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RECURRENCE RELATION FOR
COMPUTING A BIPARTITION FUNCTION

D.S. GIREESH AND M.S. MAHADEVA NAIKA

ABSTRACT. Recently, Merca [4] found the recurrence
relation for computing the partition function p(n) which
requires only the values of p(k) for k ≤ n/2. In this article,
we find the recurrence relation to compute the bipartition
function p−2(n) which requires only the values of p−2(k) for
k ≤ n/2. In addition, we also find recurrences for p(n) and
q(n) (number of partitions of n into distinct parts), relations
connecting p(n) and q0(n) (number of partitions of n into
distinct odd parts).

1. Introduction. A partition of a positive integer n is a non-
increasing sequence of positive integers whose sum is n. Let p(n) denote
the number of partitions of n, p−2(n) denote the number of bipartitions
of n, q(n) denote the number of partitions of n into distinct parts and
qo(n) denote the number of partitions of n into distinct odd parts.
Throughout the paper, we set

p(0) = p−2(0) = q(0) = qo(0) = 1

and
p(x) = p−2(x) = q(x) = qo(x) = 0 if x < 0.

The generating functions for p(n), p−2(n), q(n) and qo(n) are

∞∑
n=0

p(n)qn =
1

(q; q)∞
,(1.1)

∞∑
n=0

p−2(n)q
n =

1

(q; q)2∞
,(1.2)
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(1.3)
∞∑

n=0

q(n)qn =
1

(q; q2)∞
= (−q; q)∞,

and

(1.4)

∞∑
n=0

qo(n)q
n = (−q; q2)∞,

where |q| < 1 and (a; q)∞ = (1− a)(1− aq)(1− aq2) · · · is the q-shifted
factorial.

Euler [2] invented generating function (1.1) which gives rise to a
recurrence relation for p(n),

(1.5)
∞∑

k=−∞

(−1)kp

(
n− k(3k − 1)

2

)
= δ0,n,

where δi,j is the Kronecker delta. To compute partition function p(n)
using (1.5) requires the values of p(k) with k ≤ n − 1. Numerous
mathematicians have given other recurrence relations for the partition
function p(n). In 2004, Ewell [3] found two recurrence relations for
p(n):

(1.6) p(n) =

∞∑
k=0

p

(
n− k(k + 1)/2

4

)
+ 2

∞∑
k=1

(−1)k−1p(n− 2k2)

and

(1.7)

p(n) =
∞∑
k=0

p

(
n− k(k + 1)/2

2

)

+
∞∑
k=1

(−1)k−1{p(n− k(3k − 1)) + p(n− k(3k + 1))},

which requires the values of p(k) with k ≤ n − 2 to compute p(n).
Over the years, it has been a challenge for mathematicians to find the
recurrence relation for p(n) that requires less number of values of p(k)
with k < n. In 2016, using Ramanujan’s theta function, Merca [4]
found the most efficient recurrence relation

(1.8) p(n) =

⌊n/2⌋∑
k=0

∞∑
j=−∞

p(k)p

(⌊
n

2

⌋
− k − j(4j − 2 + (−1)n)

)
,

which requires only the values of p(k) with k ≤ n/2 to compute p(n).
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Inspired by their relations, in this paper, we find the recurrence re-
lation for bipartition function p−2(n) that requires only the values of
p−2(k) with k ≤ n/2. In addition, we also find recurrences for p(n) and
q(n), the relation connecting p(n) and qo(n).

Ramanujan’s theta functions and Jacobi’s identity play a key role in
proving our main results. For |q| < 1, Ramanujan’s theta functions [1,
page 36, entry 22] are defined as

(1.9) ψ(q) =
∞∑

n=0

qn(n+1)/2 =
∞∑

n=−∞
qn(2n+1) =

(q2; q2)2∞
(q; q)∞

and

(1.10) f(−q) = (q; q)∞ =

∞∑
n=−∞

(−1)nqn(3n−1)/2.

