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α-POSITIVE/α-NEGATIVE
DEFINITE FUNCTIONS ON GROUPS

JAESEONG HEO

ABSTRACT. In this paper, we introduce the notions of
an α-positive/α-negative definite function on a (discrete)
group. We first construct the Naimark-GNS type representa-
tion associated to an α-positive definite function and prove
the Schoenberg type theorem for a matricially bounded α-
negative definite function. Using a J-representation on a
Krein space (K, J) associated to a nonnegative normalized
α-negative definite function, we also construct a J-cocycle
associated to a J-representation. Using a J-cocycle, we show
that there exist two sequences of α-positive definite func-
tions and proper (α, J)-actions on a Krein space (K, J) corre-
sponding to a proper matricially bounded α-negative definite
function.

1. Introduction. In operator algebras, positive definite functions
on a group correspond to a completely positive linear map on a C∗-
algebra. This has many applications in mathematics, particularly, in
harmonic analysis [3]. Moreover, a positive definite function on a group
naturally occurs in the unitary representation theory of a group on a
Hilbert space due to GNS construction. In this paper, we are concerned
with an α-positive/α-negative definite function on a discrete group,
where positive definiteness is replaced by a more weakened positivity
which we call “α-positive definiteness.” Structures and properties of
local quantum field theories without positivity were studied in [13, 14]
in connection with their Euclidean formulations.
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A Krein space is a Hilbert space equipped with an indefinite inner
product, which arises naturally in massless or gauge field theory where
the positivity condition must be abandoned. Due to such physical facts,
GNS construction of a Krein space is of increasing interest in the general
(axiomatic) quantum field theory [2, 4, 5]. It is also known that the
geometry of a Krein space is much richer than that of an ordinary space
with an indefinite metric. Motivated by a metric operator introduced
by Jakobczyk and Strocchi [13] and a P -functional in [2], Heo, Hong
and Ji [9] introduced the notion of an α-completely positive linear
map between two C∗-algebras, and Heo and Ji [10] proved a Radon-
Nikodým type theorem for α-completely positive linear maps. In [7],
the author introduced a notion of an α-completely positive linear map
of a topological group with an involution into a C∗-algebra and proved
a (covariant) Naimark-KSGNS representation theorem for a (covariant)
α-completely positive linear map. Recently, Joita [15] also studied an
operator valued α-completely positive map on a group.

The purpose of this paper is to introduce the notion of an α-posi-
tive/α-negative definite function on a group and to study properties of
these functions. Such an α-positive definite function may be regarded
as a generalization of a positive definite function as well as a counterpart
of an α-completely positive linear map on a C∗-algebra [9, 10, 11]. We
now give a brief overview of the organization of the paper.

In Section 2, we introduce the notion of an α-positive definite
function on a locally compact group with an involution. This function
may be regarded as a generalization of a positive definite function as
well as a function with more weakened positivity. We study some
properties of an α-positive definite function on a discrete group and
prove a Naimark-GNS type theorem for an α-positive definite function,
which implies that an α-positive definite function naturally gives rise
to a J-unitary representation on a Krein space.

In Section 3, we also introduce the notion of an α-negative definite
function, which may be regarded as a generalization of a negative
definite function as well as a notion corresponding to an α-positive
definite function. We investigate various properties of an α-negative
definite function and prove a Schoenberg type theorem for a normalized
and matricially bounded α-negative definite function.
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In Section 4, we prove the main theorem which states that a J-
cocycle exists for a J-representation on a Krein space associated with a
normalized α-negative definite function. Given a proper and matricially
bounded α-negative definite function, we construct a sequence of α-
positive definite functions and a proper (α, J)-action on a Krein space.

2. α-positive definite functions on groups. We now introduce
the notion of an α-positive definite function on a locally compact group
which may be regarded as the counterpart of an α-completely positive
linear map between (locally) C∗-algebras [9, 10, 11].

Definition 2.1. LetG be a locally compact group with an involution α,
that is, α2 = idG, α(g)

−1 = α(g−1) and α(e) = e, where e is a unit
element of G. A function

ϕ : G −→ C

is called α-positive definite if

(i) ϕ(α(g1)α(g2)) = ϕ(α(g1g2)) = ϕ(g1g2) for all g1, g2 ∈ G;

(ii) for any n ∈ N and g1, . . . , gn ∈ G, the n×n matrix [ϕ(α(g−1
i )gj)]

is positive semi-definite, i.e.,

(2.1)

n∑
i,j=1

λiλjϕ
(
α(g−1

i )gj
)
≥ 0 for all λ1, . . . , λn ∈ C;

(iii) for all g, g1, . . . , gn ∈ G, there exists a constant M(g) > 0 such
that

[ϕ(α(ggi)
−1 ggj)] ≤M(g)[ϕ(α(gi)

−1gj)].

