is,

H1f(x, y) = p.v.
1

π

∫
R

f(z, y)

x− z
dz,

H2f(x, y) = p.v.
1

π

∫
R

f(x, z)

y − z
dz.

The main result we want to prove in this section is the following.

Theorem 2.3. Let B be a matrix-valued BMOd(R2) function and f
in L2(R2;Cd). Then,

∥[[MB ,H1],H2]∥L2(R2;Cd)→L2(R2;Cd) . ∥B∥BMOd
.

Proof. Let X1 and X2 represent the dyadic shift operator in the
first and second variables, respectively, that is, X1(hR) = X(hI)⊗hJ

and X2(hR) = hI ⊗X(hJ), for R = I ×J , and extend to a function f
by

Xj(f) =
∑
R∈R

f̂(R)Xj(hR), j = 1, 2.

Conversely, in the notation of (2.2),

X1(f) =
∑

I,J∈D

aI f̂(Ĩ × J)hI ⊗ hJ ,

X2(f) =
∑

I,J∈D

aJ f̂(I × J̃)hI ⊗ hJ .

Again, due to the representation of H as an average of shifts, it is
sufficient to prove the result for the commutator [[MB ,X1],X2]. By
an iteration of the computation for the one-parameter case, using the
Haar expansion of the functions B and f and taking their formal
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product, we obtain

[MB ,X1](f) =
∑

R,S∈R
B̂(R)f̂(S)(hRX1(hS)−X1(hRhS))

=
∑

R,S∈R

B̂(R)f̂(S)[MhR
,X1](hS)

=
∑

I,J,K,L∈D̂

B(I×J)f̂(K×L)(hIX1hK−X1(hIhK))⊗hJhL.

Repeating the same computations, in the two-parameter case, we
obtain

[[MB ,X1],X2](f)

=
∑

I,J∈D

∑
K,L∈D

B̂(I × J)f̂(K × L)hIX1hK ⊗ hJX2hL

−
∑

I,J∈D

∑
K,L∈D

B̂(I × J)f̂(K × L)X1(hIhK)⊗ hJX2hL

−
∑

I,J∈D

∑
K,L∈D

B̂(I × J)f̂(K × L)hIX1hK ⊗X2(hJhL)

+
∑

I,J∈D

∑
K,L∈D

B̂(I × J)f̂(K × L)X1(hIhK)⊗X2(hJhL)

= T1f − T2f − T3f + T4f

=
∑

I,J∈D

∑
K,L∈D

B̂(I × J)f̂(K × L)[MhI ,X1](hK)⊗ [MhJ ,X2](hL).

If either I ∩K = ∅, J ∩ L = ∅, K ( I or L ( J , then we have that

[MhI ,X1](hK)⊗ [MhJ ,X2](hL) = 0;

therefore, the terms are non-trivial only when I ⊆ K and J ⊆ L. We
have four different cases that can be independently analyzed for each
term in the sum. The computations for the four terms are similar; only
the complete details for the term T2 will be provided, and, at the end
of the proof of the proposition, we briefly mention how to deal with

the other cases. Let T̃j represent Tj restricted to the case I ⊆ K and
J ⊆ L. Then, we have

T̃2f = X1

(∑
K

∑
L

∑
I⊆K

∑
J⊆L

B̂(I × J)f̂(K × L)hIhK ⊗ hJX2hL

)
.
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In order to analyze each of the four cases, we need the following
proposition.

Proposition 2.4. Consider the following paraproducts

(i) P 1
B(f) =

∑
I,J∈D

± B̂(I × J̃)⟨f, hI ⊗ hJ⟩h1
I ⊗ hJ |I|−1/2|J̃ |−1/2.

(ii) P 2
B(f) =

∑
I,J

± B̂(I × J̃)⟨f, h1
I ⊗ hJ̃⟩hI ⊗ hJ |I|−1/2|J̃ |−1/2.

(iii) P 3
B(f) =

∑
I,J∈D

B̂(I × J)⟨f, h1
I ⊗ h1

J ⟩hI ⊗ hJ |I|−1/2|J |−1/2.

(iv) P 4
B(f) =

∑
I,J∈D

B̂(I × J)⟨f, hI ⊗ h1
J ⟩h1

I ⊗ hJ |I|−1/2|J |−1/2.