Lemma 1.1 (Jacobi’s identity). [1, page 39, entry 24]. We have

(1.11) (q; q)3∞ =

∞∑
m=0

(−1)m(2m+ 1)qm(m+1)/2.

Our main result is stated in the next theorem.

Theorem 1.2. For each integer n ≥ 0,

p−2(n) =
∞∑

i,j=−∞

⌊n/2⌋∑
k=0

p−2(k)

(1.12)

× p−2

(⌊
n

2

⌋
− k − j(4j − 1)− i(4i− 2 + (−1)n)

)

+
∞∑

i,j=−∞

⌊n−1/2⌋∑
k=0

p−2(k)

× p−2

(⌊
n− 1

2

⌋
− k − j(4j − 3)− i(4i− 2− (−1)n)

)
.
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More explicitly, the above result may be written as
(1.13)

p−2(2n) =
∞∑

i,j=−∞

n∑
k=0

p−2(k)p−2(n− k − j(4j − 1)− i(4i− 1))

+
∞∑

i,j=−∞

n−1∑
k=0

p−2(k)p−2(n− 1− k − j(4j − 3)− i(4i− 3))

and
(1.14)

p−2(2n+ 1) = 2
∞∑

i,j=−∞

n∑
k=0

p−2(k)p−2(n− k − j(4j − 3)− i(4i− 1)).

Example 1.3. We see by Theorem 1.2 that the values of p−2(n) for
n ∈ {0, 1, 2, 3, 4, 5, 6, 7} are:

p0 = 1,

p1 = 2p20 = 2,

p2 = p0(p0 + 2p1) = 5,

p3 = 2p0(p0 + 2p1) = 10,

p4 = 2p0(p0 + p1 + p2) + p21 = 20,

p5 = 4p0(p1 + p2) + 2p21 = 36,

p6 = po(3p
2
0 + 4p1 + 2p2 + 2p3) + p1(p1 + 2p2) = 65,

p7 = 2p0(p0 + 2p2 + 2p3) + 2p1(p1 + 2p2) = 110,

where here, and throughout this example, we set p−2(n) = pn. With
the above values in hand, we can compute the values of p−2(14) and
p−2(15), i.e.,

p−2(14) = 2p0(p1 + 2p2 + 3p4 + 2p5 + p6 + p7)

+ 2p1(p1 + 3p3 + 2p4 + p5 + p6)

+ p2(3p2 + 4p3 + 2p4 + 2p5) + p3(p3 + 2p4) = 2665

and

p−2(15) = 2p0(p0 + 2p1 + 2p2 + 2p3 + 2p4 + 2p6 + 2p7)

+ 2p1(p1 + 2p2 + 2p3 + 2p5 + 2p6)

+ 2p2(p2 + 2p4 + 2p5) + 2p3(p3 + 2p4) = 3956.
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2. Proof of Theorem 1.2. We write

(2.1)
1

(q; q)∞
=

1

(q; q)∞
=

1

(q2; q2)2∞
× (q2; q2)2∞

(q; q)∞
.

Substituting (1.9) into (2.1), we obtain

(2.2)
1

(q; q)∞
=

1

(q2; q2)2∞

∞∑
k=−∞

qk(2k+1).

Replacing q by −q in equation (2.2), we find that

(2.3)
1

(−q;−q)∞
=

1

(q2; q2)2∞

∞∑
k=−∞

(−1)kqk(2k+1).