Let G be a locally compact group with a left invariant Haar mea-
sure µ and an involution α. If Φ is continuous on G, then Φ is α-positive
definite if and only if∫

G

∫
G

Φ(α(g)−1h)φ(g)φ(h) dµ(g) dµ(h) ≥ 0

for all compactly supported continuous functions φ on G.
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Throughout this paper, Γ and e denote a discrete group with an
involution α and a unit element of Γ, respectively, unless specified
otherwise.

If ϕ : Γ → C is α-positive definite, then the following properties hold
true:

(a) ϕ(e) ≥ 0,

(b) ϕ(g) = ϕ(α(g−1)) for all g ∈ Γ,

(c) |ϕ(g)|2 ≤ ϕ(e)ϕ(α(g−1)g) for all g ∈ Γ,

(d) ϕ(α(g−1)h) = ϕ(α(h−1)g) for all g, h ∈ Γ.

Proposition 2.2. If ϕ : Γ → C is α-positive definite, then

(i) |ϕ(g)−ϕ(h)|2 ≤ ϕ(e)[ϕ(α(g−1)g)+ϕ(α(h−1)h)−2Re(ϕ(α(g−1)h))]
for all g, h ∈ Γ.

If, in addition, ϕ(e) = 1, then the following inequalities are valid for
all g, h ∈ Γ:

(ii) |ϕ(g)|2 ≤ ϕ(α(g−1)g);

(iii) |ϕ(g)−ϕ(h)|2 ≤ [ϕ(α(g−1)g)+ϕ(α(h−1)h)− 2Re(ϕ(α(g−1)h))];

(iv) |ϕ(α(g−1)h)−ϕ(g)ϕ(h)|2 ≤ (ϕ(α(g−1)g)−|ϕ(g)|2)(ϕ(α(h−1)h)−
|ϕ(h)|2).

Proof. In order to show the inequality in (i), take three elements
g1 = e, g2 = g and g3 = h in equation (2.1). Then, we have that the
following matrix is positive semi-definite:

(2.2)

 ϕ(e) ϕ(g) ϕ(h)
ϕ(α(g−1)) ϕ(α(g−1)g) ϕ(α(g−1)h)
ϕ(α(h−1)) ϕ(α(h−1)g) ϕ(α(h−1)h)

 ≥ 0.

For any x ∈ R, we take λ1 = 1, λ2 = x|ϕ(g)− ϕ(h)|/(ϕ(g)− ϕ(h)) and
λ3 = −λ2. Then, we see that the inequality

x2[ϕ(α(g−1)g)+ϕ(α(h−1)h)−2Reϕ(α(g−1)h)]+2x|ϕ(g)−ϕ(h)|+ϕ(e) ≥ 0

is valid for all x ∈ R so that the discriminant of the polynomial in x on
the left is non-positive, i.e.,

|ϕ(g)−ϕ(h)|2 −ϕ(e)[ϕ(α(g−1)g)+ϕ(α(h−1)h)− 2Re ϕ(α(g−1)h)] ≤ 0,

which gives the inequality in (i).
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The inequality in (ii) immediately follows from (c). Since ϕ(e) = 1,
it follows from the positive semi-definiteness of matrix (2.2) that

ϕ(α(g−1)g)ϕ(α(h−1)h) + ϕ(g)ϕ(α(g−1)h)ϕ(h) + ϕ(g)ϕ(α(g−1)h)ϕ(h)

(2.3)

≥ |ϕ(h)|2ϕ(α(g−1)g) + |ϕ(g)|2ϕ(α(h−1)h) + |ϕ(α(g−1)h)|2.

Thus, we have that

|ϕ(α(g−1)h)−ϕ(g)ϕ(h)|2≤ϕ(α(g−1)g)ϕ(α(h−1)h)− |ϕ(g)|2ϕ(α(h−1)h)

−|ϕ(h)|2ϕ(α(g−1)g) + |ϕ(g)|2|ϕ(h)|2

=(ϕ(α(g−1)g)−|ϕ(g)|2)(ϕ(α(h−1)h)−|ϕ(h)|2),

where the inequality follows from inequality (2.3). Hence, the inequality
in (iv) is valid for all g, h ∈ Γ. �

Remark 2.3. In Proposition 2.2, if, in addition, ϕ(α(g−1)g) = 1 for
all g ∈ Γ, then we have that, for every g, h ∈ Γ,

(ii)′ |ϕ(g)|2 ≤ 1,

(iii)′ |ϕ(g)− ϕ(h)|2 ≤ 2[1− Re ϕ(α(g−1)h)],

(iv)′ |ϕ(α(g−1)h)− ϕ(g)ϕ(h)|2 ≤ (1− |ϕ(g)|2)(1− |ϕ(h)|2).

Let J be a (fundamental) symmetry on a Hilbert space H with an
inner product ⟨·, ·⟩, i.e., J = J∗ = J−1. We define an indefinite inner
product [·, ·]J on H by

[ξ, η]J = ⟨Jξ, η⟩, ξ, η ∈ H.