(v) P 5
B(f) =

∑
I,J∈D

B̂(I × J)⟨f, h1
I ⊗ hJ ⟩hI ⊗ h1

J |I|−1/2|J |−1/2.

We have that, for i = 1, 2, 3, 4,

∥P i
B(f)∥L2(R2;Cd) . d∥B∥BMOd

∥f∥L2(R2;Cd).

Proof of Proposition 2.4. In the following computations, for simpli-
fication, we write L2(Y ) = L2(R2;Y ) since all of the functions that we
consider are defined on R2.

(i) We make use of a well-known result, which is discussed in [2] for
the bidisc case but is easily extended to the plane.

Theorem 2.5 (Carleson embedding theorem). Let {aR}R∈R be a se-
quence of nonnegative numbers, indexed by the grid of dyadic rectangles.
Then, the following are equivalent :

(i)
∑
R∈R

aR⟨f⟩2R ≤ C1∥f∥2L2 for all f ∈ L2.

(ii) 1/|U |
∑

R∈R(U)

aR ≤ C2 for all connected open sets U ⊆ R2.

Moreover, C1 ≃ C2.
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We have the following basic estimates

|⟨P 1
Bf, g⟩L2 |

=

∣∣∣∣ ∫
R2

⟨P 1
Bf, g⟩Cd dx dy

∣∣∣∣
=

∣∣∣∣ ∫
R2

⟨∑
I,J

± B̂(I × J̃)f̂(I × J)1I |I|−1 ⊗ hJ |J̃ |−1/2, g

⟩
Cd

dx dy

∣∣∣∣
=

∣∣∣∣ ∫
R2

∑
I,J

⟨± B̂(I × J̃)f̂(I × J), g1I |I|−1 ⊗ hJ |J̃ |−1/2⟩Cd dx dy

∣∣∣∣
=

∣∣∣∣∑
I,J

∫
R2

⟨± B̂(I × J̃)f̂(I × J), g1I |I|−1 ⊗ hJ |J̃ |−1/2⟩Cd dx dy

∣∣∣∣
=

∣∣∣∣∑
I,J

⟨
± B̂(I×J̃)f̂(I×J),

∫
R2

1√
2
g1I |I|−1⊗ hJ |J |−1/2 dx dy

⟩
Cd

∣∣∣∣
=

1√
2

∣∣∣∣∑
I,J

⟨± B̂(I × J̃)f̂(I × J), ⟨g,1I |I|−1 ⊗ hJ |J |−1/2⟩⟩Cd

∣∣∣∣
≤ 1√

2

∑
I,J

|⟨± B̂(I × J̃)f̂(I × J), ⟨g,1I |I|−1 ⊗ hJ |J |−1/2⟩⟩Cd |

≤ 1√
2

∑
I,J

∥B̂(I × J̃)∥∥f̂(I × J)∥Cd∥⟨g,1I |I|−1 ⊗ hJ |J |−1/2⟩∥Cd

≤ 1√
2

∑
I,J

∥f̂(I × J)∥Cd∥B̂(I × J̃)∥⟨∥g∥Cd⟩I×J

≤ 1√
2

(∑
I,J

∥f̂(I×J)∥2Cd

)1/2(∑
I

∑
J

∥B̂(I×J̃)∥2⟨∥g∥Cd⟩2I×J

)1/2

≤ 1√
2
∥f∥L2(Cd)

(∑
I,J

∥B̂(I × J̃)∥2⟨∥g∥Cd⟩2I×J

)1/2

. ∥f∥L2(Cd)d∥B∥BMOd
∥∥g∥Cd∥L2(R)

= d∥B∥BMOd
∥f∥L2(Cd)∥g∥L2(Cd).

Here, we used the fact that, since B ∈ BMOd, then by (2.1), the second

condition in Theorem 2.5 is satisfied with aR = ∥B̂(R)∥2. Note that
we have a linear dependence on the dimension of the matrix, due to



540 DARÍO MENA

the use of the trace. Note also that the same computations allow us
to replace each individual I and J for a parent or “great parent” of
I and J , in which case, the implied constant will also depend upon
complexity (the level of relation with its ancestor); we will use P 1

B to
denote any of these paraproducts.

