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SPECTRAL INCLUSION FOR
UNBOUNDED DIAGONALLY DOMINANT

n× n OPERATOR MATRICES

TULKIN H. RASULOV AND CHRISTIANE TRETTER

ABSTRACT. In this paper, we establish an analytic
enclosure for the spectrum of unbounded linear operators A
admitting an n × n matrix representation in a Hilbert space
H = H1 ⊕ · · · ⊕ Hn. For diagonally dominant operator
matrices of order 0, we show that this new enclosing set, the
block numerical range Wn(A), contains the eigenvalues of A
and that the approximate point spectrum of A is contained

in its closure Wn(A). Since the block numerical range turns
out to be a subset of the usual numerical range, Wn(A) ⊂
W (A), it may give a tighter enclosure of the spectrum.
Moreover, we prove Gershgorin theorems for diagonally
dominant n × n operator matrices and compare our results
to both Gershgorin bounds and classical perturbation theory.
Our results are illustrated by deriving new lower bounds for
3× 3 self-adjoint operator matrices and applying the latter to
three-channel Hamiltonians in quantum mechanics.

1. Introduction. The location of spectra of non-self-adjoint linear
operators plays a crucial role in many applications. Especially for non-
self-adjoint operators but also for self-adjoint operators with spectral
gaps, numerical approximations of the spectrum or of eigenvalues are
prone to be unreliable (see, e.g., [2]). On the other hand, rigorous
analytic information on the spectrum is, in general, difficult to obtain
(see, e.g., [5]). One of the few simple analytical tools for localizing
the spectrum is the numerical range; however, due to its convexity,
the numerical range is often too coarse to provide good enclosures
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for the spectrum or even useless, e.g., for estimating eigenvalues in
spectral gaps.

In this paper, we establish a new analytic enclosure for the spectrum
of unbounded linear operators that admit a matrix representation
A = (Aij)

n
i,j=1 with respect to a decomposition H = H1⊕· · ·⊕Hn of a

Hilbert space H. The enclosing set, the block numerical range Wn(A),
is defined as the union of all eigenvalues of the n× n matrices

Af := ((Aijfj , fi))
n
i,j=1 ∈ Mn(C), f = (fi)

n
i=1 ∈ D(A), ∥fi∥ = 1.

One of our main results is the spectral inclusion property of the block
numerical range: all eigenvalues of A are contained in Wn(A) and, if A
is diagonally dominant of order 0, the approximate point spectrum of A
is contained in the closure Wn(A),

(1.1) σp(A) ⊂ Wn(A), σapp(A) ⊂ Wn(A).

This is a direct generalization of the spectral inclusion property of the
classical numerical range W (A) = W 1(A) (see [9]) obtained for n = 1.

Further new results include criteria for the closedness of tridiagonal
n × n operator matrices which improve an earlier result for the case
n = 2 in [14], inclusions among different block numerical ranges,
especially the enclosure Wn(A) ⊂ W (A) in the classical numerical
range, Gershgorin type theorems for general n × n operator matrices,
and new lower bounds for self-adjoint diagonally dominant 3 × 3
operator matrices with diagonal entries all bounded from below.

The quadratic numerical range (which is the special case n = 2)
was first introduced in [11] for unbounded operator matrices with
bounded off-diagonal entries. The block numerical range of bounded
n × n operator matrices was introduced, and its spectral inclusion
property was proved in [15]. For the quadratic numerical range, the
spectral inclusion property was proved in [11] only in a special case; it
was assumed that all off-diagonal entries are bounded and the diagonal
entries are separated, i.e.,

ReW (A11) < ReW (A22).

In [14], the spectral inclusion property was generalized to diagonally
dominant and off-diagonally dominant operator matrices of order 0.
For n ≥ 3, up until now, there have been no spectral inclusion results
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in the unbounded case and, even in the bounded case, no estimates of
the block numerical range.

The present paper fills in these gaps and provides new spectral
estimates, even for semi-bounded self-adjoint 3 × 3 operator matrices.
Moreover, due to the inclusion

Wn(A) ⊂ Wn−1(A) ⊂ · · · ⊂ W 2(A) ⊂ W 1(A) = W (A)

upon refinement of the decomposition of the Hilbert space H, block nu-
merical ranges may give tighter enclosures than the classical numerical
range W (A). Since, unlike W (A), the block numerical range Wn(A)
is in general no longer convex, and its at most n components need not
be so, our new spectral enclosures may indeed be considerably better.

The paper is organized as follows. In Section 2, we introduce and
study the notion of diagonal dominance for n × n operator matrices
with unbounded entries. In Section 3, we establish criteria for the
closedness of tridiagonal diagonally dominant operator matrices, thus
improving the results for n = 2 in [14]. In Section 4, we introduce
the block numerical range Wn(A) of an unbounded n × n operator
matrix A and prove some elementary properties of it; in particular, we
show that the block numerical range is always contained in the usual
numerical range. In Section 5, we prove our main result which shows
that the block numerical range has the spectral inclusion property (1.1)
if the operator matrix is diagonally dominant of order 0. In Section 6,
we establish a Gershgorin type theorem for unbounded n× n operator
matrices and derive an estimate for the block numerical range by means
of the matrix Gershgorin theorem. In Section 7, we use the cubic
numerical range W 3(A) to establish new estimates for the spectrum of
tridiagonal 3 × 3 self-adjoint operator matrices. We compare our new
bounds to classical perturbation theory as well as to the Gershgorin
bounds from Section 6, and illustrate them by an application to three-
channel Hamiltonians from quantum mechanics.

Throughout this paper, we use the following notation. If A is a
linear operator from one Banach or Hilbert space to another, then
D(A) denotes its domain, R(A) its range, ρ(A) its resolvent set, σ(A)
its spectrum, σp(A) its point spectrum and σapp(A) its approximate
point spectrum.
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2. Diagonally dominant n × n operator matrices. Let n ∈ N,
n ≥ 2, let (Hi, ∥ · ∥i), i = 1, . . . , n, be Banach spaces and let (H, ∥ · ∥)
be the Euclidean product of H1, . . . ,Hn, that is,

(2.1)
H := H1 ⊕ · · · ⊕ Hn,

∥f∥ :=
√
∥f1∥21 + · · ·+ ∥fn∥2n, f = (f1, . . . , fn)

t ∈ H.

In the Banach space H we consider linear operators A that admit
an n× n operator matrix representation

(2.2) A = (Aij)
n
i,j=1 in H = H1 ⊕ · · · ⊕ Hn,

where the entries are densely defined closable linear operators

Aij : Hj ⊃ D(Aij) −→ Hi, i, j = 1, . . . , n,

and for which the domain of A, given by

(2.3) D(A) =
n⊕

j=1

Dj , Dj :=
n∩

i=1

D(Aij) ⊂ Hj ,

is again dense in H.

For the reader’s convenience, we briefly recall the notion of relative
boundedness (see [9, subsection VI.1]).

Let (E, ∥ · ∥E), (F, ∥ · ∥F ), (G, ∥ · ∥G) be Banach spaces, and let

T : E ⊃ D(T ) −→ F, S : E ⊃ D(S) −→ G

be linear operators. Then, S is called T -bounded (or relatively boun-
ded with respect to T ) if D(T ) ⊂ D(S), and there exist constants
aS , bS ≥ 0 with

(2.4) ∥Sx∥G ≤ aS∥x∥E + bS∥Tx∥F , x ∈ D(T );

the infimum δS of all bS such that (2.4) holds for some aS ≥ 0 is called
the T -bound of S (or relative bound of S with respect to T ).

Note that, if T is closed and S is closable with D(T ) ⊂ D(S), then S
is T -bounded (see [9, Remark IV.1.5]). It is also not difficult to prove
(see [9, subsection V.4.1, (4.1), (4.2)]) that (2.4) is equivalent to

(2.5) ∥Sx∥2G ≤ a′2S ∥x∥2E + b′2S ∥Tx∥2F , x ∈ D(T ),
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with constants a′S , b
′
S ≥ 0; moreover, (2.4) holds with bS < δ for some

δ > 0 if and only if (2.5) holds with some b′S < δ. Hence, the T -bound
δS of S can also be defined as the infimum of all b′S ≥ 0 so that (2.5)
holds for some a′S ≥ 0.

Definition 2.1. For an operator matrix A as in (2.2), we define the
diagonal part T and the off-diagonal part S by

(2.6) T := diag(A11, . . . , Ann), S := A− T ,

and we call A diagonally dominant of order δS if S is T -bounded with
T -bound δS .

Note that, for a diagonally dominant operator matrix A, the domain
is always given by the domains of the diagonal entries

(2.7) D(A) = D(A11)⊕ · · · ⊕D(Ann).

Remark 2.2. If A is diagonally dominant of order δS < 1, then S is
A-bounded with A-bound ≤ δS/(1− δS).

Diagonal dominance may also be characterized by means of the
entries of the operator matrix A as follows.

Proposition 2.3. Let A be as in (2.2). Then,

A is diagonally dominant ⇐⇒ Aij is Ajj-bounded

for all i, j = 1, . . . , n, i ̸= j. In this case, if δS is the dominance order
of A and δij are the Ajj-bounds of Aij, then

δij ≤ δS ≤ δ :=

(
(n− 1)

n
max
l=1

n∑
k=1
k ̸=l

δ2kl

)1/2

(2.8)

for all i, j = 1, . . . , n, i ̸= j; in particular,

A is diagonally dominant of order 0 ⇐⇒ δij = 0.

Proof. To show that δij ≤ δS , let j ∈ {1, . . . , n}, fj ∈ Hj , ej :=
(0, . . . , 0, fj , 0, . . . , 0)

t with the only non-zero entry fj in the jth line,
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and let ε > 0 be arbitrary. Then, by assumption, there exist a′S , b
′
S ≥ 0,

δS ≤ b′S ≤ δS + ε such that, for every i ∈ {1, . . . , n}, i ̸= j,

∥Aijfj∥2i ≤
n∑

k=1
k ̸=j

∥Akjfj∥2k = ∥Sej∥2

≤ a′2S ∥ej∥2 + b′2S ∥T ej∥2 = a′2S ∥fj∥2j + b′2S ∥Ajjfj∥2j .

To show that δS ≤ δ, let ε > 0 be arbitrary. By the assumptions,
the domain inclusions D(Ajj) ⊂ D(Aij) hold for i, j = 1, . . . , n, i ̸= j,
and there are constants a′ij , b

′
ij ≥ 0 with δij ≤ b′ij < δij + ε and

∥Aijfj∥2i ≤ a′2ij∥fj∥2j + b′2ij∥Ajjfj∥2j , fj ∈ D(Ajj).

Therefore,
D(T ) = D(A11)⊕ · · · ⊕D(Ann) ⊂ D(S)

and, for f = (f1, . . . , fn)
t ∈ D(T ),

∥Sf∥2 =

n∑
i=1

∥∥∥∥∥
n∑

j=1
j ̸=i

Aijfj

∥∥∥∥∥
2

i

≤ (n− 1)

n∑
i=1

n∑
j=1
j ̸=i

∥Aijfj∥2i

(2.9)

≤ (n− 1)

n∑
i=1

n∑
j=1
j ̸=i

(a′2ij∥fj∥2j + b′2ij∥Ajjfj∥2j )

= (n− 1)
n∑

j=1

(
n∑

i=1
i̸=j

a′2ij

)
∥fj∥2j + (n− 1)

n∑
j=1

(
n∑

i=1
i ̸=j

b′2ij

)
∥Ajjfj∥2j

≤ (n− 1)

(
n

max
j=1

n∑
i=1
i̸=j

a′2ij

)
∥f∥2 + (n− 1)

(
n

max
j=1

n∑
i=1
i ̸=j

b′2ij

)
∥T f∥2.

Since ε > 0 is arbitrary and δij ≤ b′ij < δij + ε, we obtain that δS ≤ δ.