In this case, the pair (H, J) is called a Krein space. For any T ∈ B(H),
there exists an operator T J ∈ B(H) such that

[Tξ, η]J = [ξ, T Jη]J , ξ, η ∈ H.

The operator T J is called the J-adjoint of T , and we see that T J =
JT ∗J .

Let (H, J) be a Krein space. A homomorphism π : Γ → B(H) is
called a representation on H. A unitary representation π : Γ −→ B(H)
is a representation on H such that π(g−1) = π(g)∗ for all g ∈ Γ. A
representation π : Γ → B(H) on H is called a J-unitary representation



254 JAESEONG HEO

on (H, J) if π is a representation on H and π(g−1) = π(g)J for all
g ∈ Γ.

The next theorem is a GNS type construction, and its proof is
standard; however, we will give a sketch of the proof for the reader’s
convenience.

Theorem 2.4. If ϕ : Γ → C is α-positive definite, then there exist
a Krein space (Hϕ, Jϕ), a Jϕ-unitary representation πϕ and a vector
ξϕ ∈ Hϕ such that

(i) ϕ(g) = ⟨πϕ(g)ξϕ, ξϕ⟩ for all g ∈ Γ;

(ii) the linear span of the set {πϕ(g)ξϕ : g ∈ Γ} is dense in Hϕ.

Proof. Let C[Γ] be a group algebra, and let ϕ : Γ → C be α-positive
definite. We define a sesquilinear form on C[Γ] by

⟨f1, f2⟩ =
∑
g,g′∈G

f2(g)f1(g
′)ϕ(α(g−1)g′).

The kernel Nϕ = {f ∈ C[Γ] : ⟨f, f⟩ = 0} is a vector space, and the
equation ⟨f1 +Nϕ, f2 +Nϕ⟩ = ⟨f1, f2⟩ defines an inner product on the
quotient space C[Γ]/Nϕ. We denote by Hϕ the Hilbert space obtained
by the completion of C[Γ]/Nϕ with respect to the induced norm.

We see that the involution α on Γ induces an involutive map J from
C[Γ] into itself defined by J(f)(g) := f(α(g)) for any g ∈ G. We define
an indefinite inner product [·, ·] on C[Γ]/Nϕ by[

f1 +Nϕ, f1 +Nϕ
]
=

∑
g,g′∈G

f2(g)f1(g
′)ϕ(g−1g′).

Since J(Nϕ) ⊆ Nϕ, J induces a map on C[Γ]/Nϕ such that [f1+Nϕ, f2+
Nϕ] = ⟨J(f1 +Nϕ), f2 +Nϕ⟩. In fact, J induces a (fundamental) sym-
metry on Hϕ, which is denoted by Jϕ. For each g ∈ Γ, we define a
linear operator

π(g) : C[Γ] −→ C[Γ]

by
(π(g)f)(g′) = f(g−1g′), g′ ∈ Γ.

Since ⟨π(g)f, π(g)f⟩ ≤ M(g)⟨f, f⟩ for f ∈ C[Γ] where M(g) is the
constant in condition (iii) of Definition 2.1, we see that π(g)(Nϕ) ⊆ Nϕ,
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g ∈ Γ, such that each π(g) can be extended to the entire space Hϕ,
denoted by πϕ(g). Moreover, πϕ becomes a Jϕ-unitary representation
of Γ on (Hϕ, Jϕ) since

⟨π(g)f1, f2⟩ = ⟨f1, Jϕπ(g−1)Jϕ(f2)⟩, f1, f2 ∈ C[Γ].

Similar to GNS construction, we can get a cyclic vector ξϕ = δe+Nϕ ∈
Hϕ satisfying properties (i) and (ii). �

Remark 2.5. In Theorem 2.4, it is not difficult to see that Jϕπϕ(g)Jϕ =
πϕ(α(g)) for any g ∈ G. We also see that the cyclic vector ξϕ in Theo-
rem 2.4 is invariant under Jϕ.

We should note that Jϕ is different from the modular conjugation J
in Tomita-Takesaki theory. Indeed, the modular conjugation J on
l2(Γ) is given by (J f)(s) = f(s−1). �

The following proposition says that an α-positive definite function
of Γ naturally occurs from a J-unitary representation on a Krein space,
having additional properties.

Proposition 2.6. Let (H, J) be a Krein space, and let ξ be a unit
vector invariant under J . If π : Γ → B(H) is a J-unitary representation
such that π(α(g)) = Jπ(g)J for all g ∈ Γ, then ϕ : Γ → C given by
ϕ(g) = ⟨π(g)ξ, ξ⟩ is α-positive definite.

