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ON MAXIMAL IDEALS OF Cc(X) AND THE
UNIFORMITY OF ITS LOCALIZATIONS

F. AZARPANAH, O.A.S. KARAMZADEH,
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ABSTRACT. A similar characterization, as the Gelfand-
Kolmogoroff theorem for the maximal ideals in C(X), is
given for the maximal ideals of Cc(X). It is observed
that the zc-ideals in Cc(X) are contractions of the z-
ideals of C(X). Using this, it turns out that maximal
ideals (respectively, prime zc-ideals) of Cc(X) are precisely
the contractions of maximal ideals (respectively, prime z-
ideals) of C(X), as well. Maximal ideals of C∗

c (X) are
also characterized, and two representations are given. We
reveal some more useful basic properties of Cc(X). In
particular, we observe that, for any space X, Cc(X) and
C∗

c (X) are always clean rings. It is also shown that β0X,
the Banaschewski compactification of a zero-dimensional
space X, is homeomorphic with the structure spaces of
Cc(X), CF (X), Cc(β0X), as well as with that of C(β0X).
Fc-spaces are characterized, the spaces X for which Cc(X)P ,
the localization of Cc(X) at prime ideals P , are uniform (or
equivalently are integral domain). We observe that X is an
Fc-space if and only if β0X has this property. In the class
of strongly zero-dimensional spaces, we show that Fc-spaces
and F -spaces coincide. It is observed that, if either Cc(X)
or C∗

c (X) is a Bézout ring, then X is an Fc-space. Finally,
Cc(X) and C∗

c (X) are contrasted with regards to being an
absolutely Bézout ring. Consequently, it is observed that the
ideals in Cc(X) are convex if and only if they are absolutely
convex if and only if Cc(X) and C∗

c (X) are both unitarily
absolute Bézout rings.

1. Introduction. As is standard, all topological spaces in this ar-
ticle are infinite completely regular (i.e., infinite Hausdorff Tychonoff
spaces). We denote by C(X) (C∗(X)) the ring of all real-valued, con-
tinuous (bounded) functions on a space X. For each f ∈ C(X), the
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zero-set of f , denoted by Z(f), is the set of zeros of f and X \ Z(f) is
the cozero-set of f and the set of all zero-sets in X is denoted by Z(X).
An ideal I in C(X) is called a z-ideal if, whenever f ∈ I, g ∈ C(X)
and Z(f) ⊆ Z(g), then g ∈ I. The space υX is the Hewitt realcom-
pactification of X, βX is the Stone-Čech compactification of X and, for
any p ∈ βX, the maximal ideal Mp (respectively, Op) is the set of all
f ∈ C(X) for which p ∈ clβX Z(f) (respectively, p ∈ intβX clβX Z(f)).
Similarly, maximal ideals of C∗(X) are precisely of the form

M∗p = {f ∈ C∗(X) : p ∈ Z(fβ)},

where fβ is the extension of f on βX. Whenever C(X)/Mp ∼= R, then
Mp is called real, else hyper-real, and υX is in fact the set of all p ∈ βX
such that Mp is real.

The subring of C(X) consisting of those functions with countable
(respectively, finite) image, which is denoted by Cc(X) (respectively,
CF (X)) is an R-subalgebra of C(X). The subring C∗

c (X) of Cc(X)
consists of bounded elements of Cc(X). The rings Cc(X) and CF (X)
are introduced and studied in [10, 11]. It is shown [10] that, for any
topological space X, there exists a zero-dimensional space Y which is a
continuous image of X and Cc(X) ∼= Cc(Y ). A subset S of a space X
is called C ∗

c -embedded in X if every function in C∗
c (S) can be extended

to a function in C∗
c (X). We denote by Zc(X) the set of all zero-sets

Z(f), where f ∈ Cc(X) and an ideal I in Cc(X) is called a zc-ideal
if, whenever f ∈ I, g ∈ Cc(X) and Z(f) ⊆ Z(g), then g ∈ I. An
ideal I in Cc(X) or C∗

c (X) and, more generally, in a lattice ordered
ring R, is called absolutely convex (note that, in the ℓ-group literature,
absolutely convex ideals are often called ℓ-ideals) if, whenever a, b ∈ R
with |a| ≤ |b| and b ∈ I, then a ∈ I. It is easy to see that every z-ideal
in C(X) and every zc-ideal in Cc(X) is an absolutely convex ideal. An
ideal I in Cc(X) (C∗

c (X)) or in C(X) (C∗(X)) is said to be fixed if∩
f∈I

Z(f) ̸= ∅;

otherwise, it is called free. However, it seems Cc(X) and CF (X) are
not algebraically defined; thus, we should emphasize here that, when-
ever C(X) ∼= C(Y ), then Cc(X) ∼= Cc(Y ), CF (X) ∼= CF (Y ), and, if
C(X) ∼= Cc(Y ), then C(X) = Cc(X), see [11, comments preceding
Theorem 3.6] and [17, comments preceding Theorem 5.1]. In partic-
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ular, we always have Cc(X) ∼= Cc(υX), CF (X) ∼= CF (υX). In [10,
Proposition 4.4], it was also shown that X is zero-dimensional if and
only if the closed sets and points not contained in them can be com-
pletely separated by elements of Cc(X) (or, equivalently, by elements in
CF (X)). This and the previous observations show that, in dealing with
Cc(X), we may always assume that X is a zero-dimensional space (i.e.,
a Hausdorff space with a base consisting of clopen sets). In particular,
in this paper, all spaces X are zero-dimensional unless otherwise men-
tioned (note that we sometimes emphasize the zero-dimensionality of
the spaces with which we are dealing). As remarked upon in [6, intro-
duction], the subject of Cc(X) is receiving increasing attention in the
literature. Moreover, we also believe that the present article, together
with [6, 10, 11, 17] can perhaps provide some basic and necessary re-
sults for the study of the subject in the future. Banaschewski has shown
that every zero-dimensional space X has a zero-dimensional compacti-
fication, denoted by β0X, such that every continuous map f : X → Y ,
where Y is a zero-dimensional compact space has the extension map

β0f : β0X −→ Y.

If βX is zero-dimensional, then βX = β0X, see [19, subsection 4.7]
for more details. We also recall a well-known result due to Rudin,
Pelczynski and Semadeni (abbreviated RPS-theorem in [10, 11]),
which states that a compact space X is scattered if and only if every
member of C(X) has a countable image, that is, C(X) = Cc(X) .
Recall that a space X is scattered if every nonempty subset of X has
an isolated point. The reader is referred to [13] for undefined terms
and notation.

We now give a brief outline of this article. The main part of
this article consists of seven sections. In Section 2, we give some
algebraic and topological properties of Cc(X) which were previously
uncharacterized. First, we start with a useful characterization of
CF (X) and next some new basic properties for Cc(X) are presented.
For example, it is observed that Zc(X) is closed under a countable
intersection. We also show that Cc(X) and C∗

c (X) are always clean.

In Section 3, β0X is studied via Cc(X). In particular, in a natural
manner, we observe that β0X is homeomorphic with the structure
spaces of Cc(X), CF (X) and that of Cc(β0X).
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In Section 4, we fully characterize the maximal ideals of Cc(X)
similarly to the maximal ideals in C(X), i.e., we present the counterpart
of the Gelfand-Kolmogoroff theorem in Cc(X). It is shown that
the maximal ideals (respectively, the prime zc-ideals) of Cc(X) are
the contraction of the corresponding ideals in C(X). We also show
that absolutely convex ideals of C∗

c (X) are the contraction of the
corresponding ideals in C∗(X) and, using this, we characterize maximal
ideals of C∗

c (X).

Section 5 is devoted to Fc-spaces, (i.e., spaces X for which Cc(X)P ,
the localization of Cc(X) at any prime ideal P is an integral domain).
By using the results of the previous sections, which show the coun-
terpart of F -spaces, we study Fc-spaces. It appears that most of the
counterparts of the results concerning F -spaces are also naturally valid
for Fc-spaces. For example, X is an Fc-space if and only if β0X is an
Fc-space (note that X is an F -space if and only if βX is an F -space).

Section 6 deals with Fc-spaces versus F -spaces. We observe that,
whenever X is strongly zero-dimensional (i.e., any pair of disjoint zero-
sets are contained in disjoint clopen sets, or equivalently if βX is zero-
dimensional), then X is an F -space if and only if it is an Fc-space. The
Lindelöf subspaces of Fc-spaces are observed to be F -spaces, and it is
shown that every Fc-space satisfying the countable chain condition is
an F -space, too.

Finally, in Section 7, the relation of Fc-spaces with the spaces X,
for which Cc(X) is a Bézout ring, is investigated. It is proven that the
ideals in Cc(X) are convex if and only if they are absolutely convex if
and only if Cc(X) and C∗

c (X) are both unitarily absolute Bézout rings.

2. Some previously uncharacterized properties. Let IdX de-
note the set of idempotents in C(X). It is well known that IdX coin-
cides with the set of the characteristic functions of clopen subsets of X.
We begin with the following simple and useful fact, which, incidentally
and immediately, yields the well-known fact that CF (X) is always reg-
ular (von Neumann), see also [4, 5, 8] and [11, comment preceding
Proposition 4.2].

Proposition 2.1. The ring CF (X) coincides with the R-subalgebra
of C(X) generated by IdX, i.e., CF (X) = R[IdX]. Moreover, ev-
ery f ∈ CF (X) has a unique representation in R[IdX] of the form
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f = r1e1 + r2e2 + · · ·+ rnen,

where {r1, r2, . . . , rn} is the set of nonzero elements in f(X) and
e1, e2, . . . , en are some nonzero orthogonal idempotents in IdX.

Proof. Clearly, R[IdX] ⊆ CF (X). Let r1, r2, . . . , rn be all of the
nonzero elements in f(X), where f ∈ CF (X). For each ri, take
the idempotent ei ∈ C(X), where e−1

i ({1}) = f−1({ri}). Set Xi =

e−1
i ({1}), where i = 1, 2, . . . , n, X0 = Z(f), and let e0 be the idem-

potent with X0 = e−1
0 ({1}) (note that we may have X0 = ∅, in which

case, e0 = 0). Since eiej = 0 for all i ̸= j, we infer that, if x ∈ X and
ei(x) = 1 for some 0 ≤ i ≤ n, we have ej(x) = 0 for all j ̸= i. It is clear
that

X =

n∪
i=0

Xi and Xi ∩Xj = ∅ for all i ̸= j.

Clearly, if f is of the above form, then f(Xi) = {ri}, for all i, where we
may put r0 = 0. Hence, the representation in this form, which clearly
exists for f , is unique. It is apparent that f ∈ R[IdX ], and we are
done. �

Let f ∈ CF (X) have the above form, and set

g =
1

r1
e1 +

1

r2
e2 + · · ·+ 1

rn
en.