The last equivalence is immediate from the two-sided estimate
in (2.8). �

Remark 2.4. If the operator matrix A has a fixed number of zero
entries in each column, then the upper bound δ in Proposition 2.3 may
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be improved. For example, if A is tridiagonal, Aij = 0 for |i − j| > 1,
we can replace the estimate in the first line of (2.9) by the equality

∥Sf∥2 = ∥A12f2∥21 +
n−1∑
i=2

∥Ai,i−1fi−1 +Ai,i+1fi+1∥2i + ∥An,n−1fn−1∥2n

to obtain that

δS ≤ δ̂ := max
{√

2δ21,
√
δ212 + 2δ232,

√
2

n−2
max
j=3

(δ2j−1,j+ δ2j+1,j),√
δ2n,n−1+2δ2n−2,n−1,

√
2δn−1,n

}
.

Corollary 2.5. If the diagonal entries Ajj of A are closed, then

A is diagonally dominant ⇐⇒ D(Ajj) ⊂ D(Aij)

for all i, j = 1, . . . , n, i ̸= j.

Proof. The implication ⇒ is obvious since, by assumption,

n⊕
j=1

D(Ajj) = D(T ) ⊂ D(S) =
n⊕

j=1

(
n∩

i=1
i ̸=j

D(Aij)

)
.

Since Ajj is closed and Aij is closable for i, j = 1, . . . , n, i ̸= j, the
inclusion D(Ajj) ⊂ D(Aij) implies that Aij is Ajj-bounded (see [9,
Remark IV.1.5]). Now, Proposition 2.3 implies the implication ⇐. �

In the last part of the proof, we cannot directly conclude that the
domain inclusions on the entries imply D(S) ⊂ D(T ) and hence the
claim on the left hand side. The last conclusion only holds if S were
closable, which need not be the case if n ≥ 3.

Remark 2.6. The diagonal part T ofA is always closable since it is the
direct sum of the closable operators A11, . . . , Ann. For the off-diagonal
part S this is only true in the 2× 2 case.

Indeed, if n = 2, A12, A21 are closable, and ((yν , wν)
t)∞1 ⊂ H1 ⊕H2

is such that
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(
yν
wν

)
−→

(
0
0

)
, S

(
yν
wν

)
=

(
A12wν

A21yν

)
−→

(
y
w

)
, ν → ∞,

then y = 0 and w = 0 since A12 and A21, respectively, are closable.

On the other hand, if n ≥ 3, then S need not be closable even if A
is tridiagonal and all entries are closed. As an example, consider the
case n = 3 and

S =

 0 A12 0
A21 0 A23

0 A32 0


with densely defined closed entries

Aij : Hj ⊃ D(Aij) −→ Hi, i, j = 1, 2, 3, |i− j| = 1.

Suppose that H1 = H3, A21 = A0
21 + A1

21, A23 = −A0
21 such that A0

21

is closed and A1
21 = A21 + A23 is A0

21-bounded with A0
21-bound < 1,

but not closable. Then there exists a sequence (yν)
∞
1 ⊂ H1 = H3 such

that yν −→ 0, (A21 + A23)yν −→ v ̸= 0 for ν → ∞. Then, S is not
closable since, for the sequence ((yν , 0, yν)

t)∞1 ⊂ H, we haveyν
0
yν

 −→

0
0
0

, S

yν
0
yν

 =

 0
(A21 +A23)yν

0

 −→

0
v
0

, ν → ∞.

For example, one could chooseH1 = H2 = H3 = L2(0, 1), A
0
21y := −y′′,

A1
21 = y′(0) · 1 with D(A0

21) = D(A1
21) = W 2

2 (0, 1); then, A
0
21 is closed

and A1
21 is A0

21-bounded with A0
21-bound 0, but not closable (see [1]).

The upper bounds δ and δ̂ for the dominance order in Proposition 2.3
and Remark 2.4, respectively, may be strict, as the next example shows.

Example 2.7. Let n = 3, let the Hilbert spaces H1 = H2 = H3 coin-
cide, and suppose that H2 = H1

2 ⊕H2
2 where (Hi

2, ∥ · ∥2,i), i = 1, 2, are
non-trivial invariant subspaces for A22 : H2 ⊃ D(A22) −→ H2. Denote
by Pi : H2 −→ Hi

2 the projection from H2 to Hi
2, i = 1, 2, and let
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γ > 0. Then the tridiagonal operator matrix A

A :=

0 A12 0
0 A22 0
0 A32 0

 , A12 :=

(
γP1A22P

∗
1 0

0 0

)
,

A32 :=

(
0 0
0 γP2A22P

∗
2

)
,

is diagonally dominant of order δS = γ since here D(T ) = D(S) =
H1⊕D(A22)⊕H3 and, for f = (f1, f2, f3)

t ∈ D(T ) and f2 = (f1
2 , f

2
2 )

t ∈
P1D(A22)⊕ P2D(A22),

∥Sf∥2 = ∥A12f2∥21 + ∥A32f2∥23 = ∥γP1A22f2∥22,1 + ∥γP2A22f2∥22,2
= γ∥A22f2∥22 = γ∥T f∥2.

On the other hand, since A12 and A32 are both A22-bounded with

A22-bounds δ12 = δ32 = γ, the bound δ̂ =
√
δ212 + 2δ232 =

√
3γ

in Remark 2.4 is strictly greater than δS = γ (and the bound δ =√
2
√

δ212 + δ232 = 2γ is even greater).

Remark 2.8. Note that the dominance order δS depends upon the
choice of the norm on H since so do the constants aS and bS in (2.4).
For instance, instead of the Euclidean norm ∥ · ∥ on the Hilbert space
product H = H1 ⊕ · · · ⊕ Hn, choose the equivalent norm

|||f |||1 := ∥f1∥1 + · · ·+ ∥fn∥n, f = (f1, . . . , fn)
t ∈ H,

and let δ′S be the corresponding dominance order, and δij the Aii-bound
of Aij , i, j = 1, . . . , n, |i− j| = 1. Then, we obtain the upper bound

δ′S ≤ δ′ :=
n

max
j=1

n∑
i=1
i ̸=j

δij .

Note that, in the tridiagonal case, no further improvement may be
obtained; here δij = 0 for |i− j| > 1, whence

δ′ = δ̂′ = max
{
δ21,

n−1
max
j=2

(δj−1,j + δj+1,j), δn−1,n

}
.

3. Closability/closedness of diagonally dominant n × n op-
erator matrices. Next, we establish conditions for the closability and
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closedness of general n× n operator matrices and for the more partic-
ular tridiagonal case. The first result is a simple perturbation result.

Theorem 3.1. If the operator matrix A in (2.2) is diagonally dominant
of order δS < 1, then A is closable; if, in addition, the diagonal entries
of A are closed, then A is closed.

Proof. By assumption, A = T + S with T closable or closed,
respectively, and S is T -bounded with T -bound δS < 1. Now, both
assertions follow from classical perturbation results on the stability of
closability and closedness, respectively (see [9, Theorem IV.1.1]). �

In the following, we derive another criterion for the closability and
closedness, respectively, of tridiagonal operator matrices which are
characterized by Aij = 0 for |i− j| > 1, i.e.,

(3.1) A :=



A11 A12 0 · · · 0 0 0

A21 A22 A23 0 0

0 A32 A33
. . . 0

...
. . .

. . .
. . .

...

0
. . .

. . . An−2,n−1 0

0 0 An−1,n−2 An−1,n−1 An−1,n

0 0 0 · · · 0 An,n−1 Ann


;

here, the relative bounds δj+1,j and δj,j+1 of Aj+1,j and Aj,j+1 on the
lower and upper off-diagonal, respectively, may balance each other.

The next theorem generalizes, and improves, the closability/closed-
ness criterion for n = 2 in [13, Theorem 2.2.8].

Theorem 3.2. Let A = (Aij)
n
i,j=1 be tridiagonal and diagonally dom-

inant and let δij be the Aii-bound of Aij, i, j = 1, . . . , n, |i− j| = 1. If
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(3.2) δn(A) =
δn,n−1δn−1,n

1 −
δn−1,n−2δn−2,n−1

1 −
δn−2,n−3δn−3,n−2

1 −
. . .

. . .
1 −

δ32δ23

1− δ21δ12

< 1,

then A is closable and closed if its diagonal elements Aii are closed.

Remark 3.3. The continued fraction δn(A) in (3.2) can also be defined
by the recursion

(3.3) δ1(A) := 0, δk(A) :=
δk,k−1δk−1,k

1− δk−1(A)
, k = 2, 3, . . . , n.

Then, condition (3.2) is equivalent to

(3.4) δk,k−1δk−1,k + δk−1(A) < 1, k = 2, 3, . . . , n;

this shows that (3.2) necessitates that the relative bounds satisfy
δk,k−1δk−1,k < 1, k = 2, 3, . . . , n.

Proof of Theorem 3.2. For µ > 0, define the n×n diagonal operator
matrix as

M(µ) := diag(IH1 µIH2 µ2IH3 · · ·µn−1IHn).

Clearly, A is closable or closed if and only if, for some µ > 0, so is

Ann(µ) := M(µ)AM(µ)−1

=



A11
1
µA12 0 · · · · · · 0

µA21 A22
1
µA23 0

0 µA32 A33
1
µA34 0

...
. . .

. . .
. . .

...
...

. . .
. . . 1

µAn−1,n

0 · · · · · · · · · µAn,n−1 Ann.


.
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The latter will be proved by induction on n = 2, 3, . . . . In order
to formulate the precise induction claim, we introduce the following
temporary notation.

For k = 1, 2, . . . , n, we denote by Ĥk := H1 ⊕ · · · ⊕ Hk the first k

components of H and by Ĥn−k the last n − k components of H; the

elements of H̃k are denoted by f̃k = (fi)
k
i=1 with fi ∈ Hi, i = 1, 2, . . . , k.

Then, H = H̃k ⊕ Ĥn−k for k = 1, 2, . . . , n − 1 and H = H̃n for k = n.

We denote by Pk : H −→ H̃k the projection of H onto the first k

components, by Qn−k : H −→ Ĥn−k the projection of H onto the last
n−k components, and we set Akk := PkAP ∗

k for k = 1, 2, . . . , n. Then,

with respect to the decomposition H̃n = H̃n−1⊕Hn, the n×n operator
matrix Ann(µ) has the 2× 2 operator matrix representation

Ann(µ) =

(
An−1,n−1(µ) An−1,n(µ)
An,n−1(µ) Ann

)
,

where

An−1,n(µ) := Pn−1Ann(µ)Q
∗
1 =


0
...
0

1
µAn−1,n

 ,

An,n−1(µ) := Q1Ann(µ)P
∗
n−1 =

(
0 · · · 0 µAn,n−1

)
.

Further, for µ ≥ 0, we define δ1(A, µ) := 0,

δk(A, µ) := δk,k−1

√
µ2 + δ2k−1,k

1

1− δk−1(A, µ)
, k = 2, 3, . . . , n.

Note that, by definition (3.3) and induction, we have δk(A, 0) = δk(A),
k = 1, 2, . . . , n.

By induction on n = 2, 3, . . ., we prove that there exists a µn > 0
such that, for µ ∈ (0, µn),

(i)n δn−1(A, µ) < 1 and An,n−1(µ) is An−1,n−1(µ)-bounded with
An−1,n−1(µ)-bound

(3.5) δ̂n(µ) ≤ µ δn,n−1
1

1− δn−1(A, µ)
;
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(ii)n Ann(µ) is closable and closed if all its diagonal elements
A11, . . . , Ann are closed.

First, let n = 2.

(i)2 Since A21(µ) = µA21 and A11(µ) = A11, it follows that A21(µ)
is A11(µ)-bounded with A11(µ)-bound

µδ21 = µδ21
1

1− δ1(A, µ))

for every µ > 0 since δ1(A, µ) = 0 by definition.

(ii)2 The relative boundedness constants for

A22(µ) =

(
IH1 0
0 µIH2

)
A
(
IH1 0
0 1

µIH2

)
=

(
A11

1
µA12

µA21 A22

)
are µδ21 in the first column and (1/µ)δ12 in the second. By [13,
Theorem 2.2.8], A22(µ) is closable and closed if A11, A22 are closed,
provided that (µδ21)

2(1 + (δ12/µ)
2) < 1, or equivalently,

(3.6) δ212δ
2
21 + µ2δ221 < 1.

Since δ12δ21 < 1 by (3.4) for k = 2, we have µ2 := (1− δ212δ
2
21)/δ

2
21 > 0

and (3.6) holds for all µ ∈ (0, µ2).