Therefore, we can write

∞∑
n=0

p(2n)q2n =
1

2

(
1

(q; q)∞
+

1

(−q;−q)∞

)
(2.4)

=
1

2(q2; q2)2∞

∞∑
k=−∞

(1 + (−1)k)qk(2k+1)

=
1

(q2; q2)2∞

∞∑
k=−∞

q2k(4k+1)

=

∞∑
n=0

p−2(n)q
2n

∞∑
k=−∞

q2k(4k−1),

which is equivalent to

∞∑
n=0

p(2n)qn =
∞∑

n=0

p−2(n)q
n

∞∑
k=−∞

qk(4k−1).(2.5)

Using the Cauchy product of two power series, we find that

(2.6)

∞∑
n=0

p(2n)qn =

∞∑
n=0

∞∑
k=−∞

p−2(n− k(4k − 1))qn.

Equating coefficients of qn, we obtain

(2.7) p(2n) =
∞∑

k=−∞

p−2(n− k(4k − 1)).
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In a similar fashion, considering

(2.8)
∞∑

n=0

p(2n+ 1)q2n+1 =
1

2

(
1

(q; q)∞
− 1

(−q;−q)∞

)
,

we derive the following expression of p(2n+ 1) in terms of p−2(n):

(2.9) p(2n+ 1) =
∞∑

k=−∞

p−2(n− k(4k − 3)).

Now, we consider

(2.10)
1

(q; q)2∞
=

1

(q2; q2)2∞
× 1

(q; q)∞
× (q2; q2)2∞

(q; q)∞
.

Using (1.1), (1.2), and (1.9) in (2.10), we find that

∞∑
n=0

p−2(n)q
n =

∞∑
k=0

p−2(k)q
2k

∞∑
n=0

p(n)qn
∞∑

j=−∞
qj(2j+1).

Using the Cauchy product of power series, we have

(2.11)

∞∑
n=0

p−2(n)q
n =

∞∑
n=0

∞∑
j=−∞

∞∑
k=0

p−2(k)p(n− 2k − j(2j + 1))qn.

Equating coefficients of qn on both sides of (2.11), we obtain

p−2(n) =

∞∑
j=−∞

⌊n/2⌋∑
k=0

p−2(k)p(n− 2k − j(2j + 1))(2.12)

=

∞∑
j=−∞

⌊n/2⌋∑
k=0

p−2(k)p(n− 2k − j(2j − 1))

=
∞∑

j=−∞

⌊n/2⌋∑
k=0

p−2(k)p(n− 2k − 2j(4j − 1))

+
∞∑

j=−∞

⌊n/2⌋∑
k=0

p−2(k)p(n− 2k − 2j(4j − 3)− 1).
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Replacing n by 2n and n by 2n+ 1 in (2.12), we find that

p−2(2n) =

∞∑
j=−∞

n∑
k=0

p−2(k)p(2n− 2k − 2j(4j − 1))(2.13)

+

∞∑
j=−∞

n∑
k=0

p−2(k)p(2n− 2k − 2j(4j − 3)− 1)

and

p−2(2n+ 1) =
∞∑

j=−∞

n∑
k=0

p−2(k)p(2n+ 1− 2k − 2j(4j − 1))(2.14)

+
∞∑

j=−∞

n∑
k=0

p−2(k)p(2n− 2k − 2j(4j − 3)).

Using (2.7) and (2.9) in (2.13) and (2.14), we arrive at (1.12).

3. New recurrences for p(n) and q(n).

Theorem 3.1. For each nonnegative integer n, we have

(3.1)
∞∑
k=0

(−1)k+n(2k + 1)p(n− k(k + 1))

=

{
(−1)ℓ+m if n = ℓ(3ℓ− 1)/2 + 2m(3m− 1),

0 otherwise,

where ℓ and m are integers.

Theorem 3.2. For each integer n ≥ 0, we have

(3.2)
∞∑
k=0

(−1)kq

(
n− k(3k − 1)

2

)
=

{
(−1)ℓ if n = ℓ(3ℓ− 1),

0 otherwise,

where ℓ is an integer.

Proof of Theorem 3.1. We have

(−q;−q)∞ =
(q2; q2)3∞

(q; q)∞(q4; q4)∞
,
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that is,
(q2; q2)3∞
(−q;−q)∞

= (q; q)∞(q4; q4)∞.