Then, f = f2g; hence, CF (X) is a regular ring. We also emphasize
that the evident fact that X is zero-dimensional if and only if any two
disjoint closed sets, of which one is a singleton, are separated by an
element in IdX, can be added to the four equivalent statements in [10,
Proposition 4.4].

In the next lemma, among some other useful facts, we also observe
that Zc(X), similarly to Z(X), is closed under countable intersection.
It should be emphasized here that, in the first two parts of the following
result, X need not be zero-dimensional.

Lemma 2.2.

(a) For any space X, Z ∈ Zc(X) if and only if Z is a countable
intersection of clopen sets in X.

(b) For any space X, if f ∈ Cc(X), then pos f and neg f are a
countable union of clopen sets. Moreover, given two disjoint sets A
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and B in X such that both are a countable union of clopen sets, then
there exist f ∈ Cc(X) with pos f = A and neg f = B.

(c) If X is a zero-dimensional space, then each zero-set in Z(X)
contains a member of Zc(X).

Proof.

(a) Let f ∈ Cc(X). We show that Z(f) is a countable intersection
of clopen sets. In order to see this, for each n ∈ N, take 0 < rn ≤ 1/n
with rn /∈ f(X) and −rn /∈ f(X). Hence,

Z(f) =
∞∩

n=1

f−1((−rn, rn)).

However, f−1((−rn, rn)) = f−1([−rn, rn]), and we are done.

Conversely, let A be any countable intersection of clopen sets. We
show that A ∈ Zc(X). To this end, we first recall that, in [10, Proof
of Theorem 5.5] it was shown that, whenever

B =
∞∩
i=1

Z(ei),

where each ei is idempotent and eiej = 0 for all i ̸= j, then B = Z(g)
for some g ∈ Cc(X) (note that we may take g =

∑∞
i=1 ei/2

i). It is
folklore that any countable union of clopen sets can be written as a
countable union of disjoint clopen sets; hence, dually, A can be written
as

A =
∞∩
i=1

Ai,

where each Ai is clopen with Ai ∪ Aj = X for all i ̸= j. Therefore, if
we set Ai = Z(ei), where ei is idempotent for each i, we have eiej = 0
for all i ̸= j, and hence, from what is observed above, we are through;
see also [6, Remark 1.2].

(b) Note that, for each f ∈ Cc(X), neg f = pos (−f) and pos f =
X \ Z(g), where g = f + |f | ∈ Cc(X). Moreover, given two disjoint
countable union of clopen sets A and B in X, from the above, it can
easily be shown that there are infinitely many elements f ∈ Cc(X) with
pos f = A, neg f = B.
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(c) In view of part (a), it can easily be seen that, when X is zero-
dimensional, any nonempty Gδ-set in X, in particular, any nonempty
element in Z(X), contains a nonempty element in Zc(X). �

Remark 2.3. It is clear that the converse of the first part of Lemma
2.2 (b) is not true in general. For example, let X be an uncountable
discrete space, and take any f ∈ C(X) \Cc(X). In contrast to Lemma
2.2 (c), if X is zero-dimensional, it is apparent that each element in
Z(X) is contained in an element in Zc(X), as well. It is also clear that,
if f ∈ Cc(X) (respectively, f ∈ C(X)) with intXZ(f) ̸= ∅, then there
exists an idempotent 1 ̸= e ∈ Cc(X) such that Z(e) ⊆ intXZ(f), and
hence, f is a multiple of e by [10, Lemma 2.4] (respectively, by [13,
1D(1)]). Consequently, X is an almost P -space, i.e., intXZ(f) ̸= ∅ for
all non-units f ∈ C(X), if and only if intXZ(f) ̸= ∅ for all non-units
f ∈ Cc(X).

Using Lemma 2.2 (a) and in view of [19, Theorem 4.7(j)], we have
the following fact, found in [6, Theorem 1.1].

Proposition 2.4. X is strongly zero-dimensional, i.e., βX is zero-
dimensional, if and only if Z(X) = Zc(X).

Remark 2.5. We recall that, whenever A and B are two subsets of
X such that A and B are separated by an element in Cc(X) (i.e.,
f(A) = 0 and f(B) = 1, for some f ∈ Cc(X), e.g., take A,B to be
contained in two disjoint elements of Zc(X), see [10, Theorem 2.8]),
then A and B are contained in two disjoint clopen sets. For example,
take 0 < r < 1 with r /∈ f(X), and put U = f−1((−∞, r]). Thus,
A ⊆ U and B ⊆ X \ U , or equivalently, they can be separated by an
idempotent element of C(X). In view of Lemma 2.2, it is also clear
that, if A and B are two disjoint closed subsets of a zero-dimensional
Lindelöf space X, then A is contained in an element of Zc(X) which is
disjoint from B; hence, A and B are contained in two disjoint elements
of Zc(X), which in turn implies that A and B are contained in two
disjoint clopen sets. Consequently, we have proved the well-known fact
that every zero-dimensional Lindelöf space is a normal strongly zero-
dimensional space, see [9, Theorem 3.8.2], [13, Theorem 16.16] and
[19, Lemma 4.7(i)].
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Corollary 2.6. Let each element of a Lindelöf subset A of X be
separated from a subset B of X by an element in Cc(X) (X may
not be zero-dimensional). Then, there exists an element Z ∈ Zc(X)
containing B disjoint from A.

Proof. From the first part of the previous remark, we note that, for
each a ∈ A, there exist two disjoint clopen sets Ua and Va with a ∈ Ua

and B ⊆ Va. Hence, there exists a countable set {a1, a2, . . . , an, . . .} of
elements of A such that

A ⊆
∞∪
i=1

Uai

and

B ⊆
∞∩
i=1

Vai .

Now, by Lemma 2.2, we may put

Z(f) =
∞∩
i=1

Vai ,

where f ∈ Cc(X). Clearly, B ⊆ Z(f) and A ∩ Z(f) = ∅; hence, we are
done. �

Before presenting our next observation, we recall that an element r
in a commutative ring R is called clean if r = σ + e, where σ ∈ R is a
unit and e is an idempotent of R, and R is called clean if every element
in R is clean. In view of [2, Theorem 2.5], [15, Proposition 3.9], [18,
Theorem 13] and [20, Proposition 3.2], see also [16], X is strongly zero-
dimensional if and only if C(X) (respectively, C∗(X)) is clean. Using
a proof similar to those of aforementioned results, we may show that
Cc(X) is always clean. However, unfortunately, this method cannot
be applied to show that C∗

c (X) is also a clean ring. Fortunately, the
next lemma, which is a counterpart of [2, Lemma 2.1], immediately
shows that, for any topological space X (not necessarily Tychonoff),
both Cc(X) and C∗

c (X) are clean.
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Lemma 2.7. Let X be a topological space (not necessarily Tychonoff)
and

f : X −→ R

a continuous function which does not take a real number 0 < r < 1.
Then, f is clean.

Proof. It is easy to check that

f−1({1}) ⊆ f−1((r,∞)) ⊆ X \ Z(f),

and clearly, f−1((r,∞)) is clopen. Hence, f−1((r,∞)) = Z(e) for some
idempotent e. Define u(x) = f(x) for x ∈ Z(e) and u(x) = f(x) − 1
for x /∈ Z(e). Now, whenever x ∈ Z(e), we have u(x) = f(x) > r and,
if x /∈ Z(e), we have u(x) = f(x) − 1 < r − 1. This means that u is
bounded away from zero, i.e., u is unit and f = u+ e is clean. �

In the proof of the above lemma, it is clear that, if f ∈ Cc(X)
(f ∈ C∗

c (X)), then u is a unit in Cc(X) (C∗
c (X)). Using this fact,

the following corollary becomes evident. Before stating the corollary,
the reader is reminded that every commutative regular ring is clean,
see [18], hence CF (X) is clean, too.

Corollary 2.8. For every topological space X (not necessarily Tycho-
noff), the rings Cc(X) and C∗

c (X) are always clean.

3. Some connections between Cc(X) and β0X. In [10, Re-
mark 2.12] we observed that all of the results in [13, Chapter 2] are
valid if we just replace C(X) and z-filters by Cc(X) and zc-filters, re-
spectively. We should also emphasize here that, by taking X to be zero-
dimensional, every single result in [13] concerning the convergence of
z-filters can be similarly proved for zc-filters, namely, [13, 3.16(a),(b),
Theorem 3.17, 3.18(a),(b),(c),(d)] (in the latter five facts, merely re-
place Ap by Acp, the family of all elements in Zc(X) containing p).
Moreover, [13, Theorems 4.8–4.12] are also trivially true in the con-
text of Cc(X) (in carrying over the proofs of these facts for Cc(X),
C∗(X) should be replaced by CF (X)), also see [11, Theorems 3.8,
3.9], where these results are recorded too. The following fact is also
immediate see [13, 6.3(a),(b)].

Proposition 3.1. Let X be dense in a zero-dimensional space T and
Z ∈ Zc(X) with p ∈ clT Z. Then, there exists a zc-ultrafilter on X
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containing Z which converges to p. In particular, every point of T is
the limit of a zc-ultrafilter on X.

In [10, 11], it is claimed that CF (X) in Cc(X), in most cases,
plays the same role as C∗(X) does in C(X). Part (2) in the next
proposition confirms this claim, too. This proposition, together with
Proposition 3.3, are the counterparts of [13, Theorems 6.4, 6.7]. In
particular, these counterparts are essentially well known; however, they
are not recorded in the following useful forms in the literature.

Proposition 3.2. Let X be dense in a zero-dimensional space T .
Then, the following statements are equivalent.

(1) Every continuous function τ from X into any zero-dimensional
compact space Y has a continuous extension τ from T into Y .

(2) X is CF -embedded in T , i.e., every function f ∈ CF (X) has
an extension to a function f ∈ CF (T ) (hence, f(X) = f(T ) and the
mapping f → f is an isomorphism of CF (X) onto CF (T )).

(3) Every idempotent e ∈ C(X) has an extension to an idempotent
e ∈ C(T ).

(4) Any two disjoint clopen sets in X have disjoint clopen closures
in T .

(5) Any two disjoint zero-sets in Zc(X) have disjoint closures in T .

(6) For any two zero-sets Z1 and Z2 in Zc(X), we have

clT (Z1 ∩ Z2) = clT Z1 ∩ clT Z2.

(7) Every point of T is the limit of a unique zc-ultrafilter on X.

Proof.

(1) ⇒ (2). Let f ∈ CF (X). Then, Y = f(X) is a finite discrete
subspace (i.e., Y is a zero-dimensional compact space); hence, by (1),
there is an f ∈ C(T ) . It is clear that f is unique and f(X) = f(T ),
and φ : CF (X) → CF (T ), where φ(f) = f is an isomorphism.

(2) ⇒ (3). Let e ∈ C(X) be an idempotent; hence, e ∈ CF (X) has
the extension e ∈ CF (T ). Since e(X) = e(T ), we infer that e is an
idempotent.