Now let n ≥ 3, and assume that (i)n−1 and (ii)n−1 hold.

(i)n First, we show that, if we decompose the 2 × 2 operator

matrix An−1,n−1(µ) in H̃n−1 = H̃n−2 ⊕ Hn−1 as An−1,n−1(µ) =
A0

n−1,n−1(µ) +A1
n−1,n−1(µ) with

(3.7)

A0
n−1,n−1(µ) :=

(
An−2,n−2(µ) An−2,n−1(µ)

0 An−1,n−1

)
,

A1
n−1,n−1(µ) :=

(
0 0

An−1,n−2(µ) 0

)
,

then A1
n−1,n−1(µ) is A0

n−1,n−1(µ)-bounded with some A0
n−1,n−1(µ)-

bound δ1,0n−1(µ) < 1. Toward this end, let ε > 0 be arbitrary. By
induction hypothesis (i)n−1, there is a µn−1 > 0 such that the op-
erator An−1,n−2(µ) is An−2,n−2(µ)-bounded with An−2,n−2(µ)-bound

δ̂n−1(µ) for every µ ∈ (0, µn−1). By assumption, the operator
An−2,n−1 is An−1,n−1-bounded with An−1,n−1-bound δn−2,n−1, and
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∥An−2,n−1(µ)fn−1∥ = ∥(1/µ)An−2,n−1fn−1∥ by definition. Thus, there

are constants â ′
n−1(µ), b̂

′
n−1(µ), a

′
n−2,n−1, b

′
n−2,n−1 ≥ 0 with

δ̂n−1(µ) ≤ b̂ ′
n−1(µ) < δ̂n−1(µ) + ε,

δn−2,n−1 ≤ b′n−2,n−1< δn−2,n−1 + ε

such that, for f̃n−1 = (f̃n−2 fn−1)
t ∈ D(A0

n−1,n−1(µ)) ⊂ Ĥn−1 =

H̃n−2 ⊕Hn−1,

∥A1
n−1,n−1(µ)f̃n−1∥2 = ∥An−1,n−2(µ)f̃n−2∥2

≤ â ′2
n−1(µ)∥f̃n−2∥2 + b̂ ′2

n−1(µ)∥An−2,n−2(µ)f̃n−2∥2

≤ â ′2
n−1(µ)∥f̃n−2∥2 + b̂ ′

n−1(µ)
2

·
(
∥An−2,n−2(µ)f̃n−2 +An−2,n−1(µ)fn−1∥+

∥∥∥∥ 1µAn−2,n−1fn−1

∥∥∥∥)2
≤ â ′2

n−1(µ)∥f̃n−2∥2 + b̂ ′2
n−1(µ)

·
((

1+
1

γ

)
∥An−2,n−2(µ)f̃n−2+An−2,n−1(µ)fn−1∥2

+ (1+γ)
1

µ2
(a′2n−2,n−1∥fn−1∥2 + b′2n−2,n−1∥An−1,n−1fn−1∥2)

)
≤ max

{
â ′2

n−1(µ), b̂
′2
n−1(µ)(1 + γ)

1

µ2
a′2n−2,n−1

}
∥f̃n−1∥2

+ b̂ ′2
n−1(µ)max

{(
1+

1

γ

)
, (1+γ)

1

µ2
b′2n−2,n−1

}
∥A0

n−1,n−1(µ)f̃n−1∥2

with arbitrary γ > 0. The second maximum becomes minimal if we
choose γ−1 := (1/µ2)b′2n−2,n−1. Thus, A1

n−1,n−1(µ) is A0
n−1,n−1(µ)-

bounded with A0
n−1,n−1(µ)-bound

δ1,0n−1(µ) ≤ b̂ ′
n−1(µ)

√
1 +

1

µ2
b ′2

n−2,n−1

≤ (δ̂n−1(µ) + ε)

√
1 +

1

µ2
(δn−2,n−1 + ε)2.
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Since ε > 0 is arbitrary and due to estimate (3.5) from (i)n−1, we find

(3.8)

δ1,0n−1(µ) ≤ δ̂n−1(µ)

√
1 +

1

µ2
δ2n−2,n−1

≤ δn−1,n−2

√
µ2 + δ2n−2,n−1

1

1− δn−2(A, µ)

= δn−1(A, µ).

By assumption (3.4) for k = n−1, we have δn−1(A, 0) = δn−1(A) < 1.
Hence, since δn−1(A, ·) is continuous in a neighborhood of 0, we can

choose µ̃n > 0 so that δ1,0n−1(µ) ≤ δn−1(A, µ) < 1 for all µ ∈ (0, µ̃n).

Thus, if we set µ̂n := min{µn−1, µ̃n}, then the operator A1
n−1,n−1(µ)

is An−1,n−1(µ)-bounded for µ ∈ (0, µ̂n) with An−1,n−1(µ)-bound

(3.9) δ1n−1(µ) ≤
δ1,0n−1(µ)

1− δ1,0n−1(µ)
≤ δn−1(A, µ)

1− δn−1(A, µ)
;

here, we have used [13, Lemma 2.1.6] and (3.8).

By definition and assumption, An,n−1(µ) is Ann-bounded with
Ann-bound µδn,n−1. By what was shown above, A1

n−1,n−1(µ) is

An−1,n−1(µ)-bounded for µ ∈ (0, µ̂n) with An−1,n−1(µ)-bound δ1n−1(µ)
satisfying estimate (3.9); note that, by definition (3.7), we have

∥A1
n−1,n−1(µ)f̃n−1∥ = ∥An−1,n−2(µ)f̃n−2∥ for f̃n−1 = (f̃n−2 fn−1)

t ∈
D(An−1,n−2(µ)) ⊕Hn−1. Hence, there exist constants a′n,n−1, b

′
n,n−1,

a1n−1(µ), b
1
n−1(µ) ≥ 0 with

δn,n−1 ≤ b′n,n−1 < δn,n−1 + ε, δ1n−1(µ) ≤ b1n−1(µ) < δ1n−1(µ) + ε

so that, for f̃n−1 = (fi)
n−1
i=1 = (f̃n−2 fn−1)

t ∈ D(An−1,n−1) ⊂ H̃n−1 =

H̃n−2 ⊕Hn−1,

∥An,n−1(µ)f̃n−1∥2 = ∥µAn,n−1fn−1∥2

≤ µ2
(
a′2n,n−1∥fn−1∥2 + b′2n,n−1∥An−1,n−1fn−1∥2

)
≤ µ2(a′2n,n−1∥fn−1∥2 + b′2n,n−1

· (∥An−1,n−2(µ)f̃n−2+An−1,n−1fn−1∥+ ∥A1
n−1,n−1(µ)f̃n−1∥)2)

≤ µ2(a′2n,n−1∥fn−1∥2 + b′2n,n−1)

·
((

1 +
1

γ

)
∥An−1,n−2(µ)f̃n−2 +An−1,n−1fn−1∥2
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+ (1 + γ)(a1n−1(µ)
2∥f̃n−1∥2+ b1n−1(µ)

2∥An−1,n−1(µ)f̃n−1∥2)
)

≤ µ2(a′2n,n−1 + b′2n,n−1(1 + γ)a1n−1(µ)
2)∥f̃n−1∥2

+ µ2 b′2n,n−1

((
1 +

1

γ

)
+ (1 + γ)b1n−1(µ)

2
)
∥An−1,n−1(µ)f̃n−1∥2

with arbitrary γ > 0; here, in the last step, the obvious inequality

∥An−1,n−2(µ)f̃n−2+An−1,n−1fn−1∥2 ≤ ∥An−1,n−1(µ)f̃n−1∥2 was used.
The last factor but one becomes minimal for γ−1 := b1n−1(µ)

2. In the
same manner as above, since ε > 0 is arbitrary, we see that An,n−1(µ)

is An−1,n−1(µ)-bounded for µ ∈ (0, 0̂µn) with An−1,n−1(µ)-bound

δ̂n(µ) ≤ µδn,n−1

(
1 + δ1n−1(µ)

)
≤ µδn,n−1

1

1− δn−1(A, µ)
,

where we have used estimate (3.9) for δ1n−1(µ). This completes the
proof of (i)n.

(ii)n We apply the claim for n = 2 to the operator matrix

Ann(µ) =

(
An−1,n−1(µ) An−1,n(µ)
An,n−1(µ) Ann

)
.

By induction hypothesis (ii)n−1, there exists a µn−1 > 0 such that,
for µ ∈ (0, µn−1), the operator An−1,n−1(µ) is closable, and closed
if A11, . . . , An−1,n−1 are closed, while all other entries of Ann(µ) are
closable by assumption. Moreover, by definition and assumption, the
Ann-bound of An−1,n(µ) = (1/µ)An−1,n is (1/µ)δn−1,n; by (i)n, the

An−1,n−1(µ)-bound of An,n−1(µ) is δ̂n(µ) for µ ∈ (0, µ̂n). Hence, by
(ii)2, there exists a µ2 > 0 such that Ann(µ) is closable, and closed
if A11, . . . , An−1,n−1, Ann are closed, for µ ∈ (0,min{µ2, µn−1, µ̂n})
provided that (1/µ)δn−1,nδ̂n(µ) < 1. Due to estimate (3.5) in (i)n
already proved above, the latter holds if

δ̃n(µ) := δn,n−1δn−1,n
1

1− δn−1(A, µ)
< 1.

By condition (3.3) for k = n, we have δ̃n(0) = δn(A) < 1. Since

δ̃n(·) is continuous in a neighborhood of 0, there exists a µn ∈
(0,min{µ2, µn−1, µ̂n}) with δ̃n(µ) < 1 for µ ∈ (0, µn). Hence, Ann(µ)
is closable, and closed if A11, . . . , Ann are closed, for µ ∈ (0, µn). �
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The next corollary contains the particular cases n = 2 and n = 3 of
Theorem 3.2; note that, for n = 2, it improves the closability/closedness

criterion in [13, Theorem 2.2.8], which requires either δ21
√
1 + δ212 < 1

or δ12
√

1 + δ221 < 1.

Corollary 3.4. Let n = 2. If

δ21δ12 < 1,

then A =
(
A11 A12

A21 A22

)
is closable and closed if Aii, i = 1, 2, are closed.

Let n = 3. If

(3.10) δ21δ12 + δ32δ23 < 1,

then A =

(
A11 A12 0
A21 A22 A23

0 A32 A33

)
is closable and closed if Aii, i = 1, 2, 3,

are closed.

Corollary 3.5. Let A = (Aij)
n
i,j=1 be tridiagonal and diagonally dom-

inant such that, for every k=2, 3, . . . , n, either Ak,k−1 has Ak−1,k−1-
bound 0 or Ak−1,k has Akk-bound 0, i.e.,

(3.11) δk,k−1 = 0 or δk−1,k = 0, k = 2, 3, . . . , n.

Then A is closable and closed if its diagonal elements are closed.

Sufficient conditions for relative bound 0 include boundedness, rela-
tive compactness, and domain inclusions for some fractional power (see
e.g., [6, Corollary III.7.7], [13, Corollary 2.1.20]). Therefore, the next
corollary is immediate from Corollary 3.5.

Corollary 3.6. Let A = (Aij)
n
i,j=1 be tridiagonal and diagonally

dominant such that, for every k = 2, 3, . . . , n, either one of

(i) Ak,k−1 is bounded ;
(ii) Ak,k−1 is Ak−1,k−1-compact and Hk−1, Hk are reflexive;
(iii) Hk−1, Hk are Hilbert spaces and D(|Ak−1,k−1|γ) ⊂ D(Ak,k−1) for

some γ ∈ (0, 1);

or one of

(i′) Ak−1,k is bounded ;
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(ii′) Ak−1,k is Ak,k-compact and Hk−1, Hk are reflexive;
(iii′) Hk−1, Hk are Hilbert spaces and D(|Ak,k|γ) ⊂ D(Ak−1,k) for

some γ ∈ (0, 1);

holds. Then, A is closable and closed if its diagonal elements are closed.

