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SOLUTIONS FOR SECOND ORDER NONLOCAL BVPS
VIA THE GENERALIZED MIRANDA THEOREM

MATEUSZ KRUKOWSKI AND KATARZYNA SZYMAŃSKA-DȨBOWSKA

ABSTRACT. In this paper, the generalized Miranda the-
orem is applied for second-order systems of differential
equations with one boundary condition given by Riemann-
Stieltjes integral

x′′ = f(t, x, x′), x(0) = 0, x′(1) =

∫ 1

0
x(s) dg(s),

where f : [0, 1]× Rk × Rk → Rk is continuous and g : [0, 1] →
Rk has bounded variation. Under suitable assumptions
upon f and g we prove the existence of solutions to such
posed problem.

1. Introduction. We aim to prove the existence of solutions to the
following problem

(1.1)


x′′ = f(t, x, x′)

x(0) = 0

x′(1) =
∫ 1

0
x(s) dg(s),

where f : [0, 1] × Rk × Rk → Rk is continuous and g : [0, 1] → Rk,
with g = diag(g1, . . . , gk) a function of bounded variation. Moreover,
we consider the problem (1.1) in the case where∫ 1

0

s gi(s) ds = 1

for every i = 1, . . . , k. Then, the problem is resonant since, when f ≡ 0,
the linear problem
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
x′′ = 0

x(0) = 0

x′(1) =
∫ 1

0
x(s) dg(s),

has nontrivial solutions x(t) = a t with a ∈ Rk.

The non-resonant and scalar cases, i.e., when∫ 1

0

s g(s) ds ̸= 1,

were considered by Webb and Infante [11] and Webb and Zima [12].
In [11], the authors investigated the existence of positive solutions to
the following problem:

−x′′(t) = q(t)f(t, x(t))

x(0) = 0

x′(1) =
∫ 1

0
x(s) dg(s),

where
f : [0, 1]× R+ −→ R+, q : [0, 1] −→ R+,

and the integral is meant in the sense of Riemann-Stieltjes. The authors
wrote the problem as a Hammerstein integral equation and used the
fixed point index theory of compact mappings.

In [12], the authors studied the existence of positive solutions for
nonlinear nonlocal boundary value problem of the form:

−x′′(t) = f(t, x(t))

x(0) = 0

x′(1) =
∫ 1

0
x(s) dg(s).

The case where f(t, x) is not positive for all positive x was considered
such that f(t, x) + ω2x ≥ 0 for x ≥ 0 for some constant ω > 0. The
authors also investigated the perturbed equation −x′′(t) + ω2x(t) =
h(t, x(t)), with h(t, x(t)) ≥ 0. They established the existence and
multiplicity of positive solutions for the non-perturbed boundary value
problem at resonance by considering equivalent non-resonant perturbed
problems with the same boundary condition.

The corresponding problem for systems has been much less studied.
In this case, imposing an a priori bound condition on f and g and ap-
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plying the Leray-Schauder fixed point theorem, we proved the existence
of at least one solution to the non-resonant problem (1.1) [9].

As far as we know, there are no existence results for the resonant
problem (1.1) in the case where the function f is a vector function and
when f depends on x′.

The method considered in this paper may be found, for example, in
[8, 10], where it was applied to two-point boundary value problems on
finite and infinite intervals. The idea is based on the consideration of an
auxiliary problem. For such a problem, we repeat some of the results
from [10] in Lemma 3.1. Using the initial value problem, it suffices
to define appropriate functions h and H and apply the generalized
Miranda theorem to show that problem (1.1) has at least one solution
(see Theorem 2.5).

In order to obtain the theorem of the existence of solutions to
problem (1.1), we impose some additional conditions on the functions f
and g. We assume that, for every i = 1, . . . , k, the functions gi are
nondecreasing. Moreover, function f has linear growth and satisfies
some sign condition (Theorem 4.1, (A3)). The sign condition is
standard and has been considered in many papers, see, for instance,
[2, 5, 6].

2. Preliminaries. First, we recall the necessary topological con-
cepts used throughout the paper. A detailed discussion of the following
definitions may be found in [1, 3].

Definition 2.1. A topological space (X, τ) is said to be contractible if
it is null-homotopic, i.e., there exist a homotopy H : [0, 1] × X → X
and a point x ∈ X such that H(0, ·) = idX and H(1, ·) = x.

Definition 2.2. Let (X, τX), (Y, τY ) be topological spaces. A set-
valued map H : X ( Y is said to be upper semicontinuous if, for any
V ∈ τY , the set {x ∈ X : H(x) ⊂ V } is τX -open.

Definition 2.3. A compact space (X, τ) is called an Rδ-set (which
we denote X ∈ Rδ) if there is a decreasing sequence Xn of compact,
contractible spaces such that

X =

∞∩
n=1

Xn.
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Definition 2.4. Let (X, τX) and (Y, τY ) be topological spaces. We say
that H : X ( Y is an Rδ map if it is upper semicontinuous and for
every x ∈ X we have H(x) ∈ Rδ.