Proof. Since Jξ = ξ and π(α(g)) = Jπ(g)J (g ∈ Γ), we have that,
for any g1, g2 ∈ Γ,

ϕ(g1g2) = ⟨π(g1g2)Jξ, Jξ⟩ = ⟨π(α(g1g2))ξ, ξ⟩
= ϕ

(
α(g1g2)

)
= ⟨π(g1)π(g2)Jξ, Jξ⟩

= ⟨Jπ(g1)J · Jπ(g2)Jξ, ξ⟩
= ϕ

(
α(g1)α(g2)

)
.

Since π is a J-unitary representation, we also see that π(α(g−1)) =
π(g)∗ for every g ∈ Γ.
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Let g1, . . . , gn ∈ Γ and λ1, . . . , λn ∈ C. Then, we have that

n∑
i,j=1

λiλjϕ(α(g
−1
i )gj) =

n∑
i,j=1

λiλj⟨π(α(g−1
i )gj))ξ, ξ⟩

=
n∑

i,j=1

λiλj⟨π(gj)ξ, π(gi)ξ⟩ ≥ 0.

Moreover, we obtain from the equality π(α(g−1)) = π(g)∗ that

n∑
i,j=1

λiλjϕ(α(ggi)
−1ggj) =

n∑
i,j=1

λiλj⟨π(g)π(gj)ξ, π(g)π(gi))ξ⟩

≤ ∥π(g)∥2
n∑

i,j=1

λiλjϕ(α(gi)
−1gj),

so that
[ϕ(α(ggi)

−1 ggj)] ≤ ∥π(g)∥2[ϕ(α(gi)−1gj)].

This completes the proof. �

Example 2.7. Let G be a locally compact group with an involution α.
Then, we see from Proposition 2.6 that any J-unitary representation
of G on a Krein space (H, J) induces an α-positive definite function.
In particular, if α is an identity map on G, then any α-positive definite
function on G is positive definite.

Now we give a rather easy and concrete example. Let G = C ⊕ C
be an additive group, and let a ∈ C \ {±1} be fixed. We define an
involution α on G by

α(x⊕ y) = (ax+ (1− a)y)⊕ ((1 + a)x− ay).

Let ti ∈ C \ {0} (i = 1, 2) be such that (1− a)t1 = (1+ a)t2. We define
a function

ϕ : C⊕ C −→ C

by ϕ(x⊕ y) = t1x+ t2y. Then, ϕ is α-positive definite.

3. α-negative definite functions on groups. Negative definite
functions on (semi-)groups were systematically discussed in [3] and
have been used in several different contexts of operator algebras [1, 6].
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For detailed information on negative definite functions, we refer to
[3, 17]. In this section, we introduce a notion of an α-negative definite
function on a discrete group, regarded as a generalization of a negative
definite function as well as one corresponding to an α-positive definite
function. We also give some equivalent formulations of the notion of
an α-negative definite function.

Definition 3.1. A function ψ : Γ → C is called α-negative definite if

(i) ψ(g1g2) = ψ(α(g1g2)) = ψ(α(g1)α(g2)) for all g1, g2 ∈ Γ;

(ii) for any n ∈ N and g1, . . . , gn ∈ Γ, the n × n matrix [ψ(gi) +
ψ(gj)− ψ(α(g−1

i )gj)] is positive semi-definite, i.e.,

n∑
i,j=1

λiλj
(
ψ(gi) + ψ(gj)− ψ(α(g−1

i )gj)
)
≥ 0 for all λ1, . . . , λn ∈ C.

For an α-negative definite function ψ : Γ → C, we easily see the
following properties:

(a) ψ(e) ≥ 0;

(b) ψ(α(g−1)) = ψ(g) for all g ∈ Γ;

(c) Re ψ(g) ≥ 1
2 (ψ(e) + ψ(α(g−1)g)) for all g ∈ Γ;

(d) ψ(α(h−1)g) = ψ(α(g−1)h) for all g, h ∈ Γ.

Proposition 3.2. If ψ : Γ → C is α-negative definite, then

(3.1) ψ(α(g−1)g) + ψ(α(h−1)h) ≤ ψ(α(g−1)h) + ψ(α(h−1)g)

for all g, h ∈ Γ.

Proof. Taking g1 = g, g2 = h and λ1 = 1, λ2 = −1, we obtain
from condition (ii) in Definition 3.1 that inequality (3.1) holds for all
g, h ∈ Γ. �

Note that, if ψ : Γ → R is an α-negative definite function satisfying
ψ(e) + ψ(α(g−1)g) ≥ 0, then ψ is nonnegative throughout Γ. Indeed,
for any λ ∈ R and g ∈ Γ, we have that

0 ≥ λ · λ ψ(e) + λ(−λ)ψ(α(e)g)
+ (−λ)λ ψ(α(g−1)e) + (−λ)(−λ)ψ(α(g−1)g)
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= λ2
[
ψ(e) + ψ(α(g−1)g)

]
− 2λ2ψ(g)

≥ −2λ2ψ(g).

Hence, we see that ψ(g) ≥ 0.