Remark 3.7. Theorem 3.2 and its corollaries also apply to n × n
operator matrices that are similar to diagonally dominant tridiagonal
ones; in particular, they apply to operator matrices A inH = H1⊕· · ·⊕
Hn for which there exists a permutation (i1, i2, . . . , in) of (1, 2, . . . , n)
such that the matrix representation of A = (Aikil)

n
k,l=1 with respect to

H = Hi1 ⊕ · · · ⊕ Hin is tridiagonal and diagonally dominant.

4. The block numerical range. The block numerical range for
2× 2 operator matrices, also called the quadratic numerical range, was
introduced in [11] and further studied in a series of papers, in particu-
lar, in [10, 14] (also see [13]); in the latter two, the spectral inclusion
property was proved for diagonally dominant and off-diagonally domi-
nant operator matrices. The block numerical range for arbitrary n was
introduced in [15] for bounded entries.

In this section, we generalize the block numerical range to n × n
operator matrices with unbounded entries and study some of its el-
ementary properties. From now on, we assume that H1, . . . ,Hn are
Hilbert spaces; by (·, ·)i and ∥ · ∥i we denote the scalar product and
corresponding norm in Hi, i = 1, . . . , n, respectively.

Definition 4.1. Let A = (Aij)
n
i,j=1 be an operator matrix in the

Hilbert space H = H1 ⊕ · · · ⊕ Hn with domain

D(A) =

n⊕
j=1

( n∩
i=1

D(Aij)

)
.

Set

Sn := SH1⊕···⊕Hn

:= {f = (f1, . . . , fn)
t ∈ H1 ⊕ · · · ⊕ Hn, ∥fj∥j = 1, j = 1, . . . , n}.

For f ∈ D(A) ∩ Sn, we define the n× n matrix

Af :=
(
(Aijfj , fi)i

)n
i,j=1

∈ Mn(C).
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Then, we call the set of eigenvalues of all of these matrices,

WH1⊕···⊕Hn(A) :=
∪ {

σp(Af ) : f ∈ D(A) ∩ Sn
}
,

the block numerical range of A with respect to H = H1 ⊕ · · · ⊕Hn; for
a fixed decomposition of H, we also write

Wn(A) = WH1⊕···⊕Hn(A).

Note that in the definition of Wn(A) it is not only required that
f ̸= 0, but even fj ̸= 0, j = 1, . . . , n. Occasionally the following,
clearly equivalent, description of the block numerical range is useful.

Remark 4.2. For f = (fj)
n
j=1 ∈ D(A), fj ̸= 0, j = 1, . . . , n, we set

Af :=

(
(Aijfj , fi)i
∥fi∥i∥fj∥j

)n

i,j=1

∈ Mn(C)

and

∆(f1, . . . , fn;λ) := ∥f1∥21 · · · ∥fn∥2n det(Af − λICn), λ ∈ C.

Then,

Wn(A) =
∪ {

σp(Af ) : f = (fj)
n
j=1 ∈ D(A), fj ̸= 0, j = 1, . . . , n

}
=
{
λ ∈ C : there exists an f = (fj)

n
j=1 ∈ D(A),

fj ̸= 0, j = 1, . . . , n, det(Af − λICn) = 0
}

=
{
λ ∈ C : there exists an f = (fj)

n
j=1 ∈ D(A),

fj ̸= 0, j = 1, . . . , n, ∆(f1, . . . , fn;λ) = 0
}
.

Remark 4.3.

(i) For n = 1, the block numerical range coincides with the usual
numerical range of A, given by

W (A) := {(Af, f) : f ∈ D(A), ∥f∥ = 1};

for n = 2 it is the quadratic numerical range introduced in [11].

(ii) If A is a lower or upper tridiagonal matrix, then

Wn(A) = W (A11) ∪ · · · ∪W (Ann).

(iii) If A is symmetric, A ⊂ A∗, then Wn(A) ⊂ R.
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The next proposition is a straightforward generalization of the fact
that the numerical range contains the quadratic numerical range (see
[13, Proposition 3.2]).

Proposition 4.4. Wn(A) ⊂ W (A).

Proof. If λ0 ∈ Wn(A), there exist f = (fj)
n
j=1 ∈ D(A) ∩ Sn and

c = (cj)
n
j=1 ∈ Cn with ∥c∥ :=

√
|c1|2 + · · ·+ |cn|2 = 1 such that

Afc = λ0c. Then, the vector fc := (cjfj)
n
j=1 ∈ D(A) satisfies

∥fc∥2 =

n∑
j=1

∥cjfj∥2j =

n∑
j=1

|cj |2 = 1,

and we have λ0 = (Afc, c) = (Afc, fc) ∈ W (A). �

The next proposition shows that, for a diagonally dominant n × n
operator matrix A, the block numerical range of a principal minor is
contained in Wn(A) if a certain dimension condition holds (see [15,
Theorem 3.1]); for non-diagonally dominant matrices, this inclusion
only holds for the closures.

Proposition 4.5. Let k ∈ N, 1 ≤ k ≤ n, and I := {i1, . . . , ik} ⊂ N,
1 ≤ i1 < · · · < ik ≤ n. Denote by PI : H1⊕· · ·⊕Hn −→ Hi1⊕· · ·⊕Hik

the projection onto the components i1, . . . , ik of H. If
⊕

i∈I D(Aii)
is a core for PIAP ∗

I and there exists an enumeration i′1, . . . , i
′
n−k of

the elements of the set {1, . . . , n} \ {i1, . . . , ik} =: {i′1, . . . , i′n−k}, with
dimHi′j

> n− j, j = 1, . . . , n− k, then

WHi1⊕···⊕Hik
(PIAP ∗

I ) ⊂ WH1⊕···⊕Hn(A);

if A is diagonally dominant, then

WHi1⊕···⊕Hik
(PIAP ∗

I ) ⊂ WH1⊕···⊕Hn(A).

Proof. The domain of AI := PIAP ∗
I satisfies

D(AI) =
⊕
j∈I

∩
i∈I

D(Aij) ⊃
⊕
j∈I

n∩
i=1

D(Aij) =
⊕
j∈I

Dj .
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Both claims follow if we show that

(4.1) WHi1⊕···⊕Hik
(PIAP ∗

I |⊕i∈IDi) ⊂ WH1⊕···⊕Hn(A).

Indeed, the core property of
⊕

i∈I Di yields that

WHi1⊕···⊕Hik
(PIAP ∗

I ) = WHi1⊕···⊕Hik
(PIAP ∗

I |⊕i∈IDi)

⊂ WH1⊕···⊕Hn
(A);

if A is diagonally dominant, then

D(AI) =
⊕
i∈I

D(Aii) =
⊕
i∈I

Di,

and therefore, PIAP ∗
I |⊕i∈IDi = PIAP ∗

I in (4.1).

We prove (4.1) inductively. For k = n, the claim is trivial. For
k = n−1 there is an l ∈ {1, . . . , n} such that I ∪{ℓ} = {i1, . . . , in−1}∪
{ℓ} = {1, . . . , n}. Then, AI = PIAP ∗

I arises from A by deleting the
ℓth row and column. Denote HI := H1 ⊕ · · · ⊕ Hℓ−1 ⊕ Hℓ+1 ⊕ · · · ⊕
Hn. If λ ∈ WH1⊕···⊕Hℓ−1⊕Hℓ+1⊕···⊕Hn(AI |⊕i∈IDi), then there exists
an element x′ = (x1 · · ·xℓ−1 xℓ+1 · · ·xn)

t ∈ SHI , x′ ∈
⊕

i∈I Di =⊕n
i=1
i ̸=ℓ

∩n
j=1
j ̸=ℓ

D(Aij), such that det
(
(AI)x′ − λ

)
= 0. By assumption,

dim span
{
Aℓ1x1, . . . , Aℓ,ℓ−1xℓ−1, Aℓ,ℓ+1xℓ+1, . . . , Ainxn

}
≤n−1<dimHℓ

and Dℓ =
∩n

j=1 D(Aℓj) ⊂ Hℓ is dense. Hence, there exists an xℓ ∈ Dℓ,

∥xℓ∥ℓ = 1, with

(Ax)ℓj = (Aℓjxj , xℓ)ℓ = 0, j = 1, . . . , ℓ− 1, ℓ+ 1, . . . , n.

Indeed, there exist an orthonormal system {e1, . . . , en} ⊂ Hℓ and
{e′1, . . . , e′n} ⊂ Dℓ with ∥ei − e′i∥ℓ < 1/2, i = 1, 2, . . . , n. Then,
{e′1, e′2, . . . , e′n} are linearly independent. If we let y = α1e

′
1 + · · · +

αne
′
n ∈ Dℓ, then the conditions (Aℓjxj , xℓ)ℓ = 0, j = 1, . . . , ℓ − 1,

ℓ+1, . . . , n, yield a system of n−1 linear equations for the n coefficients
α1, . . . , αn. Choosing a non-trivial solution, we find that xℓ := y/∥y∥
has the desired properties.
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With this choice of xℓ, we have x := (x1, . . . , xℓ−1, xℓ, xℓ+1, . . . , xn)
t

∈ SH ∩D(A) and

Ax =

(Ax)11 · · · (Ax)1,ℓ−1 (Ax)1ℓ (Ax)1,ℓ+1 · · · (Ax)1n
...

...
...

...
(Ax)ℓ−1,1 · · · (Ax)ℓ−1,ℓ−1 (Ax)ℓ−1,ℓ (Ax)ℓ−1,ℓ+1 · · · (Ax)ℓ−1,n

0 · · · 0 (Ax)ℓℓ 0 · · · 0
(Ax)ℓ+1,1 · · · (Ax)ℓ+1,ℓ−1 (Ax)ℓ+1,ℓ (Ax)ℓ+1,ℓ+1 · · · (Ax)ℓ+1,n

...
...

...
...

...
(Ax)n1 · · · (Ax)n,ℓ−1 (Ax)nℓ (Ax)n,ℓ+1 · · · (Ax)nn


.

Thus, det(Ax − λ) =
(
(Ax)ℓℓ − λ

)
det
(
(AI)x′ − λ

)
= 0 and, therefore,

λ ∈ WH1⊕···⊕Hn(A). In the same manner, the case k < n − 1 follows
by induction. �

Remark 4.6. Note that the assumption that A is diagonally dominant
for the last claim of Proposition 4.5 is missing in the case n = 2 in [13,
Theorem 2.5.4], [15, Theorem 3.1].

We mention the dimension condition in Proposition 4.5 always holds
if all components Hi, i = 1, . . . , n, have infinite dimension. If Hi is
finite-dimensional for some i ∈ {1, . . . , n}, then these conditions are
necessary (for counter-examples see [13, Example 1.11.11]).

5. Spectral inclusion. One of the most important features of the
numerical range of a linear operatorA is the spectral inclusion property:

σp(A) ⊂ W (A), σapp(A) ⊂ W (A);

if each of the (at most two) components of C \W (A) contains a point
µ ∈ ρ(A), then

σ(A) ⊂ W (A)

(see, e.g., [9, Theorem 5.3.2]). Here, the approximate point spectrum
of A is defined as

σapp(A) :=
{
λ ∈ C : there exist (f (ν))∞1 ⊂ D(A), ∥f (ν)∥ = 1,

(A− λ)f (ν) → 0, ν → ∞
}
.
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In the following, we prove analogs of these spectral inclusions for
the block numerical range of diagonally dominant unbounded n × n
operator matrices.

Theorem 5.1. σp(A) ⊂ Wn(A).

Proof. The proof of Theorem 5.1 is completely analogous to that in
the case when A is bounded (see [15]), the only difference being that
the eigenvectors now belong to D(A). �

Theorem 5.2. If A is a diagonally dominant n × n operator matrix
of order 0, then

σapp(A) ⊂ Wn(A).

If Ω is a component of C\Wn(A) that contains a point µ ∈ ρ(A), then

Ω ⊂ ρ(A); in particular, if every component of C ⊂ Wn(A) contains a
point µ ∈ ρ(A), then

σ(A) ⊂ Wn(A).

Proof. In the following, let T = diag (A11, . . . , Ann) and S = A−T
be the diagonal and off-diagonal parts of A (see Definition 2.1).

Let λ0 ∈ σapp(A). Then, there exists a sequence

(f (ν))∞ν=1 = ((f
(ν)
1 , . . . , f (ν)

n )t)∞ν=1 ⊂ D(A)

with ∥f (ν)∥ =

√
∥f (ν)

1 ∥21 + · · ·+ ∥f (ν)
n ∥2n = 1 such that

(5.1) (A− λ0)f
(ν) =: h(ν) −→ 0, ν → ∞.