(ii) A direct computation shows that (P 2
B)

∗ is of the type P 1
B∗ ; there-

fore, by symmetry of the definition of the BMOd-norm, the bounded-
ness for P 2

B follows from that of P 1
B.

(iii) Denote by Sd
2 the space of d × d complex matrices, equipped

with the norm derived from the inner product ⟨A,B⟩Tr = tr(AB∗),
that is, ∥A∥2

Sd
2
= tr(AA∗). In order to estimate the L2-norm of this

operator, we perform the following computation

⟨P 3
B(f), g⟩

=

∫
R2

⟨∑
I,J

B̂(I × J)⟨f, h1
I ⊗ h1

J⟩
hI ⊗ hJ

|I|1/2|J |1/2
, g

⟩
Cd

dx dy

=
∑
I,J

∫
R2

⟨
B̂(I × J)⟨f, h1

I ⊗ h1
J⟩, g

hI ⊗ hJ

|I|1/2|J |1/2

⟩
Cd

dx dy

=
∑
I,J

⟨
B̂(I × J)⟨f, h1

I ⊗ h1
J⟩, ⟨g, hI ⊗ hJ ⟩

1

|I|1/2|J |1/2

⟩
Cd

=
∑
I,J

⟨
B̂(I × J), ⟨g, hI ⊗ hJ⟩⟨f, h1

I ⊗ h1
J ⟩∗

1

|I|1/2|J |1/2

⟩
Tr

=
∑
I,J

∫
R2

⟨
BhI⊗hJ , ⟨g, hI⊗hJ⟩⟨f, h1

I⊗h1
J⟩∗

1

|I|1/2|J |1/2

⟩
Tr

dx dy

=

∫
R2

⟨
B,

∑
I,J

⟨g, hI ⊗ hJ⟩⟨f, h1
I ⊗ h1

J ⟩∗
hI ⊗ hJ

|I|1/2|J |1/2

⟩
Tr

dx dy

=

⟨
B,

∑
I,J

⟨g, hI ⊗ hJ⟩⟨f, h1
I ⊗ h1

J ⟩∗
hI ⊗ hJ

|I|1/2|J |1/2

⟩
L2(Sd

2 )

= ⟨B,Π1(f, g)⟩.

Define the space H1
d to be the space of d × d matrix-valued func-

tions Φ such that ∥Φ∥H1
d
= ∥SΦ∥L1 , where S is the square function
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defined by

S2Φ(x, y) :=
∑
I∈D

∑
J∈D

∥⟨Φ, hI ⊗ hJ ⟩∥2Sd
2

1I(x)

|I|
1J(y)

|J |
.

Note that, if Φ is in H1
d , then all of its components are in scalar H1,

and, for 1 ≤ i, j ≤ d, we have

∥Φi,j∥H1 ≤ ∥Φ∥H1
d
.

In addition, if B is a matrix-valued BMOd function, then all of its
components are in scalar dyadic BMO, and an easy computation shows
that, for 1 ≤ i, j ≤ d, ∥Bi,j∥BMO ≤ d∥B∥BMOd

. Using these facts, we
can easily verify the following duality statement.

Lemma 2.6 (BMOd −H1
d duality). Let B in BMOd and Φ in H1

d .
Then,

⟨B,Φ⟩L2(Sd
2 )

. d3∥B∥BMOd
∥Φ∥H1

d
.

Using this result, it is sufficient to prove that

∥Π1(f, g)∥H1
d
≃ ∥S(Π1(f, g))∥L1 . ∥f∥L2∥g∥L2 .