(3) ⇒ (4). Let U and V be two disjoint clopen sets in X. We define
the idempotents eu, ev ∈ C(X) by U = e−1

u ({1}) and V = e−1
v ({1}).
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Since euev = 0, we infer that euev = 0. This implies that

e−1
u ({1}) ∩ e−1

v ({1}) = ∅.

Note that e−1
u ({1}) = clT U , e−1

v ({1}) = clT V ; hence, we are done.

(4) ⇒ (5). Let Z1 and Z2 be two disjoint elements in Zc(X). Then,
by Remark 2.5, Z1 and Z2 are contained in two disjoint clopen sets
in X. Now, by (4), the latter two clopen sets have disjoint closures
in T which, in turn, implies that Z1 and Z2 have disjoint closures in T .

(5) ⇒ (6). Let Z1 and Z2 be two elements in Zc(X). From (5),
we may assume that Z1 ∩ Z2 ̸= ∅. Hence, it suffices to show that, if
there exists a p ∈ clT Z1 ∩ clT Z2 with p /∈ clT (Z1 ∩ Z2), we obtain a
contradiction. By our assumption, there exists a clopen set U ⊆ T such
that p ∈ U and U ∩ (Z1 ∩Z2) = ∅. Clearly, V = U ∩X is clopen in X;
hence, V ∈ Zc(X) and

V ∩ (Z1 ∩ Z2) = (V ∩ Z1) ∩ (V ∩ Z2) = ∅.

Now, by (5), we have

clT (V ∩ Z1) ∩ clT (V ∩ Z2) = ∅.

Consequently, p does not belong to one of the latter two closure sets.
We suppose that p /∈ clT (V ∩Z1). Hence, there exists a neighborhoodW
of p with

W ∩ V ∩ Z1 = W ∩ U ∩ Z1 = ∅,

which is a contradiction (W ∩ U is a neighborhood of p and p ∈ clT Z1).

(6) ⇒ (7). Evident.

(7) ⇒ (1). For the proof of this part, [13, Proof of Theorem 6.4,
(5) ⇒ (1)] can be repeated verbatim without any extra work. �

Proposition 3.3. Let X be dense in a zero-dimensional space T .
Then, the following statements are equivalent.

(1) Every continuous function τ from X into any zero-dimensional
compact space Y has a continuous extension τ from T into Y .

(2) Every f ∈ CF (X) has an extension f ∈ C(T ).
(3) β0T = β0X.
(4) X ⊆ T ⊆ β0X.
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Proof.

(1) ⇒ (2). Evident by the previous proposition.

(2) ⇒ (3). We first digress for a moment and emphasize that f(T )
= f(X) (this observation is unnecessary in the proof which follows).
Take f, g ∈ Cc(X) with Z(f) ∩ Z(g) = ∅. Then, by Remark 2.5,
there exists an idempotent e ∈ C(X) with e(Z(f)) = 0, e(Z(g)) = 1.
Hence, by our hypothesis, e has an extension e ∈ C(T ). However,
Z(f) ⊆ e−1({0}) and Z(g) ⊆ e−1({1}) imply that Z(f) and Z(g) are
contained in two disjoint closed subsets of T ; thus, they have disjoint
closures in T . Consequently, X satisfies part (5) of Proposition 3.2,
and therefore, it also satisfies part (1). Now, in order to show that
β0T = β0X, we must prove that X is dense in β0T and any continuous
map φ : X → Y , where Y is a zero-dimensional compact space, has a
continuous extension from β0T into Y . It is evident that X is dense in
β0T . Since X satisfies part (1), we infer that a continuous map

φ : T −→ Y

exists which is an extension of φ. Consequently, by the definition of
β0T , a continuous map

β0φ : β0T −→ Y

exists which is an extension of φ. It is now evident that β0φ is an
extension of φ, and we are done.

(3) ⇒ (4), (4) ⇒ (1). Evident. �
If T in the previous proposition is a zero-dimensional compact space,

then, in view of [19, Corollary 4.7(f)], it is homeomorphic with β0X.
In this case, part (2) of Proposition 3.3 raises the question of whether
X is C∗

c -embedded in β0X (it is evident that X is not necessarily Cc-
embedded in β0X; for example, take X = N). In view of the next
result, the answer to this question is also negative.

Proposition 3.4. Let X be a strongly zero-dimensional space such that
βX is not scattered and C∗(X) ∼= C∗

c (X) (e.g., X = N or X = Q).
Then, X is not C∗

c -embedded in β0X. In particular, if we just trade off
the strong zero-dimensionality of X with the complete regularity of X,
then X is not C∗

c -embedded in βX.

Proof. Suppose that X is C∗
c -embedded in β0X in order to seek a

contradiction. By our assumption, for every f ∈ C∗
c (X), there exists
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an f ∈ Cc(β0X) with f |X = f . Clearly,

φ : C∗
c (X) −→ Cc(β0X);

φ(f) = f is an isomorphism, i.e., C∗
c (X) ∼= Cc(β0X). By our

assumption βX is zero-dimensional; hence, βX = β0X, and clearly,

C(βX) ∼= C∗(X) ∼= C∗
c (X) ∼= Cc(β0X) = Cc(βX).

Hence, by what we observed in the introduction, C(βX) = Cc(βX),
also see [11, 17]. Now, in view of the RPS-theorem, βX must be
scattered, which is the desired contradiction. The proof of the last
part is exactly similar to the proof of the first part. �

As in βX, for each p ∈ X, where X is zero-dimensional, take Acp to
be the unique zc-ultrafilter whose limit is p and, for p ∈ β0X, let Ap

c be
the unique zc-ultrafilter with limit p. By convention, we set Ap

c = Acp

for p ∈ X. It can be shown that, similarly to the construction of βX,
if Z ∈ Zc(X) and Z = {p ∈ β0X : Z ∈ Ap

c}, then the topology of β0X
is defined by taking the set

{Z : Z ∈ Zc(X)}

as a base for the closed sets of β0X. Similarly to the case of βX, it
may be shown that Z = clβ0X Z, see [13, page 87, part (c)]; hence,
p ∈ clβ0X Z if and only if Z ∈ Ap

c .

We conclude this section with the next three remarks. In the remark
which follows, we present the form of fixed maximal ideals in Cc(X) and
in C∗

c (X). In the second remark, we observe that β0X is homeomorphic
to the structure space of the ring Cc(X).

Remark 3.5. In [10], it is observed that, if p ∈ X and

Mcp = {f ∈ Cc(X) : p ∈ Z(f)} = Mp ∩ Cc(X),

whereMp consists of those elements of C(X) vanishing at p, thenMcp is
a maximal ideal of Cc(X), which is fixed, see also [11, Theorem 3.8 ff.].
Hence, the Jacobson radical of Cc(X) is zero. We also emphasize that
Mp (similarly to the case of C(X) and C∗(X), see [13, 4.7]) is the only
maximal ideal in C(X), fixed or free, whose intersection with Cc(X)
is Mcp. In order to see this, let M ̸= Mp be a maximal ideal in C(X)
with Mcp = M ∩ Cc(X) and seek a contradiction. Take f ∈ M with
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f(p) ̸= 0. Since X is zero-dimensional, there exists a g ∈ Cc(X) with
Z(f) ⊆ Z(g) and g(p) ̸= 0. Since M is a z-ideal, we infer that g ∈ M ;
hence, g ∈ M ∩Cc(X) \Mcp, a contradiction. We also emphasize that

M∗
cp = {f ∈ C∗

c (X) : p ∈ Z(f)}

is a fixed maximal ideal in C∗
c (X). Clearly, M∗

cp = Mcp ∩ C∗
c (X), and

Mcp is the only maximal ideal in Cc(X) whose intersection with C∗
c (X)

is M∗
cp. Moreover, if M is an arbitrary maximal ideal in Cc(X), then

M ∩ C∗
c (X) may not be maximal in C∗

c (X); in addition, free maximal
ideals of C∗

c (X) need not be of the latter form. In order to see this,
since C(N) = Cc(N), one can easily see that the entire argument and
the example preceding [13, Theorem 4.8] applies in this case as well.

Remark 3.6. Let Mc(X) = Max(Cc(X)) be the set of all maximal
ideals of Cc(X) and, for each f ∈ Cc(X), define

Df = {M ∈ Mc(X) : f /∈ M}

and
Vf = Mc(X) \Df .

The topology on Mc(X), defined by taking the family of all sets Df as
a base for the open sets, is called the structure space of Cc(X), and it is,
in fact, the subspace topology of the Zariski topology on Spec(Cc(X)).
For a zero-dimensional space X, let Mc(X) be the subspace of Mc(X)
consisting of the fixed maximal ideals of Cc(X). It is evident that the
correspondence

φ : p −→ Mcp

is a homeomorphism between X and Mc(X), φ(Z(f)) = Vf ∩Mc(X) =

Mc(X) \ Df , where f ∈ Cc(X). It is also clear that Mc(X) is a

compact T1-space and Mc(X) is dense in Mc(X). As in the case of
βX and the structure space of C(X), it can be shown that β0X and
Mc(X) are homeomorphic. Here, we give a quick proof of this fact.
(In [6], it is also claimed that a different proof can be modeled after
[6, reference 6 (Theorem 5.1)].) First, we show that Mc(X) is zero-
dimensional. Take M ∈ Mc(X) with M ∈ G, where G is open in
Mc(X). Clearly, G = D(I) = {M ∈ Mc(X) : I ̸⊆ M}, where I is an
ideal of Cc(X). Consequently, I+M = Cc(X). This implies that there
exists an f ∈ I with 1−f ∈ M . Now, in view of Remark 2.5, there exists
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an idempotent e ∈ Cc(X) with Z(f) ⊆ Z(e) and Z(1− f) ⊆ Z(1− e).
Since Z(e) and Z(1 − e) are neighborhoods of Z(f) and Z(1 − f),
respectively, we infer that e ∈ I and 1 − e ∈ M , by [10, Lemma 2.4].
Thus, M ∈ De ⊆ D(I) = G. Note that De is clopen, De = V1−e;
hence, we are done.

Finally, if we show that disjoint clopen sets in Mc(X) have disjoint
closures in Mc(X), then, by Proposition 3.2 and the comment following
Proposition 3.3, Mc(X), β0(Mc(X)) and β0(X) are all homeomorphic.
Toward this end, let U and W be two disjoint clopen sets in Mc(X).
Consequently, A = φ−1(U) and B = φ−1(W ) are disjoint clopen sets in
X, where φ is the above homeomorphism. Now, take e ∈ Cc(X) to be
the idempotent with A = Z(e) and B ⊆ Z(1− e). This implies that e
belongs to every element of U , and 1−e belongs to every element of W .
Thus, clMc(X) U ⊆ Ve, clMc(X) W ⊆ V1−e, and we are done.

Before giving the next remark we remind the reader that, if X is
zero-dimensional, then X is compact if and only if very maximal ideal
of Cc(X) (respectively, CF (X)) is fixed (note that its proof is identical
to [13, Proof of Theorem 4.11], see also [11, Theorem 3.8]).

