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CONSTRUCTION OF GLOBALIZATIONS FOR
PARTIAL ACTIONS ON RINGS, ALGEBRAS,
C∗-ALGEBRAS AND HILBERT BIMODULES

DAMIÁN FERRARO

ABSTRACT. We give a necessary condition for a partial
action on a ring to have globalization. We also show that
every partial action on a C∗-algebra satisfying this condition
admits a globalization and, finally, we use the linking algebra
of a Hilbert module to translate our condition to the realm
of partial actions on Hilbert modules.

1. Introduction. Among the simplest examples of partial actions
on C∗-algebras [7, 8, 10], we find restrictions of actions to non invariant
C∗-ideals [1]. Many objects associated to a global action, β, and a
restriction it, α, are closely related. For example, the partial crossed
product of α is a hereditary C∗-subalgebra of the crossed product of β
[1, 2]. Therefore, it is interesting to know which partial actions can
be described as the restriction of a global action (the globalization).
This problem was stated in [1], where it was solved for commutative
C∗-algebras.

Partial actions and globalizations can be defined in other categories,
such as topological spaces, rings, algebras and Hilbert modules [1, 3,
5, 6]. Here, we will work with rings, algebras, ∗-algebras, C∗-algebras
and Hilbert modules, mainly because C∗-algebras can be viewed in any
of these categories. The respective notions of partial (global) action are
r-, a-, ∗-, C∗- and Hb-partial (global) actions, and we are interested in
determining when a given partial action in any of these categories has
a globalization (in the respective category).
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This work is organized as follows. In Section 2, we study the problem
of constructing a globalization of r-partial actions. Our intention is to
study C∗-partial actions from the point of view of ring theory, which
amounts to eliminating all of the topological and vector space structure
while keeping the ring theoretic properties we need. Hence, when
necessary, we make some assumptions on rings which are known to
hold for C∗-algebras. Under these assumptions, we give a necessary
and sufficient condition for the existence of an r-globalization. Then,
we gradually add more structure: first, scalar multiplication, then invo-
lution and, finally, a C∗-norm. At that point, we show that a C∗-partial
action has a C∗-globalization if and only if it has an r-globalization.
Finally, in the last section, we give a necessary and sufficient condition
for the existence of a globalization of an Hb-partial action. We
specifically show that an Hb-partial action has a globalization if and
only if its linking partial action [1] has a C∗-globalization.

2. Partial actions on rings. The definition of r-partial actions
we adopt is [6, Definition 2.1]. In case the partial action under
consideration is global, we substitute the term partial by global. The
reader is referred to [9] for the definition of a partial action on a set.

A fundamental operation in the theory of partial actions is the
restriction of an action to a set; however, partial actions can also
be restricted. Suppose σ = ({Xt}t∈G, {σ}t∈G) is a partial action
of the group G on the set X. Given a set U ⊂ X and t ∈ G,
define Ut := U ∩ σt(Xt−1 ∩ U). It is obvious that Ut−1 ⊂ Xt−1 and
σt(Ut−1) ⊂ Ut; hence, it makes sense to define

κt : Ut−1 −→ Ut

as
κt(x) = σt(x).

Straightforward arguments imply that the restriction of σ to U , defined
as

σ|U := ({Ut}t∈G, {κt}t∈G),

is a partial action of G on U . Recall [9, Definition 2.9] that U is said
to be σ-invariant if σt(Xt−1 ∩ U) ⊂ U , for all t ∈ G.
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Remark 2.1. If U ⊂ V ⊂ X, then σ|U = σ|V |U . In addition, if σ is
global, σ|U is global if and only if U is σ-invariant.

The next two examples will be used frequently. We remind the
reader that, by an ideal of a ring, we mean a bilateral ideal.

Example 2.2. Let A be a ring and I an ideal of it. The r-partial action
of Z2 = {0, 1} on A determined by I is αAI := ({A0, A1}, {α0, α1}),
where A0 = A, A1 = I, α0 = idA and α1 = idI .

Example 2.3. Let α = ({At}t∈G, {αt}t∈G) be an r-partial action. The
opposite ring of A, Aop, is the ring obtained from A by changing the
product to a · b := ba. For each t ∈ G, Aop

t is an ideal of Aop, and we
write αop

t instead of αt when we think of αt as a map from Aop
t−1 to

Aop
t . Then, αop := ({Aop

t }t∈G, {αop
t }t∈G) is an r-partial action, called

the opposite of α.

We now briefly recall some terminology. An annihilator of a ring A
is an element a ∈ A such that ab = ba = 0 for all b ∈ A. The set
formed by all annihilators will be denoted Ann(A), and we say A is
non degenerate if Ann(A) = {0}. Recall that a ring homomorphism
is an additive and multiplicative function between two rings and that
an automorphism of A is a ring isomorphism from A to A. The set of
automorphisms of A will be denoted Aut(A).

Let α and β be r-partial actions of G on A and B, respectively.
A morphism from α to β is a homomorphism f : A → B which is G-
equivariant in the sense of [9, Definition 2.7]. The identity associated to
α is merely the identity of A, and the composition of morphisms is the
composition of functions. This determines the notion of isomorphism.

In order to facilitate the exposition we rephrase Definition 2.2 of [6].