We have

[S(Π1(f, g))(x, y)]
2

=
∑
I,J

∥⟨g, hI ⊗ hJ⟩⟨f, h1
I ⊗ h1

J ⟩∗|I|−1/2|J |−1/2∥2Sd
2

1I(x)1J(y)

|I||J |

=
∑
I,J

∥⟨g, hI ⊗ hJ⟩∥2Cd

∥∥∥∥⟨f, hI ⊗ hJ

|I|1/2|J |1/2

⟩∥∥∥∥2
Cd

1I×J(x, y)

|I × J |

≤ sup
(x,y)∈I×J

∥∥∥∥⟨f, hI ⊗ hJ

|I|1/2|J |1/2

⟩∥∥∥∥2
Cd

+
∑
I,J

∥⟨g, hI ⊗ hJ ⟩∥2Cd

1I×J (x, y)

|I × J |

≤ sup
(x,y)∈I×J

⟨
∥f∥Cd ,

hI ⊗ hJ

|I|1/2|J |1/2

⟩2

+
∑
I,J

∥⟨g, hI ⊗ hJ⟩∥2Cd

1I×J(x, y)

|I × J |

≤ [M(∥f∥Cd)(x, y)]2[S(g)(x, y)]2.
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Here, M represents the strong maximal function. Using the L2-
boundedness of the maximal and square functions, we conclude with

∥Π1(f, g)∥H1
d
. ∥S(Π1(f, g))∥L1 . ∥M(∥f∥Cd)S(g)∥L1 . ∥f∥L2∥g∥L2 .

(iv) As in the previous case, we compute

⟨P 4
B(f), g⟩

=

∫
R2

⟨∑
I,J

B̂(I × J)⟨f, hI ⊗ h1
J⟩

h1
I ⊗ hJ

|I|1/2|J |1/2
, g

⟩
Cd

dx dy

=
∑
I,J

∫
R2

⟨
B̂(I × J)⟨f, hI ⊗ h1

J⟩, g
h1
I ⊗ hJ

|I|1/2|J |1/2

⟩
Cd

dx dy

=
∑
I,J

⟨
B̂(I × J)⟨f, hI ⊗ h1

J⟩, ⟨g, h1
I ⊗ hJ ⟩

1

|I|1/2|J |1/2

⟩
Cd

=
∑
I,J

⟨
B̂(I × J), ⟨g, h1

I ⊗ hJ⟩⟨f, hI ⊗ h1
J ⟩∗

1

|I|1/2|J |1/2

⟩
Tr

=
∑
I,J

∫
R2

⟨
BhI ⊗ hJ , ⟨g, h1

I ⊗ hJ⟩⟨f, hI ⊗ h1
J ⟩∗

1

|I|1/2|J |1/2

⟩
Tr

dx dy

=

∫
R2

⟨
B,

∑
I,J

⟨g, h1
I ⊗ hJ⟩⟨f, hI ⊗ h1

J ⟩∗
hI ⊗ hJ

|I|1/2|J |1/2

⟩
Tr

dx dy

=

⟨
B,

∑
I,J

⟨g, h1
I ⊗ hJ⟩⟨f, hI ⊗ h1

J ⟩∗
hI ⊗ hJ

|I|1/2|J |1/2

⟩
L2(Sd

2 )

= ⟨B,Π2(f, g)⟩.

Therefore, by duality, it is sufficient to prove that

∥Π2(f, g)∥H1
d
. ∥f∥L2∥g∥L2 .

For this, we again proceed to find a pointwise estimate for the square
function. We compute

[S(Π2(f, g))]
2 =

∑
I,J

∥∥∥∥⟨g, h1
I ⊗ hJ⟩⟨f, hI ⊗ h1

J ⟩∗
1

|I|1/2|J |1/2

∥∥∥∥2
Sd
2

1I×J

|I × J |

=
∑
I,J

∥⟨⟨g, hJ ⟩⟩I∥2Cd

1J

|J |
∥⟨⟨f, hI⟩⟩J∥2Cd

1I

|I|
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≤
∑
I,J

⟨∥⟨g, hJ ⟩∥Cd⟩2I
1J

|J |
⟨∥⟨f, hI⟩∥Cd⟩2J

1I

|I|

≤
(∑

I

(M2∥⟨f,hI⟩∥Cd)2
1I

|I|

)(∑
J

(M1∥⟨g,hJ⟩∥Cd)2
1J

|J |

)
,

where M1 and M2 represent the maximal function in the first and
second variables, respectively. These last two factors are symmetric
to each other; thus it is enough to prove the L2-boundedness for the
operator

S̃f(x, y) =

(∑
I

(M2∥⟨f, hI⟩∥Cd(y))2
1I(x)

|I|

)1/2

.