Theorem 3.3. A function ψ : Γ → C is α-negative definite if and only
if the following three properties hold true:

(i) ψ(g1g2) = ψ(α(g1g2)) = ψ(α(g1)α(g2)) for all g1, g2 ∈ Γ;

(ii) ψ(e) ≥ 0 and ψ(g) = ψ(α(g−1)) for all g ∈ Γ;

(iii) for all n ∈ N, g1, . . . , gn ∈ Γ and λ1, . . . , λn ∈ C,
n∑
i=1

λi = 0 =⇒
n∑

i,j=1

λiλjψ(α(g
−1
i )gj) ≤ 0.

Proof. Assume that ψ is α-negative definite. Property (i) immedi-
ately follows from Definition 2.1 and property (ii) has already been
observed. In order to prove that property (iii) holds, let g1, . . . , gn ∈ Γ
and λ1, . . . , λn ∈ C with

∑
i λi = 0. Then, we have that

0 ≤
n∑

i,j=1

λiλj(ψ(gi)+ψ(gj)−ψ(α(g−1
i )gj)) = −

n∑
i,j=1

λiλjψ(α(g
−1
i )gj).

Conversely, suppose that the properties (i), (ii) and (iii) hold true.
Let g1, . . . , gn ∈ Γ and λ1, . . . , λn ∈ C be given. We take gn+1 = e and
λn+1 = −

∑n
i=1 λi. Then, we have that

0 ≥
n+1∑
i,j=1

λiλjψ(α(g
−1
i )gj)

= |λn+1|2ψ(e) +
n∑
j=1

λn+1λjψ(gj)

+
n∑
i=1

λiλn+1ψ(α(g
−1
i )) +

n∑
i,j=1

λiλjψ(α(g
−1
i )gj),

such that

0 ≤ |λn+1|2ψ(e)

≤ −
n∑
j=1

λn+1λjψ(gj)−
n∑
i=1

λiλn+1ψ(α(g
−1
i ))
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−
n∑

i,j=1

λiλjψ(α(g
−1
i )gj)

=
n∑

i,j=1

λiλj
(
ψ(gj) + ψ(α(g−1

i ))− ψ(α(g−1
i )gj)

)
.

This completes the proof. �

Proposition 3.4.

(1) If ϕ : Γ → C is α-positive definite, then the function ψ defined
by ψ(g) = ϕ(e)− ϕ(g) is α-negative definite.

(2) If ψ : Γ → C is α-negative definite, the function Ψ given by
Ψ(g) = ψ(g)− ψ(e) is also α-negative definite.

Proof.

(1) If ψ is defined by ψ(g) = ϕ(e) − ϕ(g), then we easily see that

ψ(e) = 0 and ψ(g) = ψ(α(g−1)). Taking elements g1, . . . , gn ∈ Γ and
λ1, . . . , λn ∈ C with

∑n
i=1 λi = 0, we have that

n∑
i,j=1

λiλjψ(α(g
−1
i )gj) =

n∑
i,j=1

λiλj(ϕ(e)− ϕ(α(g−1
i )gj))

= −
n∑

i,j=1

λiλjϕ(α(g
−1
i )gj) ≤ 0,

so that ψ is α-negative definite.

(2) Let Ψ be defined by Ψ(g) = ψ(g)− ψ(e) for every g ∈ Γ. Then,

we have that Ψ(e) = ψ(e) − ψ(e) = 0 and Ψ(g) = ψ(g) − ψ(e) =
ψ(α(g−1))−ψ(e) = Ψ(α(g−1)). Let g1, . . . , gn ∈ Γ, and let λ1, . . . , λn ∈
C with

∑
i λi = 0. Then, we have that

n∑
i,j=1

λiλjΨ(α(g−1
i )gj) =

n∑
i,j=1

λiλj(ψ(α(g
−1
i )gj)− ψ(e))

=
n∑

i,j=1

λiλjψ(α(g
−1
i )gj) ≤ 0,

which implies that Ψ is α-negative definite. �
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Schoenberg’s fundamental result to positive/negative definite func-
tions states that a complex-valued function ψ on a group is negative
definite if and only if exp(−tψ) is positive definite for each t > 0. How-
ever, in general, this fundamental result does not hold for an α-negative
definite function due to the boundedness condition of an α-positive def-
inite function. We need the boundedness condition of an α-negative
definite function, which corresponds to (iii) in Definition 2.1.

Let ψ : Γ → C be α-negative definite. We say that ψ is matricially
bounded if, for any g ∈ Γ, there exists a constant C(g) > 0 such that,
for all g1, . . . , gn ∈ Γ,

[ψ(ggi)+ψ(ggj)−ψ(α(gg−1
i )ggj)]i,j≤C(g)[ψ(gi)+ψ(gj)−ψ(α(g−1

i )gj)]i,j ,

where [ · ]i,j denotes an n× n-matrix over C.
The next theorem shows that, for α-positive definiteness of exp(−tψ),

it is sufficient that an α-negative definite function ψ be matricially
bounded.