Remark 3.7. In Remark 3.6, we have already shown that β0X and
Mc(X) are homeomorphic; hence, Cc(β0X) has a maximal ideal space
homeomorphic to β0X. If X is a zero-dimensional space and x ∈ X,
MF

x = Mx ∩ CF (X) is a maximal ideal of CF (X). Note that

f +MF
x −→ f(x)

is the unique isomorphism of CF (X)/MF
x onto R. It is also evident

that, in view of Proposition 3.2 (2), CF (X) ∼= CF (β0X). Using these
comments, we infer that, to consider the maximal ideal space of CF (X),
we may assume that X is compact. Now, it is evident that, if X is a
zero-dimensional compact space, the correspondence x → MF

x is a
homeomorphism from X onto Max(CF (X)), the maximal ideal space
of CF (X), also see Theorem 4.1, below. As a consequence, we observe
that Cc(X), CF (X), Cc(β0X) and C(β0X) all have the same maximal
ideal space homeomorphic to β0X.

4. Characterization of maximal ideals of Cc(X) and C∗
c (X).

In [11, Theorem 3.8], it is observed that X is compact if and only if
every ideal, or every prime (maximal) ideal, in Cc(X) or in CF (X) is
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fixed. If, in Proposition 3.2, we take T = β0X and, for each f ∈ CF (X),
put f = fβ0 , then we have the following characterization of maximal
ideals in CF (X), the counterpart of [13, Theorem 7.2].

Theorem 4.1. Each maximal ideal M in CF (X) is of a unique form

M = MFp = {f ∈ CF (X) : fβ0(p) = 0}, p ∈ β0X.

Proof. Merely apply [13, Proof of Theorem 7.2]. We should also
emphasize that MFp is fixed or free according to whether p ∈ X (in
which case, we put MFp = MF

p ) or p /∈ X. �

Note that, for each p ∈ β0X, there is a unique maximal ideal Mp
c in

Cc(X), where Mp
c = Z−1[Ap

c ]. The following fact, the proof of which
is exactly the same as the proof of the Gelfand-Kolmogoroff theorem,
shows that the counterpart of this theorem is also valid in Cc(X), see
[13, Theorem 7.3].

Theorem 4.2. The maximal ideals in Cc(X) are of the form

Mp
c = {f ∈ Cc(X) : p ∈ clβ0X Z(f)}, p ∈ β0X.

Moreover, Mp
c is fixed if and only if p ∈ X (in which case, we set

Mp
c = Mcp).

We recall that, if R is a subring of a commutative ring S and I is
an ideal in S, then the ideal I ∩ R is called the contraction of I in R,
and it is denoted by Ic. It is well known and easy to prove that every
minimal prime ideal P in R is a contraction of a minimal prime ideal, Q
say, in S (consider T = R \ P to be a multiplicatively closed set in S;
hence, there is a minimal prime ideal, say Q, in S with T ∩Q = ∅), i.e.,
P = Qc, also see [10, comment preceding Corollary 3.4]. Noting that
every minimal prime ideal in C(X) (respectively, in Cc(X)) is a z-ideal
in C(X) (respectively, a zc-ideal in Cc(X)), see [13, Theorem 14.7] and
[10, Corollary 3.4], respectively, the following fact can be considered
as an extension of the latter corollary.

Proposition 4.3.

(a) An ideal J in Cc(X) is a zc-ideal if and only if it is a contraction
of a z-ideal of C(X).
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(b) An ideal J in C∗
c (X) is an absolutely convex ideal if and only if

it is a contraction of an absolutely convex ideal of C∗(X).

Proof.

(a) Clearly, if J = Ic, where I is a z-ideal in C(X), then J is
evidently a zc-ideal in Cc(X).

Conversely, suppose that J is a zc-ideal of Cc(X), and set

I = {f ∈ C(X) : Z(g) ⊆ Z(f) for some g ∈ J}.

Clearly, I is a z-ideal in C(X) and J ⊆ Ic. On the other hand, if
f ∈ Ic, then there exists a g ∈ J with Z(g) ⊆ Z(f). Inasmuch as J is
a zc-ideal, we infer that f ∈ J ; hence, we are done.

(b) Take

I = {f ∈ C∗(X) : |f | ≤ |g| for some g ∈ J}.

Clearly, I is an ideal in C∗(X). In fact, whenever f ∈ I and h ∈ C∗(X),
then there exist K ∈ N and g ∈ J such that |h| ≤ K and |f | ≤ |g|.
Thus, |fh| ≤ K|g| = |Kg| implies that fh ∈ I, for Kg ∈ J .
Whenever J is proper, then I is too, and it is easily seen that I is
absolutely convex containing J and J = I ∩ C∗

c (X). �

Remark 4.4. The socle of Cc(X), denoted Soc(Cc(X)), which is the
sum of minimal ideals of Cc(X), is fully studied and topologically
characterized in [11]. It is observed that Soc(Cc(X)) is a zc-ideal.
Consequently, by Proposition 4.3 and in view of [11, Proposition 5.3],
whenever Soc(Cc(X)) ̸= 0, there is a z-ideal I in C(X) with 0 ̸= f ∈ I
such that cozf = X \ Z(f) is a subset of a finite union of mutually
disjoint clopen connected subsets of X, also see [17, Proposition 5.2].

Corollary 4.5. An ideal P in Cc(X) is a prime zc-ideal if and only if
it is a contraction of a prime z-ideal in C(X).

Proof. Let P be a prime zc-ideal. Consider S = Cc(X) \ P as a
multiplicatively closed set in C(X). From Proposition 4.3, P is a
contraction of a z-ideal in C(X), I say. Clearly, I ∩ S = ∅; hence,
there exists a prime ideal Q in C(X) minimal over I with Q ∩ S = ∅.
We recall that, in view of [13, Theorem 14.7], Q is a z-ideal. It is clear
that P = Ic ⊆ Qc ⊆ P ; hence, P = Qc, and we are done. The converse
is evident. �
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Corollary 4.6. Every maximal ideal N of Cc(X) is a contraction of a
maximal ideal in C(X). Moreover, if N = M c, where M is a maximal
ideal in C(X), then N is fixed if and only if M is fixed and, if M is
real, then so, too, is N .

Proof. Let N be a maximal ideal in Cc(X). Since N is a zc-ideal,
see [10, Remark 2.12], we infer that N = Ic, where I is a z-ideal in
C(X), Proposition 4.3 (a). However, there is a maximal ideal M in
C(X) containing I. Hence, N = Ic ⊆ M c implies that N = M c, and
we are done. For the last part, it may easily be noted that N is fixed if
and only M is fixed as well, by Remark 3.5. Finally, if M is real, then
the monomorphism

φ :
Cc(X)

N
−→ C(X)

M
,

where φ(f +N) = f +M , completes the proof. �
Next, we give a second representation of the maximal ideals of

Cc(X). Before doing so, we record some general facts in the following
remark.

Remark 4.7. Let A be an R-subalgebra as well as a sublattice of
C(X). Define an ideal I in A to be a zA-ideal if, whenever f ∈ I and
Z(f) ⊆ Z(g), where g ∈ A, then g ∈ I. It is clear that every zA-
ideal is absolutely convex. It is also trivial to see that every maximal
ideal in A is zA-ideal; hence, it is absolutely convex. Many results
concerning some appropriate ideals in C(X) remain valid in A, for
example, a basic fact, namely, [13, Theorem 2.9], is also true for zA-
ideals in A. Consequently, every prime ideal in A is contained in a
unique maximal ideal in A. Or, if P is a prime ideal in A which is
minimal over a zA-ideal I in A, then P is a zA-ideal, too, see [13,
Theorem 14.7]. Moreover, if A ⊆ B are two R-subalgebras as well as
sublattices of C(X), then an ideal I in A is a zA-ideal, a prime zA-ideal,
if and only if it is a contraction of a zB-ideal, a prime zB-ideal, in B,
respectively. It is clear that, with regards to the previous results, the
subalgebras A and B can be taken to be any two of the subalgebras R,
C∗(X), Cc(X), C∗

c (X), CF (X) and Lc(X), of C(X), as long as A ⊆ B.
For the definition and properties of Lc(X), see [17].

Every maximal ideal of C(X) is of the form Mp, p ∈ βX, and
every maximal ideal of Cc(X) is of the form Mp

c , where p ∈ β0X, by
Theorem 4.2. Now, using Corollary 4.6, for each p ∈ β0X, there exists
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a point πp ∈ βX such that Mp
c = Mπp ∩ Cc(X). This means that,

whenever f ∈ Cc(X), then p ∈ clβ0X Z(f) if and only if πp ∈ clβX Z(f).
We note that if, for some p ∈ β0X, the corresponding point πp ∈ βX
is not unique, we may always choose πp ∈ βX to be a unique point
in βX corresponding to each point p ∈ β0X. Hence, we have the next
representation for the maximal ideals of Cc(X) as well.

Theorem 4.8. Every maximal ideal of Cc(X) is precisely of the form

Mp
c = {f ∈ Cc(X) : πp ∈ clβX Z(f)}, p ∈ β0X.

In view of Proposition 4.3 (b) and the fact that maximal ideals in
C∗

c (X) are absolutely convex, we have the next immediate result.

Proposition 4.9. Every maximal ideal of C∗
c (X) is a contraction of a

maximal ideal in C∗(X).

For each p ∈ βX, set

Tp = {q ∈ βX : M∗p ∩ C∗
c (X) = M∗q ∩ C∗

c (X)}.

Now, for each p ∈ βX, take a fixed qp ∈ Tp, and put

T = {qp ∈ Tp : p ∈ βX}.

Therefore, the set of all maximal ideals of C∗
c (X) exactly coincides with

{M∗qp∩C∗
c (X) : qp ∈ T}. Using these facts, we obtain a representation

for maximal ideals of C∗
c (X) as follows:

Corollary 4.10. Maximal ideals of C∗
c (X) are precisely of the form

M∗q
c = {f ∈ C∗

c (X) : fβ(q) = 0}, q ∈ T.

As in C(X), and similar to the ideals Op, p ∈ βX, for each p ∈ β0X,
we define

Op
c = {f ∈ Cc(X) : p ∈ intβ0X clβ0X Z(f)}.

In the next lemma, we cite some facts concerning maximal ideals and
the ideals Op

c , p ∈ β0X, in Cc(X) as counterparts of [13, 7.12(a),(b),
Theorems 7.13, 7.15]. The corresponding proofs, which may be exactly
applied for the proofs of these facts, are also left to the reader.
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Lemma 4.11. Let X be a zero-dimensional space. The following state-
ments hold.

(1) For p ∈ β0X, f ∈ Op
c if and only if there is a clopen subset V of

β0X containing p such that V ∩X ⊆ Z(f).
(2) For p ∈ β0X, f ∈ Op

c if and only if fg = 0 for some g /∈ Mp
c .

(3) An ideal I in Cc(X) is contained in a unique maximal ideal Mp
c

for some p ∈ β0X if and only if Op
c ⊆ I.