However, this is easy since∫
R2

(S̃f(x, y))2 dx dy =
∑
I

∫
R
(M2∥⟨f, hI⟩∥Cd(y))2 dy

.
∑
I

∫
R
∥⟨f(·, y), hI(·)⟩∥2Cd dy = ∥f∥2L2 .

(v) The computations are symmetric to those for (iv), exchanging
the roles of I and J . �

We now proceed to prove the upper bound for four different cases.
In each of them, the idea is to reduce the term to an expression of the
form X1 ◦P i

B ◦X2; therefore, by Proposition 2.4 and the boundedness
of the shifts, we obtain the desired result. The estimates for the rest of
the terms are similar since they are reduced to finding an upper bound
for the norm of the four variants of the paraproduct studied above.
More specifically, they correspond to expressions of the form

Xi(PB(Xjf)), Xi(Xj(PBf)),

Xi(Xj(PBf)), Xi(PBf),

or duals of operators of the form

Xi(PB∗(Xjf)), Xi(Xj(PB∗f)),

Xi(Xj(PB∗f)), Xi(PB∗f).
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Case I = K, J = L. In this case, using the definition of the shift,
we have

X1

(∑
I

∑
J

B̂(I × J)f̂(I × J)h2
IhJX2hJ

)
= X1

(∑
I

∑
J

B̂(I × J̃)f̂(I × J̃)h2
I ⊗ hJ̃aJhJ

)
.

Since X2⟨f, hI⟩ =
∑

L aLf̂(I × L̃)hL,

⟨X2⟨f, hI⟩, hJ⟩ = aJ f̂(I × J̃).

Thus, the previous expression is equivalent to

X1

(∑
I

∑
J

B̂(I × J̃)⟨X2⟨f, hI⟩, hJ⟩h2
I ⊗ hJ̃hJ

)
= X1

(∑
I

∑
J

± B̂(I × J̃)⟨X2⟨f, hI⟩, hJ⟩1I |I|−1 ⊗ hJ |J̃ |−1/2

)
= X1

(∑
I

∑
J

± B̂(I×J̃)⟨X2f, hI ⊗ hJ⟩h1
I ⊗ hJ |I|−1/2|J̃ |−1/2

)
,

which has the form X1(P
1
B(X2f).

Case I ( K, J ( L. Here, we have

X1

(∑
K

∑
I(K

∑
L

∑
J(L

B̂(I × J)f̂(K × L)hIhK ⊗ hJX2hL

)

= X1

(∑
J,K

∑
I(K

B̂(I×J)hIhK⊗
(∑

L)J

⟨⟨f, hK⟩, hL⟩X2hL1J

)
hJ

)
.

By using the definition of the shift and the known average identity

⟨f, h1
J⟩|J |−1/2 =

∑
I)J

f̂(I)hI1J ,

we have ∑
L)J

⟨⟨f, hK⟩, hL⟩X2hL1J
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= X2

( ∑
L)J

⟨⟨f, hK⟩, hL⟩hL

)
1J

=
∑
L⊇J

aL⟨⟨f, hK⟩, hL̃⟩hL1J

= aJ⟨⟨f, hK⟩, hJ̃⟩hJ +
∑
L)J

aL⟨⟨f, hK⟩, hL̃⟩hL1J

= ⟨X2⟨f, hK⟩, h1
J ⟩|J |−1/2

1J + ⟨X2⟨f, hK⟩, hJ ⟩hJ .

This divides the original sum into two sums S1 + S2.

S1 = X1

(∑
K

∑
I(K

∑
J

B̂(I × J)⟨X2⟨f, hK⟩, h1
J ⟩hIhK ⊗ hJ

|J |1/2

)

= X1

(∑
I

∑
J

B̂(I×J)

( ∑
K)I

⟨⟨X2f, h
1
J⟩, hK⟩hK1I

)
hI⊗

hJ

|J |1/2

)