Since A is diagonally dominant of order 0, the off-diagonal part S
of A is A-bounded with A-bound 0 by Remark 2.2. Thus, (5.1)
implies that (Sf (ν))∞1 is bounded. Hence, again by (5.1), (T f (ν))∞1 =

((A − S)f (ν))∞1 is also bounded, i.e., (Ajjf
(ν)
j )∞1 , j = 1, . . . , n, are

bounded. Since Aij is Ajj-bounded (see Proposition 2.3), there exist
aij , bij ≥ 0, and hence, C > 0, such that

∥Aijf
(ν)
j ∥i ≤ aij∥f (ν)

j ∥j + bij∥Ajjf
(ν)
j ∥j ≤ C

for i, j = 1, . . . , n, i ̸= j, ν ∈ N. In summary, we have proved that all

sequences (Aijf
(ν)
j )∞ν=1, i, j = 1, . . . , n, are bounded.
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Now, we choose f̂ (ν) = (f̂
(ν)

1 , . . . , f̂
(ν)

n )t ∈ D(A) ∩ Sn such that

(5.2) f
(ν)
j = ∥f (ν)

j ∥j f̂ (ν)
j , j = 1, . . . , n;

note that f̂
(ν)

j can be arbitrarily chosen if f
(ν)
j = 0.

If lim infν→∞ ∥f (ν)
j ∥j > 0, j = 1, . . . , n, in the sequel we set k := 0

and {j1, . . . , jk} := ∅. If there exists a j1 ∈ {1, . . . , n} with

lim inf
ν→∞

∥f (ν)
j1

∥j1 = 0,

then there is a subsequence (f (νl))∞l=1 for which liml→∞ ∥f (νl)
j1

∥j1 = 0.

If there exists a j2 ∈ {1, . . . , n}\{j1} with lim inf l→∞ ∥f (νl)
j2

∥j2 = 0, we

choose a subsequence (f
(νlm )
j2

)∞m=1 for which limm→∞ ∥f (νlm )
j2

∥j2 = 0.

We continue this process until we have found a subsequence (f (νµ))∞µ=1

and {j1, . . . , jk} ⊂ {1, . . . , n} such that

lim
µ→∞

∥f (νµ)
j ∥j = 0, j ∈ {j1, . . . , jk},(5.3)

lim inf
µ→∞

∥f (νµ)
i ∥i > 0, i ∈ {1, . . . , n} \ {j1, . . . , jk}.(5.4)

Since ∥f (ν)∥ = 1, the set {i1, . . . , in−k} := {1, . . . , n} \ {j1, . . . , jk}
is non-empty. Without loss of generality, we may assume that the
sequence (f (ν))∞ν=1 itself has the above properties and, further,

{j1, . . . , jk} = {1, . . . , k},
{1, . . . , n} \ {j1, . . . , jk} = {k + 1, . . . , n},
dimH1 ≥ · · · ≥ dimHk,

∥f (ν)
i ∥i ≥ γi > 0, ν ∈ N, i = k + 1, . . . , n,

with positive constants γi, i ∈ {k + 1, . . . , n}. Let k0 ∈ {0, 1, . . . , k} be
such that

dimHj > n− j, j = 1, . . . , k0,(5.5)

dimHk0+1 ≤ n− ((k0+1)),(5.6)

and let P be the projection onto the last n− k0 components of H,

P : H1 ⊕ · · · ⊕ Hn −→ Hk0+1 ⊕ · · · ⊕ Hn.
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In the following, we will show that

(5.7) λ0 ∈ Wn−k0(PAP ∗);

then, due to the choice of k0 in (5.5) and Proposition 4.5, we have

Wn−k0(PAP ∗) ⊂ Wn(A), and hence λ0 ∈ Wn(A) as required.

In order to prove (5.7), we first show that for all non-diagonal
elements in the first k0 columns of A = (Aij)

n
i,j=1

(5.8) Aijf
(ν)
j −→ 0, i = 1, . . . , n, j = 1, . . . , k0, i ̸= j.

For this, let i ∈ {1, . . . , n}, j ∈ {1, . . . , k0} , i ̸= j, and ε > 0 be

arbitrary. Since the sequence ((Ajj − λ0)f
(ν)
j )∞ν=1 is bounded, there

exists an M > 0 such that

∥(Ajj − λ0)f
(ν)
j ∥j ≤ M, ν ∈ N.

Since A is diagonally dominant of order 0, the operator Aij is Ajj-
bounded with Ajj-bound 0 if i ̸= j. Hence, there exist constants aij ,
bij ≥ 0 such that bij < ε/(2M) and

∥Aijf
(ν)
j ∥i ≤ aij∥f (ν)

j ∥j + bij∥Ajjf
(ν)
j ∥j

≤ (aij + bij |λ0|)∥f (ν)
j ∥j + bij∥(Ajj − λ0)f

(ν)
j ∥j , ν ∈ N.

Due to (5.3), we can choose N ∈ N with ∥f (ν)
j ∥j < ε/(2(aij + bij |λ0|)),

ν ≥ N . It follows that ∥Aijf
(ν)
j ∥i < ε for ν ≥ N , which proves (5.8).

Using (5.8) for i = k0+1, . . . , n in the last n−k0 components of (5.1),
we conclude that, for ν → ∞,

(PAP ∗ − λ0In−k0)(f
(ν)
k0+1 · · · f

(ν)
n )t =: (g

(ν)
k0+1 · · · g

(ν)
n )t −→ 0.(5.9)

We set f̂
(ν)

0 := (f̂
(ν)

k0+1 · · · f̂
(ν)

n )t and consider the reduced determinant

∆(f̂
(ν)

k0+1, . . . , f̂
(ν)

n ;λ0) = det((PAP ∗)
f̂
(ν)
0

− λ0In−k0)

= det
((

(Aij f̂
(ν)

j , f̂
(ν)

i )i
)n
i,j=k0+1

− λ0In−k0

)
.(5.10)

The sequence of matrices (((Aij f̂
(ν)

j , f̂
(ν)

i )i)
n
i,j=k0+1 − λ0In−k0)

∞
ν=1 is

bounded. In fact, all entries of the first k − k0 columns are bounded
since, by (5.6), the components Hk0+1, . . . ,Hk are finite-dimensional,
so that all operators Aij with i ∈ {k0 + 1, . . . , k} are bounded, and
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∥f̂ (ν)
j ∥j = 1, j = k0 +1, . . . , n; all entries of the last n− k columns are

bounded since

∥Aij f̂
(ν)

j ∥i =
1

∥f (ν)
j ∥j

∥Aijf
(ν)
j ∥i ≤

1

γj
∥Aijf

(ν)
j ∥i, j = k + 1, . . . , n,

and all sequences (Aijf
(ν)
j )∞ν=1 were shown to be bounded (see above).

If we take the scalar product of the n−k0 equations in (5.9) numbered

k0 +1, . . . , n with f̂
(ν)

k0+1, . . . , f̂
(ν)

n and solve, e.g., for (Ainf̂
(ν)

n , f̂
(ν)

i )i,
i = k0 + 1, . . . , n, we obtain(
Ainf̂

(ν)
n , f̂

(ν)
i

)
i

=
1

∥f (ν)
n ∥n

((
g
(ν)
i , f̂

(ν)
i

)
i
−

n−1∑
j=k0+1

∥f (ν)
j ∥j

(
Aij f̂

(ν)
j , f̂

(ν)
i

)
i
+∥f (ν)

i ∥iλ0

)
,

i = k0 + 1, . . . , n− 1,(
Annf̂

(ν)
n , f̂ (ν)

n

)
n
− λ0

=
1

∥f (ν)
n ∥n

((
g(ν)n , f̂ (ν)

n

)
n
−

n−1∑
j=k0+1

∥f (ν)
j ∥j

(
Anj f̂

(ν)
j , f̂ (ν)

n

)
n

)
.

Adding the corresponding multiples of the first n− k0 − 1 columns to
the last column in the determinant in (5.10), we arrive at

∆(f̂
(ν)

k0+1, . . . , f̂
(ν)

n ;λ0)

= det

(((
Aij f̂

(ν)
j , f̂

(ν)
i

)
i

)n k

i=k0+1,j=k0+1

((
Aij f̂

(ν)
j , f̂

(ν)
i

)
i

)n n

i=k0+1,j=k+1

1

∥f (ν)
n ∥n

((
g
(ν)
i , f̂

(ν)
i

)
i

)n
i=k0+1

)
.

The entries in all but the last column are bounded in ν, and the entries

of the last column tend to 0 since g
(ν)
i → 0, ν → ∞, and ∥f (ν)

n ∥n ≥
γn > 0, ν ∈ N. Expanding the determinant with respect to the last
column, we thus obtain

∆(f̂
(ν)

k0+1, . . . , f̂
(ν)

n ;λ0) −→ 0, ν → ∞.
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As ∆(f̂
(ν)

k0+1, . . . , f̂
(ν)

n ; ·) is a monic polynomial, we can write

∆(f̂
(ν)

k0+1, . . . , f̂
(ν)

n ;λ) =

n−k0∏
i=1

(
λ− λ

(ν)
i

)
, ν ∈ N,

where λ
(ν)
i ∈ C, i = 1, . . . , n− k0, are the (not necessarily disjoint) so-

lutions of ∆(f̂
(ν)

k0+1, . . . , f̂
(ν)

n ;λ) = 0, and thus, λ
(ν)
i ∈ Wn−k0(PAP ∗),

i = 1, . . . , n − k0. Now, Hurwitz’s theorem (see [3, Theorem 2.5])
implies that

dist(λ0,W
n−k0(PAP ∗)) ≤ min{|λ(ν)

1 − λ0|, . . . , |λ(ν)
n−k0

− λ0|} −→ 0

for ν → ∞ and thus, λ0 ∈ Wn−k0(PAP ∗) ⊂ Wn(A) by Proposition 4.5
due to the dimension conditions (5.5).

It remains to prove the last claim. By the closed graph theorem,
the approximate point spectrum σapp(A) is the complement of the set
r(A) of points of regular type of A, σapp(A) = C \ r(A), where

r(A) := {λ ∈ C : there is a Cλ > 0 ∥(A− λ)f∥ ≥ Cλ∥f∥, f ∈ D(A)}.

Since A − λ is injective for λ ∈ r(A) and λ 7−→ dimR(A − λ)⊥ is
constant on every component of r(A), the second inclusion is a direct
consequence of the first one. �

Since boundedness and relative compactness both imply relative
boundedness with relative bound 0 in a Hilbert space (see [6, Corol-
lary III.7.7]), the following corollary is immediate from Theorem 5.2.

Corollary 5.3. If each Aij is either bounded or Ajj-compact for all
i, j = 1, . . . , n, i ̸= j, then the spectral inclusions in Theorem 5.2 hold.

In order to show that components of C \ Wn(A) contain points of
ρ(A), stability results for bounded invertibility may be used (see, e.g.,
[9, Chapter IV, Section 1] or [13, Corollary 2.1.5]).

Remark 5.4. Since the numerical range is convex, the complement
C \W (A) has at most two components. The number of components of

C \Wn(A) for n > 1 is still unknown.
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Remark 5.5. In general, the closure A of A need not be an operator
matrix so the block numerical range of A is undefined. However, if A
satisfies the assumptions of Theorem 5.2, then, due to the relations

σp(A) ⊂ σapp(A), σapp(A) = σapp(A),

it follows that

σp(A) ⊂ Wn(A), σapp(A) ⊂ Wn(A).

6. Inclusions among block numerical ranges and Gershgorin
theorems. In this section, we first compare the spectral enclosure
provided by the block numerical range with those provided by lower
order block numerical ranges and, in particular, by the numerical range.

Second, we prove a row sum as well as a column sum Gershgorin
theorem for diagonally dominant operator matrices. For bounded
off-diagonal entries, using either this enclosure or an estimate of the
block numerical range by the matrix Gershgorin theorem, we obtain an
enclosure for the spectrum that depends only upon the numerical ranges
of the diagonal elements and the norms of the off-diagonal entries.