(4) Every prime ideal P in Cc(X) contains Op
c for a unique p ∈ β0X,

and Mp
c is the unique maximal ideal containing P .

(5) In (4), the prime ideal P can be replaced by a primary ideal Q,
also see [1, Remark 2.9].

Remark 4.12. By Theorem 4.2, p ∈ clβ0X Z(g) if and only if g ∈ Mp
c ,

where g ∈ Cc(X). Consequently, if f, g ∈ Cc(X), then clβ0X Z(f) is a
neighborhood of clβ0X Z(g) if and only if f ∈ Op

c whenever g ∈ Mp
c ,

see [13, 7.14]. Moreover, clβ0X Z(f) is a neighborhood of clβ0X Z(g) if
and only if there exists an h ∈ Cc(X) with Z(g) ⊆ X \ Z(h) ⊆ Z(f).
In order to see this, it suffices to invoke Proposition 3.2 and apply the
proof of [13, Theorem 7.14].

For p ∈ X, the ideal Op consists of elements f ∈ C(X) such
that Z(f) is a neighborhood of p, and Mp is the only maximal ideal
containing Op, see [13, 4I]. In [3, Theorem 2.4], it is shown that X is a
zero-dimensional space (respectively, strongly zero-dimensional space)
if and only if, for each p ∈ X, the ideal Op is generated by a set of
idempotents (respectively, for each p ∈ βX, the ideal Op is generated
by a set of idempotents). Using Lemma 4.11 (1), we obtain the next
result, which is the counterpart of the above facts.

Proposition 4.13. Let X be a zero-dimensional space. Then, for each
p ∈ β0X, the ideal Op

c is generated by a set of idempotents in Cc(X).

Proof. For each p ∈ β0X, let Bp be a local base at p consisting
entirely of clopen sets. For each V ∈ Bp, define the idempotent
ev ∈ Cc(X) with ev = 0 on V ∩ X and ev = 1 on X \ V . Now, it
is clear that Op

c is generated by the set {ev : V ∈ Bp}. In fact, each
ev belongs to Op

c and, whenever f ∈ Op
c , then there is a V ∈ Bp such

that Z(ev) = V ∩ X ⊆ Z(f), by Lemma 4.11 (1). Thus, Z(f) is a
neighborhood of Z(ev) and, in view of [10, Lemma 2.4], we infer that
f = gev for some g ∈ Cc(X), and we are through. �
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We should emphasize here that the above proof, in fact, proves the
next result, which asserts the validity of a stronger property than the
fact that Op

c is merely generated by idempotents.

Corollary 4.14. Given p ∈ β0X and f ∈ Op
c , where X is zero-

dimensional, there exists an idempotent e ∈ Op
c and g ∈ Cc(X) such

that f = eg.

5. When are the localization of Cc(X) at its prime ideals
uniform? We recall that a completely regular Hausdorff space X is
called an F -space if each ideal Op, p ∈ βX, is a prime ideal of C(X).
In [1, Proposition 2.5], it is observed that X is an F -space if and only
if C(X) is locally a domain. It is very easy to see that a commutative
reduced ring R is a domain if and only if it is a uniform ring (a ring
is uniform if its nonzero ideals mutually intersect non-trivially), also
see [1, Proposition 2.5]. Motivated by the latter simple fact and in
order to answer the question, it is natural that we study and determine
spaces X for which Cc(X) is locally a domain (Cc(X)P is reduced). We
similarly call a space X (not necessarily zero-dimensional) an Fc-space
if every localization Cc(X)P of Cc(X) at a prime ideal P is a domain.
It is clear that an Fc-space may not be an F -space; for example, take
X to be a connected Tychonoff space which is not an F -space (X can
be any connected metric space).

Our main aim in this section is to study and characterize Fc-
spaces. Similarly to the characterization of F -spaces, we shall first
give several algebraic and topological characterizations of Fc-spaces,
see [13, Theorem 14.25]. Toward this end, we also need the following
facts which are the counterparts of [13, Lemma 14.21, Corollary 14.22,
Lemma 14.23]. We recall that, if I is an ideal in a commutative ring R,
then, for each a ∈ R, the element a+ I ∈ R/I is denoted by a.

Lemma 5.1. Let f ∈ Cc(X), (f, |f |) be a principal ideal in Cc(X)/I,
where I is an ideal in Cc(X). Then, there exists a zero-set Z ∈ Zc[I]
such that Z ∩ pos f and Z ∩ neg f are contained in two disjoint clopen
sets in X.

Proof. Using the same proof as [13, Proof of Lemma 14.21], two
disjoint zero-sets Z1, Z2 ∈ Zc[X] and Z ∈ Zc[I] may be found such
that Z ∩ pos f ⊆ Z1 and Z ∩ neg f ⊆ Z2. From Proposition 3.2,
clβ0X Z1 ∩ clβ0X Z2 = ∅. Since β0X is compact, clβ0X Z1 and clβ0X Z2

are also compact; hence, they are contained in two disjoint clopen
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subsets of β0X (any two disjoint compact sets in a zero-dimensional
space are contained in two disjoint clopen sets), and we are done. �

From Lemma 5.1, the next corollary is now immediate, also see [13,
Corollary 14.22].

Corollary 5.2. The following statements are equivalent for any f ∈
Cc(X).

(1) pos f and neg f are contained in two disjoint clopen subsets in
X.

(2) There exists a unit u ∈ Cc(X) such that |f | = uf .
(3) (f, |f |) is a principal ideal of Cc(X).

If we consider the “order” defined in [13, Theorem 5.2] on Cc(X)/I,
where I is a zc-ideal in Cc(X), then, similar to the result [13, 5.4(a)],
it is easy to see that, in the factor ring Cc(X)/I, we have f ≥ 0, where
f ∈ Cc(X), if and only if f is nonnegative on some element of Zc[I].
We apply this fact in the proof of the following result.

Lemma 5.3. Let I be a zc-ideal of Cc(X) containing Op
c , where

p ∈ β0X. If the ideal (f, |f |) in Cc(X)/I is principal for every
f ∈ Cc(X), then I is prime.

Proof. We follow the proof of [13, Lemma 14.23]. In view of
Lemma 5.1, there exists a Z ∈ Zc[I] such that Z ∩ pos f and Z ∩ neg f
are contained in two disjoint clopen sets, say U and V , respectively;
hence, by Proposition 3.2, clβ0X U ∩ clβ0X V = ∅. Therefore, there
exists a Z ′ ∈ Zc[O

p
c ] disjoint from Z ∩ neg f , say. Evidently, f is non-

negative on Z ∩ Z ′ ∈ Zc[I], and this means that f ≥ 0 in Cc(X)/I.
Hence, Cc(X)/I is a totally ordered ring, and, since I is a zc-ideal, it is
a prime ideal, in view of [10, Theorem 2.13]. The fact in [13, 5.4(c)]
is also valid in the context of Cc(X). �

The following proposition is needed in the sequel.

Proposition 5.4. Let I be an ideal in Cc(X). Then

I =
∩

p∈β0X

(I +Op
c ).
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Proof. Obviously,

I ⊆
∩

p∈β0X

(I +Op
c ).

For the reverse inclusion, we take

f ∈
∩

p∈β0X

(I +Op
c ).

For each p ∈ β0X, there exists a gp ∈ I such that f − gp ∈ Op
c . If we

set Zp = Z(f − gp), then p ∈ intβ0X clβ0X Zp. The collection

C = {intβ0X clβ0X Zp : p ∈ β0X}

is an open cover of β0X. Therefore, there exists a finite subcover whose
union is β0X, say

β0X =
n∪

i=1

intβ0X clβ0X Zpi .

Since β0X is zero-dimensional and compact, we easily infer that
there exists a finite collection of disjoint clopen sets in β0X, say
{O1, . . . , Om}, which covers β0X and is a refinement of the lat-
ter subcover. For each 1 ≤ s ≤ m, choose gps such that Os ⊆
intβ0X clβ0X Z(f − gps). For each 1 ≤ s ≤ m, Vs = Os ∩X is clopen in
X and {V1, . . . , Vm} covers X. Since, for i ̸= j, Vi ∩ Vj = ∅, it is easy
to see that

f =

m∑
s=1

esgps ,

where es is the idempotent in Cc(X) with e−1
s ({1}) = Vs (eser = 0

where r ̸= s). Thus, f ∈ I, and we are finished. �

The next proposition is necessary for the characterization of Fc-
spaces.

Proposition 5.5. Let X be a zero-dimensional space.

(1) If the idempotents in C(X \ Z(f)), where f ∈ Cc(X), are
extendable to the idempotents in C(X), then, for each g ∈ Cc(β0X), the
idempotents in C(β0X \ Z(g)) are also extendable to the idempotents
in C(β0X).
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(2) If, for each g ∈ Cc(β0X), pos g and neg g are contained in two
disjoint clopen sets in β0X, then, for each f ∈ Cc(X), pos f and neg f
are also contained in two disjoint clopen sets in X.

Proof.

(1) Let g ∈ Cc(β0X), and consider the restriction f = g|X ∈ Cc(X).
Take

h : β0X \ Z(g) −→ {0, 1}

to be a nontrivial idempotent. Hence, the idempotent

h|X\Z(f) : X \ Z(f) −→ {0, 1}

has an extension to an idempotent in C(X), by our hypothesis, and
hence, to an idempotent in C(β0X), say

H : β0X −→ {0, 1},

by Proposition 3.2 (X \Z(f) = (β0X \Z(g))∩X and X \Z(f) is dense
in β0X \ Z(g)). Evidently, H|β0X\Z(g) = h; hence, we are done.

(2) Let f ∈ Cc(X). From Lemma 2.2, there exist two sequences of
clopen sets {Un : n ∈ N} and {Vn : n ∈ N} such that

pos f =

∞∪
n=1

Un, neg f =

∞∪
n=1

Vn,

and clearly, Un ∩ Vm = ∅, for each m,n ∈ N. Hence, clβ0X Un ∩
clβ0X Vm = ∅, for all m,n ∈ N. In addition, the collections

{clβ0X Un : n ∈ N} and {clβ0X Vn : n ∈ N}

are sequences of clopen sets in β0X, by Proposition 3.2. Now, in view
of Lemma 2.2 (b), there exists a g ∈ Cc(β0X) such that

pos g =

∞∪
n=1

clβ0X Un

and

neg g =

∞∪
n=1

clβ0X Vn.

Hence, by our hypothesis, there exist clopen sets U and V in β0X such
that pos g ⊆ U and neg g ⊆ V . Take U1 = X ∩ U and V1 = X ∩ V .
Clearly, pos f ⊆ U1 and neg f ⊆ V1. Hence, we are done. �
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Proposition 5.5 (1) and Proposition 2.1 immediately yield the fol-
lowing corollary.