= X1

(∑
I

∑
J

B̂(I × J)⟨⟨X2f, h
1
J⟩, h1

I⟩
hI ⊗ hJ

|I|1/2|J |1/2

)
= X1

(∑
I

∑
J

B̂(I × J)⟨X2f, h
1
I ⊗ h1

J ⟩
hI ⊗ hJ

|I|1/2|J |1/2

)
,

which has the form X1(P
3
B(X2f)). And, with similar computations,

we get

S2 = X1

(∑
I

∑
J

B̂(I × J)⟨X2f, h
1
I ⊗ hJ⟩hI ⊗ h1

J |I|−1/2|J |−1/2

)
= X1(P

5
B(X2f)).

Case I = K, J ( L. In this case, we obtain

X1

(∑
I

∑
L

∑
J(L

B̂(I × J)f̂(I × L)h2
I ⊗ hJX2hL

)

= X1

(∑
I

∑
J

B̂(I × J)h2
I ⊗

( ∑
L)J

⟨⟨f, hI⟩, hL⟩X2hL1J

)
hJ

)

= X1

(∑
I

∑
J

B̂(I × J)h2
I ⊗ ⟨X2⟨f, hI⟩, h1

J⟩hJ |J |−1/2

)
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+X1

(∑
I

∑
J

B̂(I × J)h2
I ⊗ ⟨X2⟨f, hI⟩, hJ ⟩hJ

)
= S1 + S2.

Again, by the definition of the shift,

S1 = X1

(∑
I

∑
J

B̂(I × J)h2
I ⊗ ⟨X2⟨f, hI⟩,1J |J |−1⟩hJ

)
= X1

(∑
I

∑
J

B̂(I × J)⟨X2f, hI ⊗ 1J |J |−1⟩1I |I|−1 ⊗ hJ

)
= X1

(∑
I

∑
J

B̂(I × J)⟨X2f, hI ⊗ h1
J⟩h1

I ⊗ hJ |I|−1/2|J |−1/2

)
,

which has the form X1(P
4
B(X2f)). And, similarly,

S2 = X1

(∑
I

∑
J

B̂(I × J)⟨X2f, hI ⊗ hJ⟩h1
I ⊗ h1

J |I|−1/2|J |−1/2

)
= X1((P

3
B∗)∗(X2f)).

Case I ( K, J = L. In this last case, we have

X1

(∑
K

∑
J

∑
I(K

B̂(I × J)f̂(K × J)hIhK ⊗ hJX2hJ

)

= X1

(∑
I

∑
J

B̂(I × J)

( ∑
K)I

⟨⟨f, hJ ⟩, hK⟩hK1I

)
hI ⊗ hJX2hJ

)

= X1

(∑
I

∑
J

B̂(I×J)⟨⟨f, hJ⟩, h1
I⟩hI |I|−1/2 ⊗ (hJ−−hJ+)|J |−1/2

)
.

This is a sum of two terms of the form

X1

(∑
I

∑
J

± B̂(I × J̃)⟨f, h1
I ⊗ hJ̃ ⟩

hI ⊗ hJ

|I|1/2|J̃ |1/2

)
= X1(P

2
B(f)).

This concludes the proof of the estimate for the term T̃2. �

2.1. Remark on the logarithmic estimate. Note that, due to
(2.1), the previous estimates for the upper bound depend upon a dimen-
sional constant. Using a slightly different ordering of the terms in the
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formal Haar expansion of the product Bf , we obtain a decomposition
in paraproducts of the form:

Bf =
∑

R∈D2

⟨B, h
(0,0)
R ⟩⟨f, h(0,0)

R ⟩h(1,1)
R +

∑
R∈D2

⟨B, h
(0,0)
R ⟩⟨f, h(0,1)

R ⟩h(1,0)
R

+
∑

R∈D2

⟨B, h
(0,1)
R ⟩⟨f, h(0,0)

R ⟩h(1,0)
R +

∑
R∈D2

⟨B, h
(1,0)
R ⟩⟨f, h(0,0)

R ⟩h(0,1)
R

+
∑

R∈D2

⟨B, h
(1,0)
R ⟩⟨f, h(0,1)

R ⟩h(0,0)
R +

∑
R∈D2

⟨B, h
(1,1)
R ⟩⟨f, h(0,0)

R ⟩h(0,0)
R

+
∑

R∈D2

⟨B, h
(0,0)
R ⟩⟨f, h(1,0)

R ⟩h(0,1)
R +

∑
R∈D2

⟨B, h
(0,0)
R ⟩⟨f, h(1,1)

R ⟩h(0,0)
R

+
∑

R∈D2

⟨B, h
(0,1)
R ⟩⟨f, h(1,0)

R ⟩h(0,0)
R

= (T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8 + T9)(f).