If H = H1 ⊕ · · · ⊕ Hn and H = H̃1 ⊕ · · · ⊕ H̃k with n > k, then the
block numerical range Wn(A) of an operator matrix A with respect
to H1 ⊕ · · · ⊕ Hn need not be contained in W k(A) with respect to

H̃1 ⊕ · · · ⊕ H̃k.

Inclusion does hold if n ≥ k and H1 ⊕ · · · ⊕ Hn is a refinement of
H̃1 ⊕ · · · ⊕ H̃k. Thus, in this case, Wn(A) may give a tighter spectral
inclusion than W k(A).

Theorem 6.1. Let n, k ∈ N, n ≥ k, and let H = H1 ⊕ · · · ⊕ Hn

be a refinement of H = H̃1 ⊕ · · · ⊕ H̃k, that is, there exist integers

0 = i0 < · · · < ik = n with H̃l = Hil−1+1⊕· · ·⊕Hil , l = 1, . . . , k. Then,

WH1⊕···⊕Hn(A) ⊂ WH̃1⊕···⊕H̃k
(A),

or, briefly, Wn(A) ⊂ W k(A) for n ≥ k upon refinement of the
decomposition.

Proof. The proof is similar to the proof for bounded A (see [13,
Theorem 1.11.13]); thus, we only sketch it. It suffices to consider the
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case k = n − 1; the general case follows by induction. If k = n − 1,
there exists a k0 ∈ {1, . . . , n− 1} such that

H̃l = Hl, l ∈ {1, . . . , k0 − 1},

H̃k0 = Hk0 ⊕Hk0+1,

H̃l = Hl+1, l ∈ {k0 + 1, . . . , n− 1};

note that, for k0 = 1 and k0 = n − 1 the first and the last set,
respectively, are empty. If we apply the spectral inclusion theorem
[13, Theorem 1.11.6] for the block numerical range of matrices to each
matrix Af with f ∈ D(A) ∩ SH1⊕···⊕Hk0

⊕Hk0+1⊕···⊕Hn , we obtain

WH1⊕···⊕Hn(A) = WH1⊕···⊕Hk0
⊕Hk0+1⊕···⊕Hn(A)

=
∪{

σ(Af ) : f ∈ D(A) ∩ SH1⊕···⊕Hk0
⊕Hk0+1⊕···⊕Hn

}
⊂
∪

{WC⊕···⊕C2⊕···⊕C(Af ) :f ∈D(A)∩ SH1⊕···⊕Hk0
⊕Hk0+1⊕···⊕Hn

}.

Now the proof is completed in the same manner as the proof of
[13, Theorem 1.11.13] by showing that, for every pair f ∈ D(A) ∩
SH1⊕···⊕Hk0

⊕Hk0+1⊕···⊕Hn and x ∈ C⊕ · · · ⊕C2 ⊕ · · · ⊕C, there exists

a g ∈ D(A) ∩ SH1⊕···⊕Hn such that σ((Af )x) = σ(Ag), and hence,
WC⊕···⊕C2⊕···⊕C(Af ) ⊂ WH1⊕···⊕Hn(A). �

Remark 6.2. Note that the inclusion Wn(A) ⊂ W (A) proved in
Proposition 4.4 for every decomposition H = H1 ⊕ · · · ⊕ Hn is the
special case k = 1 of Theorem 6.1.

The classical row sum Gershgorin theorem for matrices (see [8,
Theorem 6.1.1]) was extended by Salas to bounded n × n operator
matrices (see [12] and also [13, Section 1.13]); the proof generalizes
Householder’s proof using a Neumann series argument with respect to
the operator norm induced by the ||| · |||∞ norm on H = H1⊕· · ·⊕Hn,

|||f |||∞ := max{∥f1∥1, . . . , ∥fn∥n}, f = (f1, . . . , fn)
t ∈ H.

Here, we prove both a row sum Gershgorin theorem as well as a
column sum Gershgorin theorem for unbounded diagonally dominant
n× n operator matrices.
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In the row sum case, we modify Householder’s proof by using a differ-
ent factorization in (6.2) below in which the factor diag (A11, . . . , Ann)
is on the right; this allows us to use the dominance relations within
columns to obtain a more elegant result.

Theorem 6.3 (Row sum Gershgorin theorem). Let A be a diagonally
dominant n×n operator matrix with closed diagonal elements Ajj and
Ajj-bounds δij of Aij such that

∑n
j=1
j ̸=i

δij < 1, and let aij, bij ≥ 0 be

such that
∑n

j=1
j ̸=i

bij < 1 and

(6.1) ∥Aijfj∥i ≤ aij∥fj∥j + bij∥Ajjfj∥j , fj ∈ D(Ajj) ⊂ D(Aij),

for i, j = 1, 2, . . . , n, i ̸= j. Then, σ(A) ⊂ Grow(A) where

Grow(A) :=

n∪
j=1

(
σ(Ajj)∪

{
λ∈ρ(Ajj) :

n∑
i=1
i ̸=j

∥∥Aij(Ajj − λ)−1
∥∥ ≥ 1

})

⊂
n∪

j=1

(
σ(Ajj)∪

{
λ∈ρ(Ajj) :

∥∥(Ajj−λ)−1
∥∥( n∑

i=1
i ̸=j

(
aij + |λ|bij

))

≥ 1−
n∑

i=1
i ̸=j

bij

})
.

Proof. First, we note that the assumptions on δij imply that A is
diagonally dominant of order < 1 and hence closed by Theorem 3.1.
Suppose that λ /∈

∪n
j=1 σ(Ajj). Then, since A is diagonally dominant,

(6.2) A− λ =
(
IH + C(λ)

)A11−λ 0
. . .

0 Ann−λ


where C(λ) is the bounded operator matrix

C(λ) :=


0 A12(A22−λ)−1 · · · A1n(Ann−λ)−1

A21(A11−λ)−1 0 A2n(Ann−λ)−1

...
. . .

...

An1(A11−λ)−1 · · · · · · 0

 .
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If we equipH = H1⊕· · ·⊕Hn with the norm |||(fi)ni=1|||1 =
∑n

i=1 ∥fi∥i,
and denote the corresponding operator norm by ||| · |||1 as well, then

|||C(λ)|||1 ≤ n
max
j=1

n∑
i=1
i̸=j

∥Aij(Ajj − λ)−1∥.

If λ /∈ Grow(A), then
∑n

i=1
i ̸=j

∥∥Aij(Ajj − λ)−1
∥∥ < 1 for all j = 1, 2, . . . , n,

and thus, |||C(λ)|||1 < 1. By (6.2), this implies λ ∈ ρ(A), which proves
the inclusion σ(A) ⊂ Grow(A).

The relative bounds δij are defined as the infima of all bij ≥ 0 such
that there exists an aij ≥ 0 with (6.1) (compare to (2.4)). Hence, the
assumption

∑n
j=1
j ̸=i

δij < 1 implies the existence of aij , bij ≥ 0 with∑n
j=1
j ̸=i

bij < 1 and (6.1). Now, the inclusion for Grow(A) follows if we

use that, by (6.1),

∥Aij(Ajj − λ)−1∥ ≤ (aij + |λ|bij)∥(Ajj − λ)−1∥+ bij

for i, j = 1, 2, . . . , n, i ̸= j. �

Theorem 6.4 (Column sum Gershgorin theorem). Let A be a diago-
nally dominant n×n operator matrix with closed diagonal elements Ajj

and Ajj-bounds δij of Aij such that
∑n

j=1
j ̸=i

δij < 1, and let aij, bij ≥ 0

be such that
∑n

j=1
j ̸=i

bij < 1 and

∥Aijfj∥i ≤ aij∥fj∥j + bij∥Ajjfj∥j , fj ∈ D(Ajj) ⊂ D(Aij),

for i, j = 1, 2, . . . , n, i ̸= j. Then, σ(A) ⊂ Gcol(A) where

Gcol(A) :=

n∪
i=1

(
σ(Aii) ∪

{
λ∈ρ(Aii) :

n∑
j=1
j ̸=i

∥Aij(Ajj − λ)−1∥ ≥ 1

})

⊂
n∪

j=1

(
σ(Ajj) ∪

{
λ∈ρ(Ajj) :

n∑
j=1
j ̸=i

∥(Ajj − λ)−1∥(aij + |λ|bij)

≥ 1−
n∑

j=1
j ̸=i

bij

})
.
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Proof. The proof is analogous to that of Theorem 6.3 if we equip
H = H1⊕· · ·⊕Hn with the norm |||(fi)ni=1|||∞ = maxni=1 ∥fi∥i, denote
the corresponding operator norm by ||| · |||∞ and use the estimate

|||C(λ)|||∞ ≤ n
max
i=1

∑
j=1
j ̸=i

∥Aij(Ajj − λ)−1∥. �

If the off-diagonal entries Aij , i ̸= j, of A are bounded, we can
choose aij = ∥Aij∥, bij = 0, i ̸= j, in Theorems 6.3 and 6.4. For the set
Gcol(A) in Theorem 6.4 we obtain the corresponding inclusion merely by
replacing

∥∥Aij(Ajj−λ)−1
∥∥ by ∥∥Aij

∥∥∥∥(Ajj−λ)−1
∥∥ and is thus omitted.

For the set Grow(A) in Theorem 6.3 we obtain the following inclusion.

Corollary 6.5. Let A be an n× n operator matrix as in Theorem 6.3
with bounded off-diagonal entries. Then,

Grow(A)⊂
n∪

j=1

(
σ(Ajj) ∪

{
λ∈ρ(Ajj) :∥(Ajj − λ)−1∥−1≤

n∑
i=1
i ̸=j

∥Aij∥

})
.

The disadvantage of using Gershgorin-type theorems is that they
involve the norms of inverses of the diagonal entries Ajj . If we
estimate the latter in terms of the numerical ranges of Ajj , the following
enclosures are immediate from Theorem 6.3 and Corollary 6.5.

Corollary 6.6. Let A be a diagonally dominant n×n operator matrix
as in Theorem 6.3 and aij, bij as in (6.1). Then,

Grow(A)⊂
n∪

j=1

{
λ∈C :dist (λ,W (Ajj)) ≤

∑n
i=1
i ̸=j

(aij + |λ|bij)

1−
∑n

i=1
i ̸=j

bij

}
;

if the off-diagonal entries Aij, i ̸= j, are bounded, then

Grow(A)⊂
n∪

j=1

{
λ∈C :dist (λ,W (Ajj)) ≤

n∑
i=1
i ̸=j

∥∥Aij

∥∥}.(6.3)
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Remark 6.7. The set on the right hand side of (6.3) also contains the
block numerical range of A,

Wn(A) ⊂
n∪

j=1

{
λ ∈ C : dist (λ,W (Ajj)) ≤

n∑
i=1
i̸=j

∥Aij∥

}
;

this follows if we apply the matrix Gershgorin theorem to each matrix
Af , f = (fj)

n
j=1 ∈ D(A) ∩ Sn, in Definition 4.1 of Wn(A) and use

that dist (λ,W (Ajj)) ≤ |(Ajjfj , fj)j − λ| and |(Aijfj , fi)i| ≤ ∥Aij∥,
i, j = 1, 2, . . . , n, i ̸= j.

In the next section, we show that, for self-adjoint tridiagonal 3 × 3
operator matrices, the block numerical range indeed yields tighter
estimates than, e.g., the row sum Gershgorin theorem.

7. Self-adjoint n×n operator matrices and applications. In
this section, we show that the block numerical range may give tighter
spectral enclosures than the numerical range, classical perturbation
theory and Gershgorin-type enclosures. It is remarkable that this effect
occurs even for self-adjoint operator matrices.

Here, we consider the cubic numerical range (n = 3) of self-adjoint
tridiagonal operator matrices with semi-bounded diagonal entries and
bounded off-diagonal entries. Toward this end, we need the following
elementary lemma on the eigenvalues of 3× 3 matrices.

Lemma 7.1. Let aii ∈ R, aij ∈ C, i ̸= j, i, j = 1, 2, 3, and consider
the Hermitian tridiagonal 3× 3 matrix

M :=

a11 a12 0
a12 a22 a23
0 a23 a33

 .