In order to show that the problem (1.1) has at least one solution,
we shall use the following generalization of the Miranda theorem [10,
Theorem 5]:

Theorem 2.5 (Generalized Miranda theorem). Let Mi > 0, i = 1,

. . . , k, and F be an admissible map from
∏k

i=1 [−Mi,Mi] to Rk, i.e.,
there exist a Banach space (E, ∥·∥E) with dim(E) ≥ k, a linear, bounded
and surjective map

h : E −→ Rk

and an Rδ-map H from
∏k

i=1 [−Mi,Mi] to E such that F = h ◦ H.
If, for any i = 1, . . . , k and every y ∈ F (r), where |ri| = Mi, we have
ri · yi ≥ 0, then there exists an r∗ such that 0 ∈ F (r∗).

3. An initial value problem. Denote by C([0, 1],Rk) the Banach
space of all continuous functions x : [0, 1] → Rk, by C1([0, 1],Rk) the
Banach space of all continuous functions which have continuous first
derivatives and by C2([0, 1],Rk) the Banach space of twice continuously
differentiable functions, with the usual norms.

We consider an initial value problem

(3.1)


x′′ = f(t, x, x′)

x(0) = 0

x′(0) = r,

where r ∈ Rk is fixed.

Problem (3.1) is an auxiliary problem. In Section 4, we will show
that the set of solutions to problem (3.1) contains a solution to prob-
lem (1.1).

We shall now show that problem (3.1) has global solutions.

Lemma 3.1. Assume that the following conditions hold :

(A1) f : [0, 1]× Rk × Rk → Rk is continuous.
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(A2) There are constants a1, a2, a3 ≥ 0 such that

|f(t, x, y)| ≤ a1|x|+ a2|y|+ a3,

for all (t, x, y) ∈ [0, 1]× Rk × Rk.

Then, for every r ∈ Rk, the problem (3.1) has at least one global
solution, i.e., any possible solution can be extended to the interval [0, 1].

Proof. Let r ∈ Rk be fixed. The existence of at least one local
solution to problem (3.1) follows from Assumption (A1). We will show
that every such solution is a global one, using the theorem on a priori
bounds, [7].

Let x be a local solution to (3.1), and define ω(t) := supu∈[0,t] |x′(u)|,
t ∈ [0, 1]. Since

(3.2) x(t) =

∫ t

0

x′(s) ds,

by (A2), we have

|x′(t)| ≤ |r|+
∫ t

0

|f(t, x(t), x′(t))| ds

≤ (|r|+ a3) +

∫ t

0

(a1s+ a2)ω(s) ds.

Consequently,

ω(t) ≤ (|r|+ a3) +

∫ t

0

(a1s+ a2)ω(s) ds

and, by Gronwall’s lemma,

(3.3) ω(t) ≤ (|r|+ a3) exp

(∫ t

0

a1s+ a2 ds

)
.

Hence, |x′(t)| is bounded on [0, 1] and, by (3.2), |x(t)| is also bounded
on [0, 1]. Consequently, using the theorem on a priori bounds, [7, page
146], we can extend the solution x to the entire interval [0, 1]. �

We consider a completely continuous nonlinear operator Tr,

Tr : Rk × C1([0, 1],Rk) −→ C1([0, 1],Rk),
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associated with (3.1), given by

(3.4) Trx(t) := rt+

∫ t

0

(t− s)f(s, x(s), x′(s)) ds.

It is easy to observe that x is a fixed point of the operator Tr if and
only if x is a solution to the problem (3.1).

4. Boundary value problem. Let us consider the family of initial
value problems (3.1) with r ∈ Rk. Using Theorem 2.5, we shall show
that there is an r∗ ∈ Rk for which the solution x to problem (3.1) is
a solution to problem (1.1), i.e., x also satisfies the second boundary
condition of problem (1.1)

x′(1) =

∫ 1

0

x(s) dg(s).

Theorem 4.1. Assume that, in addition to (A1) and (A2), the follow-
ing conditions hold :

(A3) for every i = 1, . . . , k, there exists an Mi > 0 such that, for
every t ∈ [0, 1], x ∈ Rk and y ∈ Rk, |yi| ≥ Mi implies that
yifi(t, x, y) > 0.

(A4) For every i = 1, . . . , k, the function gi is nondecreasing and∫ 1

0

s dgi(s) = 1.

Then, problem (1.1) has at least one solution.

Proof. Define a map

h : C1([0, 1],Rk) −→ Rk

by

(4.1) h(x) := x′(1)−
∫ 1

0

x(s) dg(s).

It can easily be seen that h is linear and continuous. Moreover, h
is surjective: for any c ∈ Rk, it suffices to consider a function x ∈
C1([0, 1],Rk) such that
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(4.2) xi(t) := − ci∫ 1

0
dgi(s)

, i = 1, . . . , k.