Definition 2.4. An r-globalization of α is a 4-tuple Ξ = (B, β, I, ι),
where β is an r-global action of G on B, I is an ideal of B, ι : α→ β|I
is an isomorphism and [βI] :=

∑
t∈G βt(I) equals B. We say that Ξ is

non degenerate if B is non degenerate.
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Given another r-globalization of α, Σ = (C, γ, J, κ), we say π : Ξ → Σ
is a morphism if π : β → γ is a morphism and π◦ι = κ. Note that every
morphism between r-globalizations is surjective as a function and that
there is at most one morphism between any two r-globalization of α.

Example 2.5. Consider the partial action of Example 2.2. Assume
that there exists an ideal J of A such that A = I ⊕ J (the direct sum
of rings). Let β be the action of Z2 on B := I ⊕ J ⊕ J given by
β1(a ⊕ b ⊕ c) = a ⊕ c ⊕ b. In addition, let ι : A → B be defined as
ι(a ⊕ b) = a ⊕ b⊕ 0. Then, (B, β, I ⊕ J ⊕ 0, ι) is an r-globalization of
αAI .

Remark 2.6. If Ξ = (B, β, I, ι) is an r-globalization of α, then
Ξop := (Bop, βop, Iop, ιop) is an r-globalization of αop.

Partial actions on degenerate rings may have more than one isomor-
phism class of globalizations.

Example 2.7. For an abelian group V we denote V0 the ring obtained
by considering on V the null multiplication. Let α be the partial action
of Z3 = {0, 1, 2} (with additive notation) on R0 such that α0 = idR0

and α1 = α2 = id{0}. Two globalizations of α are (R2
0, β, I, ι) and

(R3
0, γ, J, κ), where I and J are the x-axis, ι(x) = (x, 0), κ(x) = (x, 0, 0),

β1 is the rotation by an angle of 2π/3 and γ1(x, y, z) = (z, x, y). These
globalizations are not isomorphic since (1, 0) + β1(1, 0) + β2(1, 0) = 0;
however, (1, 0, 0) + γ1(1, 0, 0) + γ2(1, 0, 0) ̸= 0.

Assume that α = ({At}t∈G, {αt}t∈G) is an r-partial action of G
on A. The main idea of this section is to use an r-globalization of α
to construct a new r-globalization in such a way that the latter can be
described in terms of α. This description will make no reference to the
first globalization and will be interpreted as the building instructions
of a globalization. Then, we will give conditions (on α) under which
the construction can be performed and produces a globalization. We
will need some facts regarding centralizers which we now recall, see [4]
for a detailed exposition.

A double centralizer of A is a pair µ = (L,R) such that L and R
are additive functions from A to A and, for all a, b ∈ A, L(ab) = L(a)b,
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R(ab) = aR(b) and aL(b) = R(a)b. It is standard to write µa = L(a)
and aµ = R(a). The set formed by all of the double centralizers of A,
M(A), is a unital ring with the operations (L,R) + (L′, R′) = (L +
L′, R+R′) and (L,R)(L′, R′) = (L ◦L′, R′ ◦R). The function τ : A→
M(A), where τ(a)b = ab and bτ(a) = ba, is a ring homomorphism
which is injective if and only if A is non degenerate.

The ring of functions from G to A (with point wise operations) will
be denoted AG. Given t ∈ G, we define

θt : A
G −→ AG

as θt(f)|t := f |rt.

Definition 2.8. The canonical (global) action of G on M(AG), Θ, is
given by the map Θ: G→ Aut(M(AG)),

Θt(L,R) = (θt ◦ L ◦ θt−1 , θt ◦R ◦ θt−1).

Definition 2.9. Assume that Ξ = (B, β, I, ι) is an r-globalization of α.
The canonical morphism associated to Ξ, denoted πΞ or simply π, is
the map

π : B −→M(AG)

given by

π(b)f |r = ι−1(βr(b)ι(f |r)),
fπ(b)|r = ι−1(ι(f |r)βr(b)),

for all b ∈ B, f ∈ AG and r ∈ G.

It is left to the reader to verify the fact that

π : β −→ Θ

is a morphism. After this is done, we can see that π(B) is a Θ-invariant
subring and π(I) is an ideal of π(B). Moreover, Θ|π(B) is an r-global
action, [Θπ(I)] = π(B), and Remark 2.1 implies Θ|π(B)|π(I) = Θ|π(I).
The 4-tuple

ΞΘ := (π(B),Θ|π(B), π(I), π ◦ ι)

is an r-globalization if and only if π ◦ ι is injective and π ◦ ι(At) =
π(I) ∩ Θt(π(I)), for all t ∈ G. These two conditions seem to be
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unrelated, even if we require additional structure on the ring (see
Example 3.2).

Lemma 2.10. Let Ξ = (B, β, I, ι) be an r-globalization of the r-partial
action α (of G on A). If π is the canonical morphism associated to Ξ,
then ker(π) = Ann(B). Moreover, if A is non degenerate, then π ◦ ι is
injective and π(B) is non degenerate.