Then, the eigenvalues λ1 ≤ λ2 ≤ λ3 of M have the following properties:

(i) λk, k = 1, 2, 3, depends only upon aii ∈ R, i = 1, 2, 3, and upon
|a12|, |a23| ∈ R;

(ii) for fixed a12, a23 ∈ C, λk, k = 1, 2, 3, is a monotonically
increasing function of each aii ∈ R, i ∈ {1, 2, 3};



312 TULKIN H. RASULOV AND CHRISTIANE TRETTER

(ii′) for fixed a12, a23 ∈ C, λk, k = 1, 2, 3, is a strictly monotonically
increasing function of aii ∈ R, i ∈ {1, 2, 3}, provided that λk is not an
eigenvalue of any principal minor of M not containing the ith row and
column;

(iii) for fixed aii ∈ R, i = 1, 2, 3, λ1 (respectively, λ3) is a mono-
tonically decreasing (respectively, increasing) function of |a12|, |a23|,
separately ;

(iv) λk, k = 1, 2, 3, are given by the formulae:

λk =
1

3
(a11 + a22 + a33) if a11 = a22 = a33, a12 = a23 = 0,

λk =
1

3
(a11 + a22 + a33) + 2

√
−p

3
cos

φ+ 2kπ

3
otherwise,(7.1)

where, in the latter case,

p := −1

6
((a11 − a22)

2 + (a11 − a33)
2 + (a22 − a33)

2)(7.2)

− |a12|2 − |a23|2 (< 0),

q := |a12|2a33 + |a23|2a11 − a11a22a33 −
2

27
(a11 + a22 + a33)

3(7.3)

+
1

3
(a11a22 + a11a33 + a22a33 − |a12|2 − |a23|2)

· (a11 + a22 + a33),

φ := arccos

(
− 3q

2p

√
−3

p

)
;(7.4)

(v) if a11 = a22 = a33 = min3i=1 aii, then q = 0, and hence,

(7.5) λk ≥
3

min
i=1

aii −
√
|a12|2 + |a23|2, k = 1, 2, 3;

if at least two of the aii, i = 1, 2, 3, are different and λk is not an
eigenvalue of any proper principal minor of M , then the inequality in
(7.5) is strict.
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Proof.

(i) Since the eigenvalue equation

(7.6)
λ3 −

(
a11 + a22 + a33

)
λ2 +

(
a11a22 + a11a33 + a22a33

)
λ

− a11a22a33 =
(
|a12|2 + |a23|2

)
λ− |a12|2a33 − |a23|2a11

for M depends only upon aii ∈ R, i = 1, 2, 3, and |a12|, |a23| ∈ R,
claim (i) is obvious.

(ii) By the classical min-max principle, the eigenvalues λk of M ,
k = 1, 2, 3, can be characterized as

λ1 = min
x∈S3

(Mx, x),

λ2 = max
y∈S3

min
x∩ S3,x⊥y

(Mx, x),

λ3 = max
x∈S3

(Mx, x).

Since, for x = (x1, x2, x3) ∈ S3, the quadratic form

(7.7)
(Mx, x) =a11|x1|2 + a22|x2|2 + a33|x3|2

+ 2Re(a12x2x1) + 2Re(a23x3x2)

is a monotonically increasing function with respect to aii, i ∈ {1, 2, 3},
claim (ii) follows.

(ii′) We denote byMlm ∈ M2(C) the principal minor ofM consisting
of the lth and mth row and column, and set Ml = (all) ∈ M1(R),
l = 1, 2, 3.

Let k, i ∈ {1, 2, 3}, and let xk = (xk
1 , x

k
2 , x

k
3)

t ∈ C3, ∥xk∥ = 1, be
an eigenvector of M at λk. Then, (7.7) shows that λk = (Mxk, xk)
is strictly increasing with respect to aii if xk

i ̸= 0. In order to prove
the claim, we show that the assumption implies that xk

i ̸= 0. First, let
i = 1 and assume, to the contrary, that xk

1 = 0. Then, the eigenvalue
equation Mxk = λkx

k becomes a12x
k
2

a22x
k
2 + a23x

k
3

a23x
k
2 + a33x

k
3

 = λk

 0
xk
2

xk
3

 .

Then, either a12 = 0 and λk is an eigenvalue of M23 or xk
2 = 0 and

λk = a33 is an eigenvalue of M3, a contradiction to the assumption.
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For i = 3, the proof is analogous; here, xk
3 = 0 yields the contradic-

tion a23 = 0 and λk is an eigenvalue of M12 or λk = a11 is an eigenvalue
of M1.

For i = 2, the assumption xk
2 = 0 implies that a11x
k
1

a12x
k
1 + a23x

k
3

a33x
k
3

 = λk

xk
1

0
xk
3

 .

Since ∥xk∥ = 1, either xk
1 ̸= 0 or xk

3 ̸= 0, and hence, either λk = a11 is
an eigenvalue of M1 or λk = a33 is an eigenvalue of M3, both of which
contradict the assumption.

(iii) We fix aii ∈ R, i = 1, 2, 3, and |a23|; the proof for fixed |a12| is
completely analogous. If we denote the right hand side of the eigenvalue
equation (7.6) by g(λ, |a12|), then the eigenvalues λk, k = 1, 2, 3, as
functions of |a12| can be viewed as the intersection points of a fixed
monic cubic polynomial with the family of linear polynomials g(·, |a12|),
|a12| ∈ [0,∞),

(λ− a11)(λ− a22)(λ− a33) = g(λ, |a12|), λ ∈ R.

The family of lines g(·, |a12|), |a12| ∈ [0,∞), intersects in the point
λ = a33 and has the common value |a23|2(a33−a11) there; at the point
λ = a11 the value is |a12|2(a11 − a33). Hence, all of these lines are non-
positive at min{a11, a33} and non-negative at max{a11, a33}. Since the
slopes

(
|a12|2 + |a23|2

)
are monotonically increasing in |a12| ∈ [0,∞),

the claimed monotonicity of λ1 and λ3 with respect to |a12| ∈ [0,∞)
follows.

(iv) By the change of variables

(7.8) x = λ− 1

3
(a11 + a22 + a33),

(7.6) is reduced to the depressed cubic equation x3 + px + q = 0 with
p, q given by (7.2) and (7.3), respectively; note that p ≤ 0. Since the
matrix M is Hermitian, it has only real eigenvalues λ1 ≤ λ2 ≤ λ3. This
is the case of non-positive discriminant, 27q2 +4q3 ≤ 0, and hence, the
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roots of the depressed equation are given by

2xk = 0, k = 1, 2, 3, if p = 0;

xk = 2

√
−p

3
cos

φ+ 2kπ

3
, k = 1, 2, 3, if p < 0,

(see [4, Theorem 1.3.3]; note that we changed the order of the roots to
achieve that they are enumerated increasingly, i.e., x1 ≤ x2 ≤ x3. This
and (7.8) yield the formulae for λk, k = 1, 2, 3.

(v) Clearly, if a11 = a22 = a33, then p = −(|a12|2 + |a23|2) and

q = 0. Hence, φ = π/2 and cos(((π/2) + 2π)/3) = −
√
3/2 which

implies λ1 ≥ min3i=1 aii −
√
−p. The last claim follows if we use the

strict monotonicity from (ii′). �

In the following theorem, we consider self-adjoint tridiagonal 3 × 3
operator matrices whose diagonal entries are all semi-bounded either
from below or from above.

We assume that both off-diagonal entries A12, A23 are non-zero;
otherwise, the cubic numerical range is simply the union of a quadratic
numerical range and a numerical range. For simplicity, we assume that
the off-diagonal entries are bounded.

Theorem 7.2. Let

A =

A11 A12 0
A∗

12 A22 A23

0 A∗
23 A33

 =

A11 0 0
0 A22 0
0 0 A33


︸ ︷︷ ︸

=T

+

 0 A12 0
A∗

12 0 A23

0 A∗
23 0


︸ ︷︷ ︸

S

with Aii = A∗
ii, i = 1, 2, 3, all bounded from below and bounded A12,

A23 ̸= 0. Then, A = A∗ is bounded from below with

minσ(A)= infW 3(A)≥w3
−(A) :=

1

3

3∑
i=1

ai+2

√
−p0

3
cos

φ0+2π

3
(7.9)

where ai := minσ(Aii), i = 1, 2, 3, and

p0 := −1

6

3∑
i,j=1
i<j

(ai − aj)
2 − ∥A12∥2 − ∥A23∥2;
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q0 := ∥A12∥2a3 + ∥A23∥2a1 − a1a2a3 −
2

27
(a1 + a2 + a3)

3

+
1

3
(a1a2 + a1a3 + a2a3 − ∥A12∥2 − ∥A23∥2)(a1 + a2 + a3);

φ0 := arccos

(
− 3q0

2p0

√
− 3

p0

)
.

Moreover, the lower bound w3
−(A) of W 3(A) satisfies the inequality

(7.10) w3
−(A) ≥ minσ(T )− (∥A12∥2 + ∥A23∥2)1/2,

and strict inequality prevails if at least two of the lower bounds
minσ(Aii), i = 1, 2, 3, of the diagonal elements are different.

Remark 7.3.

(i) The estimate (7.9) also holds for any ai with Aii ≥ ai, i = 1, 2, 3.

(ii) If, in Theorem 7.2, all Aii = A∗
ii, i = 1, 2, 3, are bounded

from above, an analogous estimate holds for maxσ(A) ≤ w3
+(A) where

w3
+(A) is given by (7.9) with ai := maxσ(Aii), i = 1, 2, 3.

Proof. Let f = (f1, f2, f3) ∈ D(A) ∩ S3, i.e., ∥fi∥i = 1, i = 1, 2, 3,
and consider

Af =
((

Aijfj , fi
)
i

)3
i,j=1

=

(A11f1, f1)1 (A12f2, f1)1 0
(A∗

12f1, f2)2 (A22f2, f2)2 (A23f3, f2)2
0 (A∗

23f2, f3)3 (A33f3, f3)3

.

By Lemma 7.1, Af has three eigenvalues λ1(f) ≤ λ2(f) ≤ λ3(f)
where λ1(f) is a monotonically increasing function of (Aiifi, fi)i ∈ R,
i = 1, 2, 3, separately and a monotonically decreasing function of
|(A12f2, f1)1|, |(A23f3, f2)2| separately. If we use this monotonicity
together with the inequalities

(Aiifi, fi)i ≥ ai ≥ minσ(T ), i = 1, 2, 3,(7.11)

|(A12f2, f1)1|, |(A∗
12f1, f2)2| ≤ ∥A12∥,

|(A23f3, f2)2|, |(A∗
23f2, f3)3| ≤ ∥A23∥,

(7.12)

in the formulae for λk(f) according to Lemma 7.1 (iv) and (v), then
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the first inequality in (7.11), yields that

infW 3(A) = inf
f∈D(A)∩ S3

λ1(f) ≥
1

3

3∑
i=1

ai + 2

√
−p0

3
cos

φ0 + 2π

3
,

while the second inequality in (7.11) with equal lower bound for
(Aiifi, fi)i, i = 1, 2, 3, together with (7.5), gives (7.10).

SinceA is self-adjoint and semi-bounded, it follows thatW 3(A) ⊂ R,
C \W 3(A) has one component, and C \R ⊂ ρ(A). Thus, Theorem 5.2

shows that σ(A) ⊂ W 3(A), and hence, minσ(A) ≥ infW 3(A), which
completes the proof of (7.10).

Finally, suppose that at least two of the ai = minσ(Aii), i = 1, 2, 3,
are different, minσ(Ai0i0) > minσ(T ) for some i0 ∈ {1, 2, 3}. Since the
strict monotonicity in Lemma (7.1) (ii′) only holds under additional
assumptions, we distinguish two cases.

First, assume that infW 3(A) < infW#I(AI) for all proper prin-
cipal minors AI of A with I ( {1, 2, 3}, and let ε > 0 with
infW 3(A) + ε < infW#I(AI) for all I ( {1, 2, 3} be arbitrary.
Then, there exists an fε = (fε

1 , f
ε
2 , f

ε
3 ) ∈ D(A) ∩ S3 such that

λ1(f
ε) < infW 3(A) + ε < infW#I(AI) for all I ( {1, 2, 3}. Hence,

λ1(f
ε) is not an eigenvalue of any proper principal minor of Afε .