Note that, by Assumption (A4), (4.2) is well defined, meaning∫ 1

0

dgi(s) ̸= 0 for i = 1, . . . , k.

Indeed, if gi were nondecreasing and satisfied gi(1) = gi(0), then it

would be constant. However, for such functions, the equality
∫ 1

0
s dgi(s)

= 1 does not hold.

Now, let us consider a set-valued map

H : Rk ( C1([0, 1],Rk)

given by
H(r) := {x ∈ C1([0, 1],Rk) : Tr(x) = x}.

Since the operator Tr is completely continuous, it may be shown that H
is USC with compact values [10, Lemma 2]. The fact that H is an Rδ-
map follows from Assumption (A2). Indeed, it is well known that, if f
has a linear growth, then the set of all solutions of problem (3.1) is an
Rδ-set, [4, page 162].

Observe that we have just proved that the maps h and H satisfy the
assumptions of Theorem 2.5.

Let Mi be as in Assumption (A3). Now, it remains to show that, for
any i = 1, . . . , k and y ∈ h ◦H(r), we have ri · yi ≥ 0 with |ri| = Mi.

We consider the case when ri = Mi. Let x be a solution to problem
(3.1) with ri = Mi, i = 1, . . . , k, and observe that x ∈ C2([0, 1],Rk).
We shall prove that then x′

i is increasing.

Indeed, since x′
i(0) = Mi, by Assumption (A3), we get

x′
i(0)x

′′
i (0) = x′

i(0)fi(0, x(0), x
′(0)) > 0.

Consequently, x′′
i (0) > 0, and there is an ε > 0 such that x′′

i (t) > 0 for
t ∈ [0, ε). Moreover, x′

i is increasing on [0, ε). Suppose that

t1 := inf{t ∈ (ε, 1] : x′′
i (t) < 0}
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exists. Then, we have x′
i(t1) ≥ Mi and

0 = x′
i(t1)x

′′
i (t1) = x′

i(t1)fi(t1, x(t1), x
′(t1)) > 0,

a contradiction. Consequently, x′
i is increasing on [0, 1].

Now, since x′
i is increasing, by (3.2) and Assumption (A4), we obtain∫ 1

0

xi(s) dgi(s) =

∫ 1

0

∫ s

0

x′
i(u) du dgi(s) < x′

i(1)

∫ 1

0

s dgi(s) = x′
i(1).

Thus,

ri

(
x′
i(1)−

∫ 1

0

xi(s) dgi(s)

)
> 0.

In the case where ri = −Mi we proceed in an analogous manner.

Consequently, by Theorem 2.5, there exists an r∗ ∈
∏k

i=1 [−Mi,Mi]
such that 0 ∈ h ◦ H(r∗). Hence, H(r∗) ⊂ C1([0, 1],Rk) contains a
solution to problem (1.1). �

Remark 4.2. Observe that, by Assumption (A4), the measures dgi
are positive, i = 1, 2.

5. Example. Now, we shall present an example to illustrate the
application of Theorem 4.1.

Let k = 2, and let gi(s) = (i+2)si, i = 1, 2. Consider the boundary
value problem (1.1) with the function f = (f1, f2) given by

f1(t, x, y) = α1(t, x, y2) + β1(t, x, y2)y1

f2(t, x, y) = α2(t, x, y1) + β2(t, x, y1)y2,
(5.1)

where
αi, βi : [0, 1]× R2 × R −→ R

are positive, bounded and continuous functions.

Define

βinf
1 := inf

(t,x,y2)∈[0,1]×R2×R
β1(t, x, y2),

βinf
2 := inf

(t,x,y1)∈[0,1]×R2×R
β2(t, x, y1),
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and

αsup
1 := sup

(t,x,y2)∈[0,1]×R2×R
|α1(t, x, y2)|,

αsup
2 := sup

(t,x,y1)∈[0,1]×R2×R
|α2(t, x, y1)|.

We assume that βinf
1 , βinf

2 > 0.

Obviously, Assumptions (A1), (A2) and (A4) are satisfied. More-
over, we have

y1f1(t, x, y) = y1(α1(t, x, y2) + β1(t, x, y2)y1)

≥ −α1(t, x, y2)|y1|+ β1(t, x, y2)|y1|2

≥ −αsup
1 |y1|+ βinf

1 |y1|2.

Setting

M1 := 1 +
αsup
1

βinf
1

,

we obtain that y1f1(t, x, y) > 0 for |y1| ≥ M1. Analogous reasoning
applies for y2f2(t, x, y) with

M2 := 1 +
αsup
2

βinf
2

.

Consequently, Assumption (A3) is satisfied.

Finally, applying Theorem 4.1, we obtain the existence of at least
one solution to problem (1.1) with f given by (5.1).
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