Proof. For a ∈ A and r ∈ G, we denote δar as the function

G −→ A, t 7−→ aδr,t,

where δr,t is the Kronecker delta. If b ∈ ker(π), then 0 = ι(π(b)δar |r) =
βr(b)ι(a), whence (by Remark 2.6) 0 = ι(a)βr(b). Thus, ker(π) ⊂
Ann(B). Now, assume that b ∈ Ann(B) and take f ∈ AG. Clearly,
βr(b) ∈ Ann(B), for all r ∈ G, and this implies b ∈ ker(π) since

π(b)f |r = ι−1(βr(b)ι(f |r)) = 0 = ι−1(ι(f |r)βr(b)) = fπ(b)|r.

In the case where A is non degenerate and a ∈ ker(π ◦ ι) it is evident
that ι(a) ∈ Ann(B). Hence, a ∈ Ann(A), and this implies a = 0.

Finally, assume that π(b) ∈ Ann(π(B)). Since π(B) is Θ-invariant,
for all r ∈ G, we have π(βr(b)) = Θr(π(b)) ∈ Ann(π(B)). Then, for all
r ∈ G and c, d ∈ A,

0 = π(βr(b)ι(c))δ
d
e |e = ι−1(βr(b)ι(c)ι(d)) = ι−1(βr(b)ι(c))d.

0 = δdeπ(βr(b)ι(c))|e = ι−1(ι(d)βr(b)ι(c)) = dι−1(βr(b)ι(c)).

In other words, βr(d)ι(c) = 0 for all r ∈ G and c ∈ A. Using βop, we
conclude that 0 = βr(b)ι(c) = ι(c)βr(b), for all r ∈ G and c ∈ A, that
is to say, π(b) = 0. �

In order to give a sufficient condition for π ◦ ι to be an isomorphism
between α and Θ|π(I), we introduce the concept of assimilative sets.
Before doing so, we recall that the product of two subsets, U and V ,
of a ring is UV := {uv : u ∈ U, v ∈ V }.

Definition 2.11. A subset S of the ring C is assimilative (in C) if,
given c ∈ C such that cC ∪ Cc ⊂ S, then c ∈ S.
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Recall [6] that a ring A is left s-unital if a ∈ Aa, for all a ∈ A.
Evidently, every left s-unital ring is non degenerate and any subset of
a left s-unital ring is assimilative in the entire ring. Any sum of left
s-unital ideals is left s-unital [6, Remark 2.5].

Proposition 2.12. Let α be an r-partial action of G on A with At

non degenerate (as a ring), for all t ∈ G. Then,

(a) for any two r-globalizations of α, Ξ and Σ with Σ non degenerate,
there exists a morphism

ΞρΣ : Ξ −→ Σ.

Furthermore, the following are equivalent :

(i) ΞρΣ is an isomorphism.
(ii) Ξ is non degenerate.
(iii) The canonical morphism associated to Ξ is injective.

(b) If At is assimilative in A for all t ∈ G, then α has an r-
globalization if and only if it has a non degenerate r-globalization.

(c) If, for all n ∈ N and t1, . . . , tn ∈ G, the ideal At1 + · · · + Atn is
assimilative in A, then every r-globalization of α is non degenerate.

Proof. Suppose the r-globalizations Ξ and Σ are (B, β, I, ι) and
(C, γ, J, κ), respectively. For each (t, a, b) ∈ G×A×A, define ut(a, b) :=
ι−1(βt(ι(a))ι(b)). The motivation for this definition comes from [1,
Lemma 2.2]. We want to prove that, for all c ∈ At

cut(a, b) = αt(αt−1(c)a)b,(2.1)

ut(a, b)c = αt(aαt−1(bc)).(2.2)

We proceed to prove equation (2.1) and leave (2.2) to the reader. Since
ι : α → β|I is an isomorphism and ι(At) = I ∩ βt(I) an ideal of B, it
follows that ut(a, b) ∈ At and

cut(a, b) = ι−1(ι(c)βt(ι(a))ι(b)) = ι−1(βt(ι(αt−1(c)))βt(ι(a))ι(b))

= ι−1 ◦ ι(αt(αt−1(c)a)b) = αt(αt−1(c)a)b.

Note that ut(a, b) is completely determined by the α and (t, a, b)
since it is an element of the non degenerate ideal At that satisfies
(2.1) and (2.2) for all c ∈ At. Thus, ι−1(βt(ι(a))ι(b)) = ut(a, b) =
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κ−1(γt(κ(a))κ(b)). This gives πΞ ◦ ι(a)f = πΣ ◦ κ(a)f for all f ∈ AG.
If α is now replaced by αop and β by βop, then we obtain

fπΞ ◦ ι(a) = fπΣ ◦ κ(a)

for all f ∈ AG. Combining, we obtain πΞ ◦ ι = πΣ ◦ κ. Hence,

Im(πΞ) = [ΘπΞ(I)] = [ΘπΣ(J)] = Im(πΣ).

Clearly, Lemma 2.10 implies πΣ is injective. Then, we can define

ΣρΞ := π−1
Σ ◦ πΞ, and it is clear that ΣρΞ ◦ ι = κ. For a ∈ A and t ∈ G,

we have

πΞ(βt(ι(a))) = Θt(πΞ ◦ ι(a)) = Θt(πΣ ◦ κ(a)) = πΣ(γt(κ(a))).