Corollary 5.6. If the idempotents in C(X \Z(f)), where f ∈ Cc(X),
are extendable to the idempotents in C(X), then X \Z(f) (respectively,
β0X \ Z(h), where h ∈ Cc(β0X)) is CF -embedded in X (respectively,
CF -embedded in β0X). Moreover, if g ∈ CF (X \ Z(f)) (or g ∈
CF (β0X \ Z(h))), then there is an extension g ∈ CF (X) (or g ∈
CF (β0X \ Z(h))) of g such that g and g have the same image.

Now, we are ready to give some algebraic and topological character-
izations of Fc-spaces. We remind the reader that, if P is a prime ideal
minimal over a zc-ideal I, then P is a zc-ideal, too, see Remark 4.7,
[10, Corollary 3.4] and [13, Theorem 14.7]. We also recall that an
ideal I in a commutative ring R is pseudoprime if, for each a, b ∈ R
with ab = 0, then either a ∈ I or b ∈ I. Next, we note that, whenever
f ∈ Cc(X) with |f | ≤ 1, then

∞∑
n=1

2−n|f |1/n

belongs to Cc(X). Using the latter fact, it is shown in [10, Theo-
rem 3.10] that any ideal and its radical in Cc(X) have the same largest
zc-ideal. Applying this fact and the proof of [12, Theorem 4.1], it is
easily seen that an ideal I in Cc(X) is pseudoprime if and only if it
contains a prime ideal of Cc(X).

For each prime ideal P in Cc(X), put

OP = {f ∈ Cc(X) : fg = 0 for some g /∈ P}.

Thus, in view of Lemma 4.11 (2), we have Op
c = OMp

c
for all p ∈ β0X,

also see [1, comment preceding Theorem 2.12]. Consequently, we im-
mediately have the following result which is the counterpart of [1,
Lemma 2.1].

Lemma 5.7. Let X be zero-dimensional. Then, for every p ∈ β0X,
Cc(X)/Op

c
∼= Cc(X)Mp

c
. In particular, Op

c is prime if and only if
Cc(X)Mp

c
is a domain.

In view of [1, Corollary 2.4, Proposition 2.5], [10, Theorem 2.13]
and Lemma 5.7, the following result is now immediate.
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Corollary 5.8. Let X be a zero-dimensional space. Then, the following
statements are equivalent.

(1) X is an Fc-space.
(2) Op

c is a prime ideal in Cc(X) for all p ∈ β0X.
(3) Given p ∈ β0X and f ∈ Cc(X), there is a zero-set of Op

c on
which f does not change sign.

(4) Cc(X)M is a domain for all maximal ideals M of Cc(X).
(5) Every prime ideal of Cc(X) contains a unique minimal prime

ideal.
(6) Cc(X) is locally uniform, i.e., for any prime ideal P in Cc(X),

any two nonzero ideals in Cc(X)P intersect non-trivially.

The following characterization of Fc-spaces is the counterpart of [13,
Theorem 14.25] and, although its proof is nearly identical, we present
one here for the sake of completeness.

Theorem 5.9. For every zero-dimensional space X, the following
statements are equivalent.

(1) X is an Fc-space.
(2) The prime ideals of Cc(X) contained in any given maximal ideal

of Cc(X) form a chain.
(3) Each ideal of Cc(X) is an intersection of pseudoprime ideals.
(4) Each principal ideal of Cc(X) is an intersection of pseudoprime

ideals.
(5) For all f ∈ Cc(X), the ideal (f, |f |) is principal.
(6) For each f ∈ Cc(X), there exists a unit u ∈ Cc(X) such that

f = u|f |.
(7) For each f ∈ Cc(X), pos f and neg f are contained in two

disjoint clopen sets in X.
(8) For each f ∈ Cc(X), X \ Z(f) is CF -embedded in X.
(9) β0X is an Fc-space.

Proof.

(1) ⇒ (2). From Corollary 5.8 (2), Op
c is a prime ideal. Consequent-

ly, the prime ideals in Cc(X) containing Op
c are comparable, see [10,

Corollary 3.8]. This implies that the prime ideals of Cc(X)Mp
c
, where

p ∈ β0X, form a chain, by Lemma 5.7. The latter fact, in turn, implies
that the prime ideals in the maximal ideal Mp

c form a chain, too.
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(2) ⇒ (3). First, we recall that the localization of any commutative
reduced ring is reduced. Thus, Cc(X)Mp

c
is a reduced ring, which means

the intersection of its prime ideals is zero. By our assumption, the
prime ideals of Cc(X)Mp

c
form a chain; hence, their intersection is a

prime ideal. This implies that the zero ideal in Cc(X)Mp
c
, which is the

intersection of the prime ideals of Cc(X)Mp
c
, must be a prime ideal, i.e.,

Cc(X)Mp
c
is a domain. Thus, from Lemma 5.7, we infer that Op

c is a
prime ideal for all p ∈ β0X. Now, let I be any ideal of Cc(X), then by
the last part of the comment following Corollary 5.6, we note that I+Op

c

is a pseudoprime ideal for each p ∈ β0X. Thus, by Proposition 5.4, we
are done.

(3) ⇒ (4). Evident.

(4) ⇒ (5). For each f ∈ Cc(X), (|f |) is an intersection of pseudo-
prime ideals, by our assumption. Since (f − |f |)(f + |f |) = 0, either
f − |f | or f + |f | belongs to each pseudoprime ideal containing |f |. In
any case, f belongs to each pseudoprime ideal containing (|f |), which
implies that f ∈ (|f |). Hence, (f, |f |) = (|f |).

(5) ⇒ (6) ⇒ (7). Evident, by Corollary 5.2.

(7) ⇒ (8). In view of Corollary 5.6, it suffices to show that the idem-
potents in C(X \ Z(f)) can be extended to idempotents in C(X). For
the proof of this part, we follow the proof of [13, (4) ⇒ (6), Theorem
14.25]. Let e ∈ C(X \ Z(f)) be a nontrivial idempotent. Set A =
e−1({1}), B = e−1({0}) and define g ∈ CF (X \ Z(f)) with g(A) = 1
and g(B) = −1. Define the real function h as follows:

h(x) =

{
0 x ∈ Z(f),

g(x)|f(x)| x ∈ X \ Z(f).

Clearly, h(X) is countable and, since g is bounded on X \Z(f), we infer
that h is continuous, also see [13, Proof of Theorem 5.5]; hence, h ∈
Cc(X). It is clear that A = posh and B = neg h. By our assumption, A
and B are contained in two disjoint clopen sets U, V in X, respectively.
Now, we may define the idempotent e∗ ∈ C(X) with U = e∗−1({1})
and X \ U = e∗−1({0}) which evidently extends e.

(8) ⇒ (9). First, in view of Corollary 5.6, note that (8) is still valid
if we replace X by β0X. Clearly, for every f ∈ Cc(X), X \ Z(f) =
pos f ∪ neg f . Hence, we may define the idempotent e ∈ C(X \ Z(f))
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with e−1({1}) = pos f and e−1({0}) = neg f . Thus, by our assumption,
the idempotent e can be extended to an idempotent e ∈ C(X). This
shows that pos f and neg f are contained in two disjoint clopen sets
in X. Consequently, in view of Corollary 5.2, Lemma 5.3, we infer
that Op

c is prime, which, in turn, implies that X is an Fc-space, by
Corollary 5.8. Incidentally, from our observations at the beginning of
this proof, we have already shown that β0X is also an Fc-space.

(9) ⇒ (1). Since β0X is an Fc-space, part (7) of this theorem is also
valid if we replace X by β0X. Now, in view of Proposition 5.5, part (7)
still remains valid for X; hence, part (8) is valid for X. Consequently,
from what we have shown in the proof of (8) ⇒ (9), X is an Fc-space.
The proof is finished. �

6. Fc-spaces versus F -spaces. In the next result, we observe that
in the class of strongly zero-dimensional spaces, Fc- and F -spaces
coincide.

Proposition 6.1. Let X be a strongly zero-dimensional space. Then,
X is an Fc-space if and only if it is an F -space.

Proof. First suppose that X is an Fc-space and f ∈ C(X). In
order to see that X is an F -space, it suffices to show that pos f and
neg f are completely separated, by [13, Theorem 14.25]. In light of
Proposition 2.4, there exist u, v ∈ Cc(X) such that Z(|f |+ f) = Z(u)
and Z(|f | − f) = Z(v). Define h = u2 − v2 ∈ Cc(X). Since Z(u) ∪
Z(v) = X, we have

pos f = X \ Z(u) ⊆ posh

and

neg f = X \ Z(v) ⊆ neg h.

However, by Theorem 5.9, posh and neg h are contained in two disjoint
clopen sets in X. Consequently, pos f and neg f are also contained in
these two disjoint clopen sets; hence, they are completely separated.
Conversely, let X be an F -space. Since X is strongly zero-dimensional,
βX = β0X. Thus, Op

c = Op∩Cc(X) for each p ∈ βX = β0X. However,
Op is prime in C(X) for each p ∈ βX; hence, Op

c is also prime in Cc(X)
for each p ∈ β0X, i.e., X is an Fc-space. �
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It is well known that a zero-dimensional Lindelöf space is normal and
strongly zero-dimensional; Remark 2.5 provides a simple proof. From
Proposition 6.1 and Theorem 5.9, the next fact is now immediate.

Corollary 6.2. Let X be a zero-dimensional Lindelöf Fc-space. Then,
X is an F -space and β0X = βX is an F -space as well as an Fc-space.

Before presenting the next proposition, we observe that Theorem 5.9
and Proposition 6.1 immediately imply that a zero-dimensional spaceX
is an Fc-space if and only if β0X is both an F -space and an Fc-space.
Note that a zero-dimensional compact space (and a Lindelöf space) is
strongly zero-dimensional.

Proposition 6.3. Let Y be a Lindelöf subspace of a zero-dimensional
Fc-space X. Then, Y is CF -embedded in X. In particular, Y is an
Fc-space as well as an F -space.

Proof. With the aid of Proposition 2.1, in order to show that Y is
CF -embedded in X, it suffices to show that every idempotent e ∈ C(Y )
can be extended to an idempotent of C(X). Set A = e−1({1}) and
B = e−1({0}). Clearly, A and B are disjoint clopen subsets of Y .
For every p ∈ A, let U(p) be a clopen neighborhood of p in X
such that U(p) ∩ B = ∅. Similarly, for every q ∈ B, let V (q) be
a clopen neighborhood of q in X with V (q) ∩ A = ∅. Note that A
and B are Lindelöf subspaces of Y , and also of X. Hence, there are
countable subcovers, say {Un : n ∈ N} and {Vn : n ∈ N}, of the
covers {U(p) : p ∈ A} of A and {V (q) : q ∈ B} of B, respectively.

Inductively, we may define Ũ1 = U1, Ṽ1 = V1, Ũn = Un \ (V1∪· · ·∪Vn),

Ṽn = Vn \ (U1 ∪ · · · ∪ Un) for n ≥ 2. For each n ≥ 1, Ũn and Ṽn are
clopen subsets of X. Finally, define

Ũ =

∞∪
n=1

Ũn and Ṽ =

∞∪
n=1

Ṽn.