Theorem 3.5. If ψ : Γ → C is α-negative definite and matricially
bounded, then the following properties hold true:

(i) ψ(α(g1g2)) = ψ(α(g1)α(g2)) = ψ(g1g2) for all g1, g2 ∈ Γ;

(ii) ψ(e) ≥ 0, ψ(g) = ψ(α(g−1)) for all g ∈ Γ;

(iii) the function g ∈ Γ 7→ exp(−tψ(g)) is α-positive definite for all
t > 0.

Proof. Suppose that ψ is α-negative definite. Obviously, properties
(i) and (ii) hold true. For any g1, . . . , gn ∈ Γ and λ1, . . . , λn ∈ C, the
n× n matrix [ψ(gi) + ψ(gj)− ψ(α(g−1

i )gj)]i,j is positive semi-definite,
so that the matrix

[exp(ψ(gi) + ψ(gj)− ψ(α(g−1
i )gj))]i,j

is positive semi-definite. Thus, we have that

n∑
i,j=1

λiλj exp(−ψ(α(g−1
i )gj))

=
n∑

i,j=1

λ′iλ
′
j exp(ψ(gi) + ψ(gj)− ψ(α(g−1

i )gj)) ≥ 0
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where λ′i = λi · exp(−ψ(gi)) for i = 1, . . . , n. Moreover, for all
g, g1, . . . , gn ∈ Γ and λ1, . . . , λn ∈ C, we have that

n∑
i,j=1

λiλj exp(−ψ(α(gg−1
i )ggj))

=
n∑

i,j=1

λ′′i λ
′′
j exp(ψ(ggi) + ψ(ggj)− ψ(α(gg−1

i )ggj))

≤ C ′′(g)

n∑
i,j=1

λiλj exp(−ψ(α(g−1
i )gj))

where

λ′′i = λi · exp
(
−ψ(ggi)

)
,

C ′(g) = expC(g) and C ′′(g) = exp{3C(g)},

so that the function exp(−ψ) is α-positive definite. Furthermore, since
tψ (t > 0) is α-negative definite and matricially bounded, exp(−tψ) is
α-positive definite. �

4. J-cocyles associated to α-negative definite functions. We
recall that a continuous real-valued negative definite function on Rn
is uniquely given by its Lévy-Khintchine representation [17]. An
α-negative definite function ψ : Γ → C is called normalized if
ψ(α(g−1)g) = 0 for all g ∈ Γ. In this section, we prove the main
theorem, which is a realization of a nonnegative normalized α-negative
definite function using a J-cocycle on a Krein space.

Theorem 4.1. If ψ : Γ → [0,∞) is normalized and α-negative definite,
then there exist a Krein space (K, J) and a map c : Γ → K such that

(i) ψ(α(g−1)h) = ∥c(g)− c(h)∥2 for all g, h ∈ Γ;

(ii) Jc(g) = c(α(g)) = c(g) for all g ∈ Γ.

Proof. Let K be the set given by

K =

{
f : Γ −→ C

∣∣∣ ∑
g∈Γ

f(g) = 0 and #{g ∈ Γ|f(g) ̸= 0} <∞
}
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where #S denotes the number of elements in a set S. Then, we see
K ̸= ∅ since the zero function is in K. For any f1, f2 ∈ K, we define a
sesquilinear form

(4.1) ⟨f1, f2⟩ = −1

2

∑
g,h∈Γ

f2(g)f1(h)ψ(α(g
−1)h).

Then, we see that

⟨f1, f2⟩ = −1

2

∑
g,h∈Γ

f2(g)f1(h) ψ(α(g−1)h)

= −1

2

∑
g,h∈Γ

f1(h)f2(g)ψ(α(h
−1)g)

= ⟨f2, f1⟩.

Let the support of f ∈ K be supp(f) = {g ∈ Γ : f(g) ̸= 0}. For any
f ∈ K with supp(f) = {g1, . . . , gn}, we have that

⟨f, f⟩ = −1

2

n∑
i,j=1

f(gj)f(gi)ψ(α(g
−1
j )gi) ≥ 0.

We equip the quotient spaceK/Nψ with the inner product ⟨f1+Nψ, f2+
Nψ⟩ = ⟨f1, f2⟩ where Nψ = {f ∈ K : ⟨f, f⟩ = 0} and obtain the Hilbert
space K by completing the quotient space K/Nψ with respect to the
induced norm.