Then, ΣρΞ(βt(ι(a))) = γt(κ(a)), and ΣρΞ : Ξ → Σ is a morphism.

Observe that Lemma 2.10 implies (a)(ii) is equivalent to (a)(iii).
Also, observe that (a)(i) implies B and C are isomorphic; thus, (a)(i)
implies (a)(ii) since C is non degenerate. If (a)(iii) holds, then π−1

Ξ ◦πΣ
is the inverse of ΣρΞ and (a)(i) holds.

Now we show (b). Assume that α has an r-globalization Ξ =
(B, β, I, ι), and let π be the canonical morphism associated to Ξ. It
is evident that π(It) ⊂ π(I) ∩ Θt(π(I)). In order to prove π(I) ∩
Θt(π(I)) ⊂ π(It), take a ∈ I such that π(a) = Θt(π(b)) for some b ∈ I.
Note that, if c ∈ I, then

ac = ι(π(a)δι
−1(c)
e |e) = ι(Θt(π(a))δ

ι−1(c)
e |e) = βt(a)ι(c) ∈ It,

ca = ι(δι
−1(c)
e |eπ(a)|e) = ι(δι

−1(c)
e Θt(π(a))|e) = cβt(a) ∈ It.

Hence, a ∈ It since It is assimilative in I.

From Lemma 2.10 and the comments preceding it, we know

(π(B),Θ|π(B), π(I), π ◦ ι)

is a non degenerate r-globalization of α. Thus, we have proved (b).

In order to prove the last claim, observe first that, for all n ∈ N
and t1, . . . , tn ∈ G, the ideal It1 + · · · + Itn is assimilative in I. Let
b ∈ Ann(B). From Definition 2.4, there exist n ∈ N, t1, . . . , tn ∈ G and
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b1, . . . , bn ∈ I such that

b =
n∑

j=1

βtj (bj).

We want to prove that b = 0 by induction on n.

If n = 1, it follows that Ib1 = b1I = {0}, and this implies b = 0
since I is non degenerate. In general, n > 1,

n∑
j=1

βt−1
n tj

(bj)c = βt−1
n
(b)c = 0,

for all c ∈ I and r ∈ G. Then, we have

bnc = −
n−1∑
j=1

βt−1
n tj

(bj)c ∈
n−1∑
j=1

It−1
n tj

,

for all c ∈ I. In a similar manner, it can be shown that

cbn ∈
n−1∑
j=1

It−1
n tj

,

for all c ∈ I. Thus, bn = b′1+· · ·+b′n−1 with b
′
j ∈ It−1

n tj
, j = 1, . . . , n−1.

Furthermore,

βtn(b
′
j) ∈ βtn(It−1

n tj
) ⊂ βtn ◦ βt−1

n tj
(I) = βtj (I).

Hence, there exists b′′j ∈ I (j = 1, . . . , n− 1) such that

βtn(bn) =
n−1∑
j=1

βtj (b
′′
j ).

This gives

b =

n−1∑
j=1

βtj (bj + b′′j )

with bj + b′′j ∈ I. Therefore, b = 0 by the induction hypothesis. �

We are almost ready to present the main theorem of this section; to
clarify its proof, we state the following.
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Lemma 2.13. Let A be a ring, I and J ideals of A, a ∈ I and b ∈ J
such that I ∩ J and I + J are non degenerate,

aI ∪ Ia ⊂ J, bJ ∪ Jb ⊂ I,

ca = cb and ac = bc for all c ∈ I ∩ J . Then, a = b.

Proof. For all z ∈ I ∩ J and x ∈ I + J , we have (a− b)x ∈ I ∩ J and
(a− b)xz = 0 = z(a− b)x. Since I ∩ J is non degenerate, (a− b)x = 0
for all x ∈ I + J . If we now replace A by Aop, we obtain x(a− b) = 0
for all x ∈ I + J . Hence, a = b. �

The next result is a combination of [5, Theorem 4.5] and [6,
Theorem 3.1].

Theorem 2.14. Let α = ({At}t∈G, {αt}t∈G) be an r-partial action
of G on A, and consider the conditions:

(a) α has an r-globalization.
(b) For all (t, a, b) ∈ G×A×A, there exists a u ∈ At such that, for

all c ∈ At, cu = αt(αt−1(c)a)b and uc = αt(aαt−1(bc)).

Then, (a) implies (b). If At +As and At ∩As are non degenerate and
At is assimilative in A, for all s, t ∈ G, then (b) implies (a). Moreover,
in this last case, α has a non degenerate r-globalization.

Proof. The direct implication is implicit in the first part of the proof
of Proposition 2.12. For the converse, note that the element u of (b)
is uniquely determined by (t, a, b) since At is non degenerate; thus, it
will be denoted ut(a, b).

We begin by showing that there exists a ring homomorphism

π : A −→M(AG)

such that

(2.3)
π(a)f |t = ut(a, f |t),
fπ(a)|t = αt(ut−1(f |t, a)).