It is easy to see that Ũ ∩ Ṽ = ∅, A ⊆ Ũ and B ⊆ Ṽ . Now, by Lemma

2.2, there exists an f ∈ Cc(X) such that Ũ = pos f and Ṽ = neg f .
Since X is an Fc-space, there exist two disjoint clopen subsets W1 and
W2 of X with A ⊆ pos f ⊆ W1 and B ⊆ neg f ⊆ W2, by Theorem 5.9.
Now, define the idempotent e ∈ C(X) with W1 = e−1({1}) and
W2 = e−1({0}), which extends the idempotent e.
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For the proof of the final part, we first note that Y is CF -embedded
in β0X since we have already shown that Y is CF -embedded in X and,
in turn, X is CF -embedded in β0X, by Proposition 3.2. This implies
that clβ0X Y = β0Y (clβ0X Y as a subspace of β0X is a compact zero-
dimensional space and Y is dense in clβ0XY , too). Now, we note that
β0Y as a closed subspace of β0X is C∗-embedded in it. Hence, by [13,
14.26], we infer that β0Y as a C∗-embedded subspace of the F -space
β0X is an F -space (from the comment preceding Proposition 6.3, β0X
is both an F - and an Fc-space). However, in view of the last part of
Remark 2.5, Y is strongly zero-dimensional; hence, βY = β0Y is also
an F -space. This means that Y is an F -space, by [13, Theorem 14.25],
which, in turn, implies that Y is also an Fc-space, by Proposition 6.1.
Hence, we are finished. �

Motivated by the above proof, we now record the following three
facts.

Proposition 6.4. If Y is a CF -embedded subspace of a zero-dimen-
sional space X, then clβ0X Y = β0Y . In particular, if X is an Fc-space,
then Y is also an Fc-space.

Proof. We have already shown in the previous proof that clβ0X Y =
β0Y . Finally, if X is an Fc-space then so too is β0X, by Theorem 5.9
and it is also an F -space by Proposition 6.1 (note that β0X as a
compact zero-dimensional space is strongly zero-dimensional). Since
clβ0X Y = β0Y is closed in β0X, we infer that β0Y is C∗-embedded in
the compact space β0X. Hence, by [13, 14.26], β0Y is an F -space and,
in view of Proposition 6.1, it is also an Fc space. This implies that Y
is also an Fc-space as well, by Theorem 5.9. �

Proposition 6.4 and Theorem 5.9 (8) immediately yield the next fact.

Corollary 6.5. Let X be a zero-dimensional Fc-space. Then, for any
f ∈ Cc(X), X \Z(f) is also an Fc-space. In particular, pos f and neg f
are Fc-spaces.

It is well known that, if X is a locally compact F -space, then βX \X
is also an F -space, see [13, 14O(3)]. The next result is its counterpart.

Corollary 6.6. Let X be a zero-dimensional Fc-space. Then, every
closed subset of β0X (if X is locally compact, β0X \ X is a closed
subset of β0X) is both an F - and an Fc-space.
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Proof. First, note that β0X is an Fc-space, by Theorem 5.9; hence,
it is an F -space, by Proposition 6.1. Since every closed subspace of
β0X is C∗-embedded in β0X, we infer that it is an F -space, by [13,
14.26], which is also an Fc-space by Proposition 6.1. �
Remark 6.7. Recall that a space X is basically (extremally) discon-
nected if every cozero-set (open set) has an open closure. It is well
known that every basically disconnected space is zero-dimensional, see
[13, 16O]. Hence, whenever X is basically disconnected, then, for ev-
ery f ∈ Cc(X), clX pos f is clopen. If we define a function u such that
u(clX pos f) = 1 and u(X \ clX pos f) = −1, then u is a unit of Cc(X)
and, clearly, f = u|f | (clX pos f ∩ neg f = ∅). Now, using Theorem
5.9 (6), we conclude that every basically disconnected space is an Fc-
space. The converse is not true, in general. For example, βN \ N is an
Fc-space (βN \ N is, in fact, an F -space, see [13, 14O(3)], and, since
βN \ N is strongly zero-dimensional, it is also an Fc-space, by Propo-
sition 6.1). However, βN \ N is not basically disconnected, see [13,
6W(3)].

In the next result, we show that every Fc-space satisfying the
countable chain condition is extremely disconnected, and hence, it is
an F -space, see [19, 6L(8)]. Recall that a topological space X satisfies
the countable chain condition if every family of pairwise disjoint open
subsets of X is countable.

Proposition 6.8. Let X be a zero-dimensional Fc-space which satisfies
the countable chain condition. Then, it is extremely disconnected.

Proof. Let U and V be two disjoint open subsets of X. It suffices
to show that clX U ∩ clX V = ∅. Since X satisfies the countable
chain condition, there exist countable families {Un : n ∈ N} and
{Vn : n ∈ N} of pairwise disjoint clopen sets such that

∪
i∈N Ui and∪

i∈N Vi are dense in U and V , respectively (we may consider a maximal
collection of mutually disjoint clopen sets in U, V , respectively). Now,
by Lemma 2.2, there exist f, g ∈ Cc(X) such that∪

i∈N
Ui = X \ Z(f)

and

∪
i∈N

Vi = X \ Z(g).
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Clearly, Z(f) ∪ Z(g) = X. We define, h = f2 − g2; hence, X \ Z(f) ⊆
posh and X \Z(g) ⊆ neg h. Since X is an Fc-space, there exist disjoint
clopen sets A,B in X with posh ⊆ A and neg h ⊆ B, by Theorem 5.9.
It is clear that we must have U ⊆ A (otherwise, U ∩ (X \A) ̸= ∅, which
contradicts the density of X \ Z(f) in U) and V ⊆ B. Consequently,
clX U ⊆ A and clX V ⊆ B; hence, clX U ∩ clX V = ∅, and we are
done. �

We digress for a moment and refer the reader to [21, Theorem 3.31]
for the definition of the DuBois-Reymond separability and its connec-
tion to the F -space N∗ = βN \ N. In particular, in [21, Proposi-
tion 2.23], it is shown that the Boolean algebra of clopen subsets of a
zero-dimensional compact F -space X is a DuBois-Reymond separabil-
ity. We noted earlier that, for every f ∈ Cc(X), there exist increasing
sequences {Un : n ∈ N} and {Vn : n ∈ N} of clopen sets such that
pos f =

∪∞
n=1 Un, neg f =

∪∞
n=1 Vn, see Lemma 2.2. Using this fact,

Theorem 5.9, and [21, Proof of Proposition 2.23], we may record the
next fact as well.

Proposition 6.9. Let X be a zero-dimensional space. Then, the
Boolean algebra of clopen subsets of X is DuBois-Reymond separable if
and only if X is an Fc-space.

In view of Propositions 6.1 and 6.9, it may be observed that the
converse of [21, Proposition 2.23], in the following sense, is also true.

Proposition 6.10. If the Boolean algebra of clopen subsets of a
strongly zero-dimensional space X is DuBois-Reymond separable, then
X is an F -space.

In view of Proposition 6.3 and the fact that no point of an F -space
is a limit of a sequence of distinct points, see [13, 14N], we have the
following two facts.

Corollary 6.11. No point of a zero-dimensional Fc-space is the limit
of a sequence with distinct points.

Corollary 6.12. In a zero-dimensional Fc-space X, any point with
a countable base of neighborhoods is isolated. In particular, any first
countable subspace of X, e.g., any metrizable subspace, is discrete.
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We remind the reader that a topological space X (not necessarily
zero-dimensional) is called a CP -space in [10] if Cc(X) is a regular ring
(von Neumann). In [10, Theorem 5.5], it is shown thatX is a CP -space
if and only if Z(f) is open for each f ∈ Cc(X). In [10, Proposition 5.3,
Corollary 5.7], it is shown that any P -space is a CP -space, and, when
X is zero-dimensional, the converse is also true.

The next fact is the counterpart of [13, 14Q], and its proof is almost
identical.

Proposition 6.13. Let X and Y be two zero-dimensional spaces. If
X × Y is an Fc-space, then either X or Y is a P -space.

Proof. Suppose, on the contrary, that neither X nor Y is a P -space,
and seek a contradiction. Since X and Y are both zero-dimensional,
neither of them is a CP -space by the above comment. This implies that
there are f ∈ Cc(X), g ∈ Cc(Y ) such that neither Z(f) nor Z(g) is an
open set in X and in Y , respectively. We should emphasize here that,
without loss of generality, both functions f and g can be taken to be
non-negatives. Since Z(f) is not open and X = Z(f)∪ clX(X \Z(f)),
we infer that there exists a p ∈ Z(f) ∩ clX(X \ Z(f)). Similarly, there
exists a q ∈ Z(g) ∩ clX(X \ Z(g)). We may now define the continuous
function

h : X × Y −→ R

by h(x, y) = f(x) − g(y), for each (x, y) ∈ X × Y . Note that (p, q) ∈
clX×Y posh and also (p, q) ∈ clX×Y neg h. Consequently, posh and
neg h cannot be contained in two disjoint clopent sets. Therefore, X×Y
is not an Fc-space, by Theorem 5.9 (7), the desired contradiction. �

7. Cc(X) as a Bézout ring. Finally, we conclude this article with
some miscellaneous facts for Cc(X) concerning Fc-spaces. First, we
recall the following fact for commutative Bézout rings R, i.e., every
finitely generated ideal in R is principal, which is merely a variant of
[13, 14L].

Lemma 7.1. Let R be a commutative Bézout ring. Then, the prime
ideals inside a proper ideal of R are comparable. In particular, for any
prime ideal P in R, the prime ideals of RP form a chain.

Corollary 7.2. Let Cc(X) be a Bézout ring. Then, the following
statements hold.
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(1) Cc(X)M is a valuation domain, where M is a maximal ideal of
Cc(X).

(2) The primary ideals of Cc(X) inside any maximal ideal of Cc(X)
form a chain.

(3) The primary ideals of Cc(X) inside any proper ideal of Cc(X)
form a chain.

(4) X is an Fc-space.

Proof.

(1) From Lemma 7.1, it is evident that the prime ideals inside any
maximal ideal of Cc(X) form a chain. Consequently, X is an Fc-space,
by Theorem 5.9 (2). We should also emphasize that, for any maximal
ideal M of Cc(X), Cc(X)M is a domain, by Corollary 5.8 (5). Clearly,
Cc(X)M is a Bézout domain with a unique maximal ideal; hence, it is
a valuation domain, see [1, comment preceding Corollary 2.8].

(2) First, we recall that, for a prime ideal P of a commutative ring R,
there is a one-one correspondence between the primary ideals inside P
and the primary ideals of RP which preserves the inclusion relation.
Hence, we are through, by part (1).

(3) Evident by part (2).