Using (1.10) and (1.11) in the above equation, we obtain

∞∑
n,k=0

(−1)k+n(2k + 1)p(n)qn+k(k+1)(3.3)

=

∞∑
ℓ,m=−∞

(−1)ℓ+mqℓ(3ℓ−1)/2+2m(3m−1).

Result (3.1) follows from (3.3) by extracting like powers of q. �

Proof of Theorem 3.2. We write

(q; q)∞ = (q; q2)∞(q2; q2)∞,

which is equivalent to

(3.4)
1

(q; q2)∞
(q; q)∞ = (q2; q2)∞.

Substituting (1.3) and (1.10) into (3.4), we find that

(3.5)

∞∑
n=0

q(n)qn
∞∑

k=−∞

(−1)kqk(3k−1)/2 =

∞∑
ℓ=−∞

(−1)ℓqℓ(3ℓ−1),

from which the result (3.2) follows. �

4. Relation connecting p(n) and qo(n).

Theorem 4.1. For each n ≥ 0,

∞∑
k=−∞

p

(⌊
n

2

⌋
− k(12k − 3 + (−1)n2)

)(4.1)

−
∞∑

k=−∞

p

(⌊
n

2

⌋
− k(12k + 14 + (−1)n3)− 4− (−1)n2

)
= qo(n).
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Proof. Equation (1.10) can be expressed as

(4.2) (q; q2)∞ =
1

(q2; q2)∞

∞∑
k=−∞

(−1)kqk(3k−1)/2.

Replacing q by −q in (4.2), we obtain

(4.3) (−q; q2)∞ =
1

(q2; q2)∞

∞∑
k=−∞

(−1)k(3k+1)/2qk(3k−1)/2.

However, we have

∞∑
n=0

qo(2n)q
2n =

(q; q2)∞ + (−q; q2)∞
2

=
1

2(q2; q2)∞

∞∑
k=−∞

((−1)k + (−1)k(3k+1)/2)qk(3k−1)/2

=
1

(q2; q2)∞

( ∞∑
k=−∞

q2k(12k−1) −
∞∑

k=−∞

q2k(12k+17)+12

)
,

which is equivalent to

∞∑
n=0

qo(2n)q
n =

∞∑
n=0

p(n)qn
( ∞∑

k=−∞

qk(12k−1) −
∞∑

k=−∞

qk(12k+17)+6

)
.

Using the Cauchy product of two power series, we find that

∞∑
n=0

qo(2n)q
n =

∞∑
n=0

∞∑
k=−∞

p(n− k(12k − 1))qn(4.4)

−
∞∑

n=0

∞∑
k=−∞

p(n− k(12k + 17)− 6)qn.

Equating coefficients of qn on both sides of (4.4), we obtain

(4.5) qo(2n) =
∞∑

k=−∞

p(n−k(12k−1))−
∞∑

k=−∞

p(n−k(12k+17)−6).
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By taking

∞∑
n=0

qo(2n+ 1)q2n+1 =
(−q; q2)∞ − (q; q2)∞

2
,

we also find in a similar fashion that

(4.6) qo(2n+1) =

∞∑
k=−∞

p(n−k(12k−5))−
∞∑

k=−∞

p(n−k(12k+11)−2).

Combining (4.5) and (4.6), we arrive at (4.1). �

Example 4.2. If n = 23,

p(11)− p(8)− p(9) + p(4) = 9,

and q0(23) equals 9 since the nine partitions in question are:

23, 19 + 3 + 1, 17 + 5 + 1,

15 + 7 + 1, 15 + 5 + 3, 13 + 9 + 1,

13 + 7 + 3, 11 + 9 + 3, 11 + 7 + 5.

It would be interesting to find the recurrence relation for a t-
tuple partition function denoted by p−t(n), which would lead to a
generalization of (1.8) and (1.12).
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