In order to avoid repetition, we show that αop satisfies condition
(b) write fπ(a)|t in terms of αop. For (t, a, b) ∈ G × Aop × Aop, let
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uopt (a, b) := αt(ut−1(b, a)). Clearly, fπ(a)|t = uopt (a, f |t). Furthermore,
for all c ∈ Aop

t ,

c · uopt (a, b) = αt(ut−1(b, a))c = αt(ut−1(b, a)αt−1(c))

= αt (αt−1 [bαt(aαt−1(c))])

= bαt(aαt−1(c)) = αop
t (αop

t−1(c) · a) · b

and

uopt (a, b) · c = cαt(ut−1(b, a)) = αt(αt−1(c)ut−1(b, a))

= αt(αt−1(cb)a) = αop
t (a · αop

t−1(b · c)).

Note that the uniqueness of the element ut(a, b) with respect to
(t, a, b) implies that a 7→ ut(a, b) and b 7→ ut(a, b) are additive. Then,
f 7→ π(a)f and f 7→ fπ(a) are both additive. Moreover, π is additive.

In order to see that [π(a)f ]g = π(a)[fg], it suffices to prove that
ut(a, bc) = ut(a, b)c, for all a, b, c ∈ A and t ∈ G. For all d ∈ At, we
have

dut(a, bc) = αt(αt−1(d)a)bc = dut(a, b)c,

ut(a, bc)d = αt(aαt−1(bcd)) = ut(a, b)cd.

Since At is non degenerate, ut(a, bc) ∈ At and ut(a, b)c ∈ At we con-
clude that ut(a, bc) = ut(a, b)c. Thus,

g[fπ(a)]|t = g|tuopt (a, f |t) = uopt (a, f |t) · g|t
= uopt (a, f |t · g|t)
= uopt (a, gf |t) = [gfπ(a)]|t.

The identity [fπ(a)]g = f [π(a)g] is equivalent to aut(b, c) =
αt(ut−1(a, b))c. In order to prove the latter, note that aut(b, c) and
αt(ut−1(a, b))c belong to the non degenerate ideal At. The desired
identity follows from the fact that, for all d ∈ At,

daut(b, c) = αt(αt−1(da)b)c = αt(αt−1(d)ut−1(a, b))c = dαt(ut−1(a, b))c.

and

aut(b, c)d = d · αop
t (uopt−1(c, b)) · a = d · c · uopt (b, a) = αt(ut−1(a, b))cd.

At this point, we have shown that π(a) ∈M(AG) and that π is additive.
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In order to prove that π(a)π(b)f = π(ab)f , for all f ∈ AG and
a ∈ A, it suffices to show that ut(a, ut(b, c)) = ut(ab, c), for all t ∈ G
and a, b, c ∈ A. Once again, we use that At is non degenerate. In this
case, ut(a, ut(b, c)), ut(ab, c) ∈ At and, for all d ∈ At:

dut(a, ut(b, c)) = αt(αt−1(d)a)ut(b, c) = αt(αt−1(d)ab)c = dut(ab, c);

ut(a, ut(b, c))d = αt(aαt−1(ut(b, c)d)) = αt(aαt−1(αt[bαt−1(cd)]))

= αt(abαt−1(cd)) = ut(ab, c)d.

Hence, the identity follows and fπ(a)π(b) = fπ(ab) since

fπ(a)π(b)|t=uopt (b, fπ(a)|t)=uopt (b, uopt (a, f |t))=uopt (b·a, f |t)=fπ(ab)|t.

In order to see that π is injective, first observe that ue(a, b) = ab.
If π(a) = 0, then for all b ∈ A, we have ba = δbeπ(a)|e = 0 and ab =
π(a)δbe|e = 0. Thus, a = 0.

Let Θ be the canonical action of G onM(AG), and define the ring B
as the minimal Θ-invariant ring containing π(A). It is evident that
B =

∑
t∈G Θt(π(A)) and that β := Θ|B is an r-global action. The

proof will be complete once we show that π(A) is an ideal of B, that
π : α→ β|π(A) is an isomorphism and that B is non degenerate.

We claim that π : α → β is G-equivariant. Fix a ∈ At−1 and
note that, to prove π(αt(a)) = Θt(π(a)), it suffices to show that
ur(αt(a), b) = urt(a, b) and ur(b, αt(a)) = urt(b, a), for all r, t ∈ G
and b, c ∈ A. It is easy to verify that the second equality follows from
the first by replacing α by αop. We can use Lemma 2.13 to conclude
that ur(αt(a), b) = urt(a, b) since ur(αt(a), b), urt(a, b) ∈ Ar +Art,

Arur(αt(a), b) = αr(Ar−1αt(a))b ∈ Ar ∩Art,

ur(αt(a), b)Ar = αr(αt−1(a)αr−1(bAr)) ∈ Ar ∩Art,

Arturt(a, b) = αrt(At−1r−1a)b ∈ Ar ∩Art,

urt(a, b)Art = αrt(aαt−1r−1(bArt)) ∈ Ar ∩Art

and, for all z ∈ Ar ∩Art,

zur(αt(a), b) = αr(αr−1(z)αt(a))b = αr(αt(αt−1r−1(z)a))b

= αrt(αt−1r−1(z)a)b = zurt(a, b);

ur(αt(a), b)z = αr(αt(a)αr−1(bz)) = αr(αt(aαt−1r−1(bz)))

= αrt(aαt−1r−1(bz)) = urt(a, b)z.
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As previously mentioned, we must show that π(A) is an ideal ofB. In
order to do so, we prove that βt(π(A))π(A) ⊂ π(At) for all t ∈ G, which
is accomplished by showing that βt(π(a))π(b) = π(ut(a, b)). From the
definitions of β and π, we obtain

βt(π(a))π(b)f |t = urt(a, ur(b, f |r)),
π(ut(a, b))f |r = ur(ut(a, b), f |r).