According to Lemma 7.1 (ii′), λ1(f
ε) is strictly monotonically in-

creasing with respect to (Ai0i0f
ε
i0
, fε

i0
)i0 . Now, the strict inequality

(Ai0i0f
ε
i0
, fε

i0
)i0 ≥ minσ(Ai0i0) > minσ(T ) and the inequalities (7.11)

for i ∈ {1, 2, 3} \ {i0} yield that strict inequality in (7.10) holds.

Finally, suppose that infW 3(A) = infW#I(AI) for some proper
principal minor AI of A with I ( {1, 2, 3, }. If I = {i} with
i ∈ {1, 2, 3}, then infW 3(A) = infW (Aii) = minσ(Aii) ≥ minσ(T ) >
minσ(T ) − (∥A12∥2 + ∥A23∥2)1/2 since A12, A23 ̸= 0 by assumption.
If I = {1, 3}, then infW 3(A) = infW 2(diag(A11, A33)) ≥ minσ(T ) >
minσ(T )−(∥A12∥2+∥A23∥2)1/2, as before. If I = {1, 2}, then classical
perturbation theory for A12 shows that infW 3(A) = infW 2(A12) ≥
mini=1,2 σ(Aii) − ∥A12∥ > minσ(T ) − (∥A12∥2 + ∥A23∥2)1/2 since
A23 ̸= 0 by assumption; the case I = {2, 3} is analogous. �

Remark 7.4. Let A be a self-adjoint n × n operator matrix in
H = H1⊕ · · ·⊕Hn with diagonal elements Aii all bounded from below
and bounded off-diagonal entries.
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(i) The row sum Gershgorin enclosure in Corollary 6.5 yields the
lower bound

minσ(A) ≥ inf Grow(A) ≥ grow,−(A) :=
n

min
i=1

(
minσ(Aii)−

n∑
j=1
i ̸=j

∥Aij∥

)
since here, for i = 1, 2, . . . , n,

∥(Aii − λ)−1∥ =
1

minσ(Aii)− λ
, λ < minσ(T ) ≤ minσ(Aii);

analogous bounds can be derived for maxσ(A).

(ii) Classical perturbation theory, more precisely, a Neumann series
argument, gives the lower bound

minσ(A) ≥ p−(A) :=
n

min
i=1

(minσ(Aii))− ∥S∥

since, for λ < p−(A), we have A− λ = (T − λ)(IIH +S(T − λ)−1) and

∥S(T − λ)−1∥ ≤ ∥S∥
dist (λ, σ(T ))

=
∥S∥

minni=1(minσ(Aii))− λ
< 1.

Remark 7.5. If, in Theorem 7.2, all Aii have the same lower bound,
then the lower bound w3

−(A) in (7.9) satisfies (7.10),

w3
−(A) ≥ minσ(T )− (∥A12∥2 + ∥A23∥2)1/2;

the same estimate holds for the perturbation bound in Remark 7.4 (ii),

p−(A) = minσ(T )− ∥S∥ ≥ minσ(T )−
(
∥A12∥2 + ∥A23∥2

)1/2
.

The next example shows that the lower bound for the spectrum pro-
vided by the block numerical range is tighter than the bounds furnished
by the Gershgorin enclosures and by classical perturbation theory.

Example 7.6. Let a ≥ 0, and consider the 3× 3 matrix

A = (aij)
3
i,j=1 =

 a −1 0
−1 0 1
0 1 −a

 =

a 0 0
0 0 0
0 0 −a


︸ ︷︷ ︸

T

+

 0 −1 0
−1 0 1
0 1 0


︸ ︷︷ ︸

S

.
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Here, W 3(A) = σp(A), and thus, minW 3(A) = −
√
a2 + 2. With

the notation of Theorem 7.2, we have a1 = a, a2 = 0, a3 = −a,
∥A12∥ = ∥A23∥ = 1, p0 = −a2 − 2, q0 = 0, φ0 = −π/2. Hence, the
lower bound w3

−(A) in Theorem 7.2 becomes

w3
−(A) =

2
√
a2+ 2√
3

cos

(
5π

6

)
= −

√
a2+ 2 = minW 3(A) = minσ(A),

and is thus sharp. This also follows from the proof of Theorem 7.2
since all Hi, i = 1, 2, 3, have dimension 1, and thus, the estimates
(7.11), (7.12) become equalities.

Gershgorin’s row sum theorem for matrices (see [7, Theorem 6.1.1]
or Remark 7.4 with Hi = C) yields the lower bound

grow,−(A) =
3

min
i=1

(
aii −

3∑
j=1
i̸=j

|aij |

)
= min{a− 1,−2,−a− 1}

=

{
−2 a ≤ 1,

−a− 1 a ≥ 1,

and classical perturbation theory with respect to the diagonal gives the
lower bound

(7.13) p−(A) = minσ(T )− ∥S∥ = −a−
√
2.

The only parameter value for which the three different bounds coincide
is a = 0 where all diagonal elements are equal. For all a > 0, both
the Gershgorin and the perturbation bound are worse than the bound
w3

−(A) provided by the cubic numerical range (see Figure 1).

As an example, we apply Theorem 7.2 to three-channel Hamiltonians
arising in non-relativistic quantum mechanics.

Example 7.7. A simple model of interaction between two confined
channels (e.g., a quark/anti-quark system) and a scattering channel
(e.g., a two-hadron system) leads to a three-channel Hamiltonian of
the form

H :=

−∇2/2 + U1 V12 0
V12 −∇2/2 + U2 V23

0 V23 −∇2/2
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Figure 1. Lower bounds w3
−(A) (red/solid, cubic numerical range),

grow,−(A) (blue/dashed, Gershgorin), and p−(A) (green/dash-dotted, per-
turbation theory) as functions of a.

in the Hilbert space L2(R3)⊕L2(R3)⊕L2(R3); here ~, the quark mass,
and the hadronic ground state mass have been normalized to unity. We
decompose H = H0 +V with

H0 :=

H
(1)
c 0 0

0 H
(2)
c 0

0 0 Hs

 , V :=

 0 V12 0
V12 0 V23

0 V23 0

 .

For the Hamiltonians H
(i)
c = −∇2/2 + Ui, i = 1, 2, in the confined

channels, we assume that the potential Ui is such that H
(i)
c is self-

adjoint in L2(R3) and bounded from below with discrete spectrum,

H
(i)
c ≥ −ωi where ωi > 0,

σ(H(i)
c ) = σp(H

(i)
c ) = {µ(i)

n : n ∈ N} ⊂ [−ωi,∞)

accumulating only at∞; this includes, e.g., three-dimensional harmonic
oscillators.

The unperturbed Hamiltonian Hs = −∇2/2 in the scattering chan-
nel, which is the kinetic energy operator for the relative motion between
the two hadrons, is self-adjoint and non-negative in L2(R3) with con-
tinuous spectrum, σ(Hs) = σc(Hs) = [0,∞).
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The off-diagonal terms Vij and Vji = Vij , |i − j| = 1, i, j = 1, 2, 3,
represent the coupling between the channels. We suppose that V21 =

V12 is H
(1)
c -bounded with relative bound δ21, V12 and V32 = V23 are

H
(2)
c -bounded with relative bounds δ12 and δ32, respectively, and V23

is Hs-bounded with relative bound δ23. If

√
2max

{
δ21,

√
δ212 + δ232, δ32

}
< 1,

then H is diagonally dominant of order < 1, whence self-adjoint on the
domain

D(H) = D(H(1)
c )⊕D(H(2)

c )⊕D(Hs)

and bounded from below. If the potentials Vij are essentially bounded,
Vij ∈ L∞(R3), then Theorem 7.2 and Remark 7.4 give the following
lower bounds for the spectrum of H.

Since ω1, ω2 > 0, Theorem 7.2 shows that

minσ(H) ≥ w3
−(H) = −1

3
(ω1 + ω2) + 2

√
−p0

3
cos

φ0 + 2π

3

> min{−ω1,−ω2} −
(
∥V12∥2 + ∥V23∥2

)1/2
,

where

p0 := −1

6

(
(ω1 − ω2)

2 + ω2
1 + ω2

2

)
− ∥V12∥2 − ∥V23∥2;

q0 := ∥V23∥2ω1 −
2

27
(ω1+ω2)

3 +
1

3

(
ω1ω2 − ∥V12∥2 − ∥V23∥2

)
(ω1+ω2);

φ0 := arccos

(
− 3q0

2p0

√
− 3

p0

)
.

Since H is self-adjoint, both the row and column sum Gershgorin
enclosure give the lower bound (see Remark 7.4 (i))

minσ(H) ≥ grow,−(H) = gcol,−(H)

= min{−ω1 − ∥V12∥,−ω2 − ∥V12∥ − ∥V23∥},

while classical perturbation theory yields (see Remark 7.4 (ii))

minσ(H) ≥ p−(H) = min{−ω1,−ω2} − ∥V ∥,

where ∥V ∥ = max∥f∥=1 ∥V f∥.
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Finally, the quadratic numerical range W 2(A) with respect to the
two different 2× 2 operator matrix decompositions

H =

−∇2/2 + U1 V12 0
V12 −∇2/2 + U2 V23

0 V23 −∇2/2

 =:

(
Ã11 Ã12

Ã21 Ã22

)
,(7.14)

H =

−∇2/2 + U1 V12 0

V12 −∇2/2 + U2 V23

0 V23 −∇2/2

 =:

(
Â11 Â12

Â21 Â22

)
,(7.15)

in L2(R3)2 ⊕L2(R3) and L2(R3)⊕L2(R3)2, respectively, also provides
lower bounds.

Toward this end, in each case, we apply [13, Theorem 5.6] twice,

first to the 2×2 operator matrices Ã11 and Â22 to estimate the minima
of their spectra and then to the 2 × 2 operator matrices in (7.14) and
(7.15). If we set

δ12 := ∥V12∥ tan
(1
2
arctan

2∥V12∥
|ω1 − ω2|

)
≤ ∥V12∥,

δ23 := ∥V23∥ tan
(1
2
arctan

2∥V23∥
ω2

)
< ∥V23∥,

then [13, Theorem 5.6] applied to Ã11 and to Â22 yields the estimates

min{−ω1, −ω2} − δ12 ≤ minσ(Ã11) ≤ min{−ω1, −ω2},

−ω2 − δ23 ≤ minσ(Â22) ≤ −ω2.

If we define

δ̃23 := ∥V23∥ tan
(1
2
arctan

2∥V23∥
|minσ(Ã11)−minσ(Ã22)|

)
≤ ∥V23∥ tan

(1
2
arctan

2∥V23∥
min{ω1, ω2}

)
< ∥V23∥,

δ̂12 := ∥V12∥ tan
(1
2
arctan

2∥V12∥
|minσ(Â11)−minσ(Â22)|

)
≤ ∥V12∥ tan

(1
2
arctan

2∥V12∥
min{|ω2 − ω1|, |ω2 − ω1 + δ23|}

)
≤ ∥V12∥,

δV := min{δ12 + δ̃23, δ̂12 + δ23} < ∥V12∥+ ∥V23∥,
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then [13, Theorem 5.6] applied to the two different 2 × 2 operator
matrices in (7.14) and (7.15) yields the two estimates

minσ(H) ≥ min{minσ(Ã11), 0} − δ̃23 ≥ min{−ω1,−ω2} − δ12 − δ̃23,

minσ(H) ≥ min{−ω1,minσ(Â22)}−δ̂12 ≥ min{−ω1,−ω2 − δ23}−δ̂12

or, combining both bounds,

min σ(H) ≥ w2
−(H)

:= max{min{−ω1,−ω2}−δ12−δ̃23,min{−ω1,−ω2−δ23}−δ̂12}
≥ min{−ω1,−ω2} − δV > min{−ω1,−ω2} −

(
∥V12∥+ ∥V23∥

)
.

Note that, since

−
(
∥V12∥2 + ∥V23∥2

)1/2 ≥ −
(
∥V12∥+ ∥V23∥

)
,

the lower bound for w3
−(H) in (7.14) obtained from the cubic numerical

range is better than the lower bound for w2
−(H) in (7.16) obtained from

the two possible quadratic numerical ranges.
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