Here, h
(ε,δ)
R = hε

Ih
δ
J , with ε, δ ∈ {0, 1} and h0

I = hI , h
1
I = |I|−1/2

1I .
Then,

[[MB ,X1],X2](f) = [[T1,X1],X2](f) + · · ·+ [[T9,X1],X2](f).

Therefore, to find an upper bound for the commutator, it suffices to find
upper bounds for the different paraproducts in the above expansion.
From the previous section, this upper bound also depends upon a
dimensional constant; however, it is possible for the terms T1, T6 and
T8 (by duality) to find a better estimate of order log2(1 + d). This is
possible due to a generalization of the results obtained by Pisier [17]
for the one-parameter case, combined with the characterization by two
index Martingales given by Bernard [1].

Along with the rest of the terms, it is still not clear how to find
this improved dimensional bound for the paraproduct since we do not
have a representation in two-index Martingales in these cases, or the
appropriate embedding theorem.

3. Lower bound. The lower bound can be proved by using the
result in the scalar case (proved by Ferguson and Lacey [6]), that is,
there is a constant C > 0 such that

∥b∥BMO ≤ C∥[[Mb,H1],H2]∥L2→L2 ,
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for all scalar functions b in BMO(R2). Recall the definition of BMO
given in Definition 2.1. The lower bound estimate in the matrix-valued
setting is given in Theorem 3.1.

Theorem 3.1 (Lower bound). Let B be a matrix-valued function on
R2. Then,

d−2∥B∥BMO . ∥[[MB ,H1],H2]∥L2(Cd)→L2(Cd).

Proof. Denote by B̂(R) the wavelet coefficient ⟨B, vR⟩. Consider the
functions f, g ∈ L2(C). Let {e⃗1, . . . , e⃗d} represent the canonical basis

of Rd. Then, for 1 ≤ i, j ≤ d, the functions f̃ = f e⃗ i and g̃ = ge⃗ j both
belong to L2(Cd). If B = (bij), an easy computation shows that

⟨[[MB,H1],H2]f̃ , g̃⟩L2(Cd) = ⟨[[Mbji ,H1],H2]f, g⟩L2(C).

Therefore, for every i, j ∈ {1, . . . , d}, we have

(3.1) ∥[[Mbji ,H1],H2]∥L2(C)→L2(C) ≤ ∥[[MB ,H1],H2]∥L2(Cd)→L2(Cd).

Let {Eij : 1 ≤ i, j ≤ d} be the canonical basis for the d × d matrices,
that is, (Eij)kl = δikδjl. We can write B =

∑
i,j bijEij and proceed to

find an estimate for the BMO norm of the matrices B̃ij = bijEij .

Note that
̂̃
Bij(R)

̂̃
Bij(R)∗ =

̂̃
Bij(R)∗

̂̃
Bij(R) = b̂ij(R)Eij b̂ij(R)Eji =

|̂bij(R)|2Eii. Then, for any open set U ⊆ R2, we have

1

|U |
∑
R⊆U

̂̃
Bij(R)

̂̃
Bij(R)∗ =

1

|U |
∑
R⊆U

|̂bij(R)|2Eii

≤ 1

|U |
∑
R⊆U

|̂bij(R)|2Id

≤ ∥bij∥BMOId.

Using the one-parameter result and (3.1), we obtain

1

|U |
∑
R⊆U

̂̃
Bij(R)

̂̃
Bij(R)∗ . ∥[[Mbji ,H1],H2]∥L2(C)→L2(C)Id

≤ ∥[[MB,H1],H2]∥L2(Cd)→L2(Cd),
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that is, ∥B̃ij∥BMO . ∥[[MB ,H1],H2]∥L2(Cd)→L2(Cd). Therefore,

∥B∥BMO ≤
∑
i,j

∥B̃ij∥BMO . d2∥[[MB, H1],H2]∥L2(Cd)→L2(Cd),

which is the desired lower bound. �
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