Then, it suffices to show that urt(a, ur(b, c)) = ur(ut(a, b), c). We
now use Lemma 2.13 once more. Note that urt(a, ur(b, c)) ∈ Art,
ur(ut(a, b), c) ∈ Ar,

Arturt(a, ur(b, c)) = αrt(At−1r−1a)ur(b, c) ∈ Art ∩Ar,

urt(a, ur(b, c))Art = αrt(aαt−1r−1(ur(b, c)Art)) ∈ Art ∩Ar,

Arur(ut(a, b), c) = αr(Ar−1ut(a, b))c ∈ αr(Ar−1 ∩At) = Ar ∩Art,

ur(ut(a, b), c)Ar = αr(ut(a, b)αr−1(cAr)) ∈ Ar ∩Art.

Furthermore, for all z ∈ Art ∩Ar, it follows that

zurt(a, ur(b, c)) = αrt(αt−1r−1(z)a)ur(b, c)

= αr(αt(αt−1r−1(z)a)b)c

= αr(αr−1(z)ut(a, b))c

= zur(ut(a, b), c)

and

urt(a, ur(b, c))z = αrt(aαt−1r−1(ur(b, c)z))

= αrt(aαt−1r−1(αr(bαr−1(cz))))

= αrt(aαt−1(bαr−1(cz)))

= αr ◦ αt(aαt−1(bαr−1(cz)))

= αr(ut(a, bαr−1(cz)))

= αr(ut(a, b)αr−1(cz))

= ur(ut(a, b), c)z.

Then, Lemma 2.13 implies urt(a, ur(b, c)) = ur(ut(a, b), c). Thus,

fβt(π(a))π(b)|r = uopr (b, fβt(π(a))|r) = uopr (b, uoprt (a, f |r))
= uoprt (u

op
t−1(b, a), f |r) = uoprt (u

op
t−1(b, a), θt−1(f)|rt)
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= fβt(π(u
op
t−1(b, a))|r = fβt(π(αt−1(ut(a, b)))|r

= fπ(ut(a, b))|r.

Hence, βt(π(a))π(b) = π(ut(a, b)).

If πop is the map π constructed using αop instead of α, then βop is
(isomorphic to) the action β constructed from αop. Thus,

π(a)βt(π(b)) = βop
t (πop(b)) · πop(a)

= πop(uopt (b, a))

= π(αt(ut−1(a, b))) ∈ π(At).

In order to see that π(A) is an ideal of B, simply note that

Bπ(A) =
∑
t∈G

spanβt(π(A))π(A) ⊂
∑
t∈G

π(At) = π(A)

π(A)B =
∑
t∈G

spanπ(A)βt(π(A)) ⊂
∑
t∈G

π(At) = π(A).

The conclusion of the proof is at hand. We will know that

π : α −→ β|π(A)

is an isomorphism after we show that π(At) = π(A) ∩ βt(π(A)).
Note that π(At) = π(αt(At−1)) = βt(π(At−1)) ⊂ π(A) ∩ βt(π(A)).
Now, fix µ ∈ π(A) ∩ βt(π(A)). There exist a, b ∈ A such that
µ = π(a) = βt(π(b)). Thus, for all c ∈ A,

ac = ue(a, c) = π(a)δce|e = βt(π(a))δ
c
e|e = ut(a, c) ∈ At.

An analogous argument implies that ca ∈ At. Using that At is
assimilative in A, we conclude that a ∈ At.

Up to this point, we have shown that Ξ := (B,Θ|B, π(A), π) is an
r-globalization of α. Note that the canonical morphism associated to Ξ,

πΞ : B −→M(AG),

is simply the natural inclusion ρ : B →M(AG) since ρ is G-equivariant
and ρ◦π = π. Then, Lemma 2.10 implies that B is non degenerate. �

With the previous theorem, we can generalize Example 2.5. Recall
that an orthogonal complement for the ideal I of ring A is an ideal
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J ⊂ A such that A = I ⊕ J . In this situation, IJ = JI = {0} since

IJ ⊂ I ∩ J = {0}.

Several remarks are in order. Firstly, every non degenerate ideal has
at most one orthogonal complement. Secondly, if J is an orthogonal
complement for I, then the following are equivalent:

• A and I are non degenerate.
• I and J are non degenerate.
• A and J are non degenerate.

Finally, I is assimilative in A each time A and I are non degenerate,
and I has an orthogonal complement.

Corollary 2.15. Let α = ({At}t∈G, {αt}t∈G) be an r-partial action of
G on A. If, for all s, t ∈ G, the ideals At + As and At ∩ As are non
degenerate and At has an orthogonal complement in A, then α has a
non degenerate r-globalization.