The map J : K → K is defined by Jf(g) = f(α(g)), g ∈ Γ. For any
f ∈ K, we have that

⟨Jf, Jf⟩ = −1

2

∑
g,h∈Γ

f(α(g))f(α(h))ψ(α(g−1)h)

= −1

2

∑
g,h∈Γ

f(g)f(h)ψ(α(g−1)h) = ⟨f, f⟩,

which implies that J(Nψ) ⊆ Nψ. Hence, J induces a map, still denoted
by J , on K/Nψ by J(f+Nψ) = Jf+Nψ. We define an indefinite inner
product [·, ·] on K/Nψ by

[f1 +Nψ, f2 +Nψ] = −1

2

∑
g,h∈Γ

f2(g)f1(h)ψ(g
−1h).
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Then, we have that

[f1 +Nψ, f2 +Nψ] = −1

2

∑
g,h∈Γ

Jf2(g)f1(h)ψ(α(g
−1)h)

= ⟨f1 +Nψ, J(f2 +Nψ)⟩.

Moreover, J can be extended to the entire space K where K is the
completion of K/Nψ, and we have [ξ, η] = ⟨ξ, Jη⟩ for all ξ, η ∈ K, so
that (K, J) becomes a Krein space.

We define a map c : Γ → K by c(g) = δg−δe+Nψ where δ denotes the
Dirac function. Since ψ is real valued, we have that, for any g, h ∈ Γ,

(4.2) ψ(α(g−1)h) = ψ(α(g−1)h) = ψ(α(h−1)g).

We claim that ψ(α(g−1)h) = ∥c(g) − c(h)∥2 for any g, h ∈ Γ. Indeed,
we have that

∥c(g)− c(h)∥2

= −1

2
[ψ(α(g−1)g)− ψ(α(g−1)h)− ψ(α(h−1)g) + ψ(α(h−1)h)]

= ψ(α(g−1)h).

Moreover, we have that ∥c(α(g))− c(g)∥2 = ψ(α(α(g)−1)g) = ψ(e) = 0
so that Jc(g) = c(α(g)) = c(g) for all g ∈ Γ. �

Let (K, J) be a Krein space, and let π : Γ → B(K) be a J-unitary
representation of Γ on K. A function c : Γ → K is called a J-cocycle
for π if

c(gh) = π(g)(c(h)) + c(g) and Jc(g) = c(α(g))

for all g, h ∈ Γ.

Proposition 4.2. Let (K, J) be a Krein space, and let π be a J-unitary
representation of Γ on K. If c : Γ → K is a J-cocycle for π and if c(e)
is an invariant vector under π, i.e., π(g)c(e) = c(e) for all g ∈ Γ, then
ψ : Γ → [0,∞) defined by ψ(g) = ∥c(g)− c(e)∥2 satisfies

ψ(α(g−1)h) = ∥c(g)− c(h)∥2 for all g, h ∈ Γ,

and is normalized and α-negative definite.
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Proof. For any g, h ∈ Γ, we have that

ψ(α(g−1)h) = ∥π(α(g−1))c(h) + c(α(g−1))− c(e)∥2

= ∥c(h) + c(α(g)α(g−1))− c(α(g))− c(e)∥2

= ∥c(g)− c(h)∥2,

which implies that ψ(α(g−1)g) = 0 for all g ∈ Γ so that ψ is normalized.
We also have that

ψ(α(g)α(h)) = ∥c(g−1)− c(α(h))∥2 = ∥Jc(g−1)− Jc(α(h))∥2 = ψ(gh).

Let λ1, . . . , λn ∈ C with
∑n
i=1 λi = 0. For all g1, . . . , gn ∈ Γ, we obtain

that

n∑
i,j=1

λiλjψ(α(g
−1
i )gj) =

n∑
i,j=1

λiλj(−⟨c(gi), c(gj)⟩ − ⟨c(gj), c(gi)⟩)

= −
∥∥∥∥ n∑
i=1

λic(gi)

∥∥∥∥2 − ∥∥∥∥ n∑
i=1

λic(gi)

∥∥∥∥2
≤ 0.

Moreover, it is easily seen that ψ(e) = 0 and ψ(α(g−1)) = ψ(g) for all
g ∈ Γ. �

A function ψ : Γ → R+ is called proper if ψ(g) goes to ∞ as
g → ∞. The following proposition gives a characterization of a proper
α-negative definite function using a sequence of α-positive definite
functions vanishing at infinity. Its proof is similar to the proof of [1,
Theorem 10] in the case of negative definite functions; therefore, we
provide a sketch of the proof for the convenience of the reader.

Proposition 4.3. If there exists a sequence {ϕn} of α-positive definite
functions in c0(Γ) such that ϕn(e) = 1 and {ϕn} goes to 1 pointwisely,
then there exists a proper α-negative definite function ψ on Γ. The
converse is true if, in addition, ψ : Γ → R+ is matricially bounded.

Proof. Suppose that there exists a sequence {ϕn} of α-positive
definite functions in c0(Γ) such that ϕn(e) = 1 and ϕn(g) → 1 point-
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wise. We write

Γ =

∞∪
n=1

Kn

where K1 ⊂ K2 ⊂ · · · are finite subsets containing e and set K0 = {e}.
Suppose that we have chosen increasing sequences {nj}kj=1 and {ij}kj=0

of integers such that

(i) |1− ϕnj (g)| < 2−j for all g ∈ Kij−1 ;

(ii) |ϕnj
(g)| < 2−j for all g /∈ Kij .