(4) We have already shown that X is an Fc-space. �
The next lemma, which is the counterpart of [13, 1E(1)] for Cc(X),

is necessary for what follows.

Lemma 7.3. Let f ∈ Cc(X). Then, there exist an f∗ ∈ C∗
c (X) and a

positive unit u ∈ Cc(X) with f = uf∗ and u−1 ∈ C∗
c (X). In particular,

for every principal ideal (f) in Cc(X), we may take f to be an element
in C∗

c (X) which, in turn, implies that every ideal in Cc(X) is generated
by some of its elements in C∗

c (X).
Proof. Although the same proof as that of [13, 1E(1)] works well

(only put f∗ = (f ∨ −1) ∧ 1, u = |f | ∨ 1), we may also simply take
f∗ = f/(1 + f2) and u = 1 + f2. The last part is now evident. �

It is interesting to note that any of the following equivalent state-
ments implies that Cc(X) (respectively, C∗

c (X)) is a Bézout ring, also
see the next proposition.
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Theorem 7.4. For a space X, the following statements are equivalent.

(1) For every f ∈ Cc(X), X \ Z(f) is C∗
c -embedded in X.

(2) Every ideal of Cc(X) is absolutely convex.
(3) Every ideal of Cc(X) is convex.
(4) Every principal ideal of Cc(X) is convex.
(5) For all f, g ∈ Cc(X), (f, g) = (|f |+ |g|).
Proof.

(1) ⇒ (2). Let I be an ideal in Cc(X), f ∈ Cc(X) and g ∈ I such
that |f | ≤ |g|. If we define

h : X \ Z(g) −→ R,

by h = f/g, then h ∈ C∗
c (X \ Z(g)). Now, by (1), there exists an

h ∈ C∗
c (X) such that h|X\Z(g) = h. Clearly, f = hg, which means that

f ∈ I, i.e., I is absolutely convex.

(2) ⇒ (3), (3) ⇒ (4). Evident.

(4) ⇒ (5). The proof of this part is similar to the proof of (7) ⇒ (8)
in [13, Theorem 14.25].

(5) ⇒ (1). Let f ∈ Cc(X) and h ∈ C∗
c (X \ Z(f)). First, we assume

that h ≥ 0. Without loss of generality, we may also assume that f ≥ 0
(Z(f) = Z(|f |)). Now, define

g(x) =

{
f(x)h(x) x ∈ X \ Z(f),

0 x ∈ Z(f).

Since h is non-negative and bounded, we infer that g is continuous;
hence, 0 ≤ g ∈ Cc(X). Now, by (5), (f, g) = (|f | + |g|) = (f + g).
However, f ∈ (f + g) implies that f = s(f + g) for some s ∈ Cc(X).
We also note that f + g = f + fh = f(1 + h) on X \ Z(f). Hence,
f = s(f+g) = sf(1+h), and consequently, we have f(s(1+h)−1) = 0
on X \ Z(f). Therefore, s(1 + h) = 1 on X \ Z(f), i.e., s = 1/(1 + h)
on X \ Z(f). Since h is non-negative and bounded on X \ Z(f), there
exists a positive real number M such that 1 ≤ 1 + h ≤ M . Hence,
0 < 1/M ≤ s ≤ 1 on X \ Z(f). Take

t =

(
1

M
∨ s

)
∧ 1.
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Clearly, t ∈ Cc(X). Now, it is enough to define h = 1/t− 1, and easily
observe that h ∈ C∗

c (X) and h|X\Z(f) = h. Hence, we are done in this
case. Now, we assume that h ∈ C∗

c (X \ Z(f)) is an arbitrary element.
Set h1 = h ∨ 0 and h2 = −(h ∧ 0). Then, h1, h2 ≥ 0, h = h1 − h2

and h1, h2 ∈ C∗
c (X \Z(f)). Consequently, from what has already been

proved, there exist h1, h2 such that h1|X\Z(f) = h1, h2|X\Z(f) = h2.

Note that h = h1 − h2 ∈ C∗
c (X) and h|X\Z(f) = h, which implies

that any element h ∈ C∗
c (X \ Z(f)) can be extended to an element

h ∈ C∗
c (X). This completes the proof. �

We should remind the reader that, whenever R1 is a subring of a
commutative ring R2 such that for every principal ideal (a) in R2 we
may take a to be an element in R1 (e.g., R1 = C∗(X), R2 = C(X)
or R1 = C∗

c (X), R2 = Cc(X)), then it is clear that, if R1 is a Bézout
ring, so too is R2. (If a1, a2, . . . , an and b are elements in R1 with
(a1, a2, . . . , an) = (b) as ideals in R1, then the latter equality holds as
ideals in R2, too.) In particular, if C∗

c (X) is a Bézout ring, then so
too is Cc(X) (it is well-known that C(X) is Bézout if and only C∗(X)
is Bézout). Before concluding our article with the next result, let us
call Cc(X) (respectively, C∗

c (X)) an absolutely Bézout ring if, for all
f, g ∈ Cc(X) (respectively, f, g ∈ C∗

c (X)), (f, g) = (u|f | + v|g|) in
Cc(X), where u and v are positive elements in Cc(X) (respectively, in
C∗

c (X), where u and v are positive elements in C∗
c (X)). In particular,

if, in the latter definition, u = v = 1, then Cc(X) (respectively, C∗
c (X))

is called unitarily absolute Bézout.

Proposition 7.5. Let C∗
c (X) be an absolutely Bézout ring. Then,

Cc(X) is one as well. Conversely, if Cc(X) is unitarily absolute Bézout,
then so, too, is C∗

c (X). In particular, if every principal ideal of Cc(X)
is convex, then Cc(X) and C∗

c (X) are both unitarily absolute Bézout.

Proof. First, assume that C∗
c (X) is an absolutely Bézout ring, and

let f, g ∈ Cc(X). Note that (f, g) and(
f

1 + f2
,

g

1 + g2

)
as two ideals in Cc(X) coincide. Now, we consider(

f

1 + f2
,

g

1 + g2

)
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as the ideal in C∗
c (X) generated by

f

1 + f2
,

g

1 + g2
∈ C∗

c (X).

By our assumption,(
f

1 + f2
,

g

1 + g2

)
=

(
u

∣∣∣∣ f

1 + f2

∣∣∣∣+ v

∣∣∣∣ g

1 + g2

∣∣∣∣),
where u and v are positive elements of C∗

c (X). However, from the
comment preceding Proposition 7.5, the latter equality of ideals also
holds in Cc(X) if we consider both sides as ideals in Cc(X). Now, if
we put

uf =
u

1 + f2
and vg =

v

1 + g2
,

then we have (f, g) = (uf |f | + vg|g|) as an equality of two ideals in
Cc(X), where uf , vg are positive elements of Cc(X) (although unnec-
essary, uf and vg are still elements of C∗

c (X)). Consequently, Cc(X) is
an absolutely Bézout ring, and we are done.

Conversely, let (f, g) = (|f | + |g|), where f, g ∈ Cc(X). We must
show that the latter equality is true when the two ideals are considered
as ideals in C∗

c (X), where f, g ∈ C∗
c (X). By our assumption, Cc(X)

is a Bézout ring; hence, the ideals (f, |f |) and (g, |g|) are principal in
Cc(X). Thus, in view of Corollary 5.2, there are units u, v ∈ Cc(X)
such that f = u|f | and g = v|g| (we may assume that u, v are invertible
elements in C∗

c (X), see the comment following [13, Corollary 14.22]).
This shows that, for all f, g ∈ C∗

c (X) the two ideals (f, g) and (|f |, |g|)
of C∗

c (X) coincide. Hence, in order to show that C∗
c (X) has the required

property, it suffices to prove that the ideals (|f |, |g|) and (|f | + |g|) of
C∗

c (X) coincide for all f, g ∈ C∗
c (X). Clearly, (|f | + |g|) ⊆ (|f |, |g|).

Thus, it remains to be shown that |f |, |g| ∈ (|f |+ |g|) in C∗
c (X).

In what follows, we aim only to show that |f | ∈ (|f | + |g|) since
the proof of |g| ∈ (|f | + |g|) is similar. However, by our assumption,
(|f | + |g|) = (|f |, |g|) as two ideals in Cc(X). Thus, there exists an
h ∈ Cc(X) with |f | = h(|f | + |g|), and it is evident that we may
assume that h ≥ 0. In view of the proof of Lemma 7.3, there exists a
k ∈ C∗

c (X) with
kh = (h ∨ −1 ∧ 1) ∈ C∗

c (X).

Clearly, h ∨ −1 = h; hence, kh = h ∧ 1 ∈ C∗
c (X).
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Now, we claim that |f | = kh(|f | + |g|), which completes the proof.
Toward this end, take any x ∈ X and consider two cases. First, let
h(x) < 1. Then, kh(x) = (h ∧ 1)(x) = h(x). Hence,

(kh(|f |+ |g|))(x) = h(x)(|f |+ |g|)(x) = |f |(x),

by our assumption. For the second case, let h(x) ≥ 1; hence, kh(x) =
(h ∧ 1)(x) = 1. Consequently,

(kh(|f |+ |g|))(x) = (|f |+ |g|)(x).

Since |f |(x) = h(x)(|f | + |g|)(x) and h(x) ≥ 1, we infer that |f |(x) ≥
(|f |+ |g|)(x), which in turn, implies that |g(x)| = 0. Therefore,

kh(|f |+ |g|)(x) = |f |(x),

which shows that, in any case, |f | ∈ (|f |+ |g|), where the latter ideal is
considered to be an ideal of C∗

c (X). Hence, we are finished. The last
part is now evident by Theorem 7.4. �

In conclusion, we admit that we know of no example of an F -space
which is not an Fc-space. In contrast to the well-known fact that, X is
an F -space if and only if C(X) is Bézout, it was shown, in Corollary 7.2,
that, if Cc(X) is Bézout, then X is an Fc-space. However, we are
undecided about the converse of this result. We acknowledge here that
these unsettled questions are also of interest to the referee.

Note added in proofs. In what follows, we present another
proof of Proposition 6.1, which seems to be more natural, and it is
also “shorter.” First, note that, since X is strongly zero-dimensional,
βX = β0X. Thus, Op

c = Op ∩ Cc(X) for each p ∈ βX = β0X.
Now, suppose that X is an Fc-space. Then, Op

c is a prime zc-
ideal in Cc(X) for each p ∈ β0X, and hence, there exists a prime
z-ideal P in C(X) such that Op

c = P ∩ Cc(X), by Corollary 4.5.
Then, Z[Op ∩ Cc(X)] = Z[P ∩ Cc(X)]. However, by Proposition 2.4,
Z(X) = Zc(X) and OP and P are z-ideals. Then, Z[Op] = Z[P ], and
hence, Op = P . Consequently, Op is prime in C(X) for each p ∈ βX,
i.e., X is an F -space. The proof of the converse remains intact.

Acknowledgments. The authors would like to thank the well-
informed referee for reading the article carefully and giving useful
suggestions.
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