Proof. It suffices to verify that α satisfies the hypotheses of Theorem
2.14 (b). Since At−1 has an orthogonal complement, for every (t, a, b) ∈
G × A × A, there exists an a′ ∈ At−1 such that ca = ca′ and
ac = a′c, for all c ∈ At−1 . With u ∈ At defined as αt(a

′)b, we
have that, for all c ∈ At, cu = αt(αt−1(c)a′)b = αt(αt−1(c)a)b and
uc = αt(a

′αt−1(bc)) = αt(aαt−1(bc)). �

The next example shows that the existence of an orthogonal comple-
ment for the domains At is not a necessary condition for the existence
of an r-globalization.

Example 2.16. Let C0(R) be the C∗-algebra of continuous functions
from R to C vanishing at ±∞. In addition, let β be the action of R on
C0(R) given by βt(f)(r) = f(r − t), and define A as the ideal

C0(0,+∞) = {f ∈ C0(R) : f |R\(0,+∞) ≡ 0}.

Thus,

B :=
∑
t∈R

βt(A)
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is a β-invariant ring and, if ι : A → B is the canonical inclusion, then
(B, β|B, A, ι) is an r-globalization of β|A. Every ideal of A is non
degenerate, but, if t > 0, At = A ∩ βt(A) = C0(t,+∞) does not have
an orthogonal complement in A.

In the context of r-partial actions [1, Proposition 2.1] becomes

Proposition 2.17. Assume that α is an r-partial action of G on the
commutative ring A and that Ξ = (B, β, I, ι) is an r-globalization of α.
If At is non degenerate for all t ∈ G, then B is commutative.

Proof. It suffices to prove that aβt(b) = βt(b)a, for all a, b ∈ I
and t ∈ G. Note that I is commutative, It := ι(At) non degenerate
and aβt(b), βt(b)a ∈ I ∩ βt(I) = It. Then aβt(b) = βt(b)a if and
only if caβt(b) = cβt(b)a, for all c ∈ It. Fix c ∈ It. Since, clearly,
a, b, c, βt−1(ac), βt−1(c), βt(b)a ∈ I, we have that

caβt(b) = βt(βt−1(ac)b) = βt(bβt−1(ac)) = βt(b)ac = cβt(b)a. �

3. Partial actions on algebras and ∗-algebras. By an a-partial
action, we mean a partial action on an algebra in the sense of [6]. We
define morphisms between a-partial actions as linear morphisms of r-
partial actions, and the definition of a-globalizations is obtained from
Definition 2.4 by replacing “r-” by “a-.”

Recall that a ∗-algebra is a complex algebra A with a conjugate
linear and anti-multiplicative involution A → A, a 7→ a∗. A ∗-homo-
morphism between two ∗-algebras, ϕ : A→ B, is a morphism of algebras
such that ϕ(a∗) = ϕ(a)∗. By an ideal of a ∗-algebra, we mean an ideal
(in the algebraic sense) closed by involution. It is then natural to
say that α = ({At}t∈G, {αt}t∈G) is a ∗-partial action if it is an a-
partial action on the ∗-algebra A, At is an ideal of A for all t ∈ G
and αt is a ∗-homomorphism for all t ∈ G. In the context of ∗-
partial actions, morphisms are morphisms of a-partial actions which are
also ∗-homomorphisms. Once again, the definition of ∗-globalization is
obtained from Definition 2.4 by replacing “r-” by “∗-.”

In the same manner, ∗-algebras are rings with extra structure; ∗-
globalizations are r-globalizations with an additional structure.
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Proposition 3.1. If α = ({At}t∈G, {αt}t∈G) is an a-partial (
∗-partial)

action with At non degenerate for all t ∈ G, then every non degen-
erate r-globalization of α is obtained by forgetting the vector space
structure (vector space structure and involution) of an a-globalization
(∗-globalization). Moreover, this a-globalization (∗-globalization) is
uniquely determined by the r-globalization.

Proof. Let Ξ = (B, β, I, ι) be a non degenerate r-globalization of α,
and let F be the field of scalars of A. For every (λ, b) ∈ F × B, there
are a1, . . . , an ∈ A and t1, . . . , tn ∈ G, such that

b =
n∑

j=1

βtj (ι(aj)).

Thus, we are forced to define

λb :=
n∑

j=1

βtj (ι(λaj)).

In order to show the operation

(λ, b) 7−→ λb

is defined, it suffices to prove that

c :=
n∑

j=1

βtj (ι(λaj))

is zero every time b = 0.

Suppose b = 0. Recall that the elements ut(x, y) constructed in the
proof of Proposition 2.12 are uniquely determined by equations (2.1)
and (2.2), and observe that uniqueness implies

(x, y) 7−→ ut(x, y)

is bilinear. Then, for all d ∈ A and r ∈ G, we have

n∑
j=1

βr−1tj (ι(aj))ι(d) = βr−1(bβr(ι(d))) = 0,
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and

cβr(ι(d)) =
n∑

j=1

βr(βr−1tj (ι(λaj))ι(d))

= βr ◦ ι
( n∑

j=1

ur−1tj (λaj , d)

)

= βr ◦ ι
(
λ

n∑
j=1

ur−1tj (aj , d)

)

= βr ◦ ι
(
λι−1

( n∑
j=1

βr−1tj (ι(aj))ι(d)

))
= 0.