We choose ϕnk+1
such that |ϕnk+1

(g) − 1| < 2−k−1 for all g ∈ Kik

since ϕn → 1 uniformly onKik . As ϕnk+1
vanishes at infinity, we choose

ik+1 such that

|ϕnk+1
(g)| < 2−k−1 for g /∈ Kik+1

.

It follows from Proposition 3.4 that the series
∑
j(1 − ϕnj ) is α-

negative definite. For any g ∈ Γ \Kik , we have that g ∈ Γ \Kij for all
j ≤ k, so that |ϕnj (g)| < 1/2 for all j ≤ k. Since

∞∑
j=1

(1− ϕnj (g)) ≥
n∑
j=1

1

2
=
n

2
−→ ∞,

the function ψ =
∑
j(1− ϕnj ) is proper and α-negative definite.

Conversely, assume that

ψ : Γ −→ R+

is proper, matricially bounded and α-negative definite. We may assume
that ψ(e) = 0. Otherwise, ψ′ = ψ − ψ(e) is also proper, matricially
bounded and α-negative definite. By Theorem 3.5, exp(−tψ) is α-
positive definite for each t > 0. For each n ∈ N, we define a function
ϕn on Γ by

ϕn(g) = exp

(
− 1

n
ψ(g)

)
.

We see that each ϕn is α-positive definite, ϕn(e) = 1 and

lim
n→∞

ϕn(g) = lim
n→∞

exp

(
− 1

n
ψ(g)

)
= 1.

Since ψ(g) → ∞ as g → ∞, each ϕn(g) goes to 0 as g → ∞. �
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Let (K, J) be a Krein space. A map σ : Γ → B(K) is an (α, J)-affine
action of Γ on K if there exist a J-unitary representation π of Γ on
K and a cocycle c : Γ → K for π such that σ(α(g)) = Jσ(g)J and
σ(g)ξ = π(g)ξ+c(g) for all g ∈ Γ and ξ ∈ K. The following proposition
gives the existence of a proper affine action on a Krein space which has
a J-cocycle as a translation part.

Proposition 4.4. If ψ : Γ → R+ is proper, normalized and α-negative
definite, then there is a proper (α, J)-affine action σ of Γ on K.

Proof. Suppose that ψ : Γ → R+ is proper, normalized and α-
negative definite. By Theorem 4.1, there exist a Krein space (K, J)
and a map c : Γ → K such that

ψ(α(g−1)h) = ∥c(g)− c(h)∥2 and Jc(g) = c(α(g)) = c(g),

for all g, h ∈ Γ.

For each g ∈ Γ, we define a linear map

π(g) : K −→ K

by
[π(g)ξ](h) = ξ(g−1h), h ∈ Γ.

It is obvious that π(gh) = π(g)π(h). Let ξ, η be in K, and let ⟨·, ·⟩ be
the inner product constructed in the proof of Theorem 4.1. We have
that

⟨π(g)ξ, η⟩ = −1

2

∑
a,b∈Γ

ξ(a) η(b)ψ(α(a−1g−1)b)

= −1

2

∑
a,b∈Γ

ξ(a) [Jπ(g−1)Jη](b)ψ(α(a−1)b)

= ⟨ξ, Jπ(g−1)Jη⟩.

Hence, π(g−1) = Jπ(g)∗J = π(g)J for all g ∈ Γ, so that π is a J-
unitary representation of Γ on K. Similarly, we see that ⟨π(α(g))ξ, η⟩ =
⟨ξ, π(g−1)η⟩ so that π(α(g)) = Jπ(g)J .

It may be seen from the construction that c(g) = δg − δe + Nψ,
where Nψ is the kernel space. We claim that c is a cocycle for π, i.e.,
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c(gh) = π(g)(c(h)) + c(g). Indeed, for any g′ ∈ Γ, we have that

π(g)(c(h))(g′) + c(g)(g′) = (δgh − δe)(g
′) +Nψ = c(gh)(g′).

Moreover, the map
σ : Γ −→ B(K)

defined by σ(g)ξ = π(g)ξ+ c(g) is an (α, J)-affine action on K. Indeed,
for any ξ ∈ K, we have that

σ(α(g))ξ = Jπ(g)Jξ + Jc(g) = Jσ(g)Jξ,

so that σ(α(g)) = Jσ(g)J for all g ∈ Γ. Since

∥c(g)∥2 = ψ(g) −→ ∞ as g → ∞,

the action σ is proper. �

Recall that the Haagerup approximation property of Γ [6] is equiva-
lent to the existence of a proper affine isometric action of Γ on a Hilbert
space. We may ask whether the existence of a proper (α, J)-affine iso-
metric action of Γ is related to some approximation property.
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