Clearly, this implies cB =
∑

t∈G cβt(I) = {0}, and, by symmetry
(Remark 2.6), we obtain Bc = {0}. Hence, c = 0.

The manner in which we have defined scalar multiplication ensures
it is compatible with the sum. Furthermore, ι and the automorphisms
βt are linear. In order to prove that the product of B is bilinear, it
suffices to show that

λ[βt(ι(a))βr(ι(b))] = βt(ι(λa))βr(ι(b)),

which follows from the fact that

λ[βt(ι(a))βr(ι(b))] = λβr(βr−1t(ι(a))ι(b))

= λβr(ι(ur−1t(a, b)))

= βr(ι(ur−1t(λa, b))

= βt(ι(λa))βr(ι(b)).

At this point, it is clear that B is an algebra over F and that Ξ is
an a-globalization of α. Now, we deal with ∗-algebras, so from here on,
we assume that α is a ∗-partial action.

The unique involution ofB making all the βt and ι
∗-homomorphisms

should be given by

n∑
j=1

βtj (ι(aj)) 7−→
n∑

j=1

βtj (ι(a
∗
j )).
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In order to show this defines an involution we must show that, if

b =
n∑

j=1

βtj (ι(aj))

is zero, then

c :=
n∑

j=1

βtj (ι(a
∗
j ))

is zero. For every d ∈ A and r ∈ G,

(3.1) cβr(ι(d)) = βr ◦ ι
( n∑

j=1

ur−1tj (a
∗
j , d)

)
We will need the identity us(x, y)

∗ = αs(us−1(y∗, x∗)). Note that both
terms of the last equality belong to the non degenerate ideal As and
that, for all z ∈ As:

zus(x, y)
∗ = [us(x, y)z

∗]∗ = [αs(xαs−1(yz∗))]∗

= αs(αs−1(zy∗)x∗) = αs(αs−1(z)us−1(y∗, x∗))

= zαs(us−1(y∗, x∗))

and, also,

us(x, y)
∗z = [z∗us(x, y)]

∗ = [αs(αs−1(z∗)x)y]∗ = y∗αs(x
∗αs−1(z))

= αs(αs−1(y∗αs(x
∗αs−1(z)))) = αs(us−1(y∗, x∗)αs−1(z))

= αs(us−1(y∗, x∗))z.

This implies us(x, y)
∗ = αs(us−1(y∗, x∗)), and, together with (3.1),

yields

cβr(ι(d)) = 0 ⇐⇒
n∑

j=1

ur−1tj (a
∗
j , d) = 0 ⇐⇒

n∑
j=1

ur−1tj (a
∗
j , d)

∗ = 0

⇐⇒ βr ◦ ι(
n∑

j=1

αr−1tj (ut−1
j r(d

∗, aj))) = 0

⇐⇒
n∑

j=1

βtj ◦ ι(ut−1
j r(d

∗, aj)) = 0 ⇐⇒ βr(ι(d
∗))b = 0.
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The last condition is true due to the assumption b = 0. By symmetry,
we obtain cB = Bc = {0}, and this implies c = 0.

The involution is anti-multiplicative since, for all a, b ∈ A and
r, t ∈ G,

[βt(ι(a))βr(ι(b))]
∗ = βr(ι(ur−1t(a, b)))

∗

= βr(ι(αr−1t(ut−1r(b
∗, a∗))))

= βt(ι(ut−1r(b
∗, a∗)))

= βt(βt−1r(ι(b
∗))ι(a∗))

= βr(ι(b))
∗βt(ι(a))

∗.

The remaining facts, such as the conjugate linearity of the involution,
are left to the reader. �

Proposition 3.1 can be used in conjunction with Theorem 2.14 and
Proposition 2.12 to decide whether a given a-partial action (∗-partial
action) has an a-globalization (∗-globalization). In fact, all of the re-
sults we have obtained for r-partial actions hold for a- and ∗-partial
actions.

We close this section with an example where we construct a degen-
erate ∗-globalization but not a non degenerate r-globalization. The
idea is to produce an example without enough assimilative Ats (see
Theorem 2.14).

Example 3.2. Let U ∈ M4(C) be the matrix corresponding to the
permutation of rows (1 4)(2 3) (written as a product of cycles). Define
an involution in M4(C) by the formula a∗ := uatu, where

a 7−→ a

is the entrywise complex conjugation and

a 7−→ at

is the usual matrix transposition. Note that a∗ is obtained from a by
performing a symmetry with respect to the antidiagonal.
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Let A be the ∗-subalgebra of M4(C), whose elements are matrices of
the form 

a11 a12 a13 a14
0 0 a23 a24
0 0 0 a34
0 0 0 a44

 .

Then, I := {a ∈ A : a23 = 0} is a ∗-ideal of A. Note that both I
and A are non degenerate since the condition aI = {0} implies a = 0.
However, I is not assimilative since AA ⊂ I and A ̸= I.

Consider the partial action α := αAI described in Example 2.2.
Condition (b) from Theorem 2.14 is satisfied if we define ut(a, b) = ab,
for all (t, a, b) ∈ Z2 ×A×A. However, this does not ensure that α has
an r-globalization since I = A1 is not assimilative in A.

Suppose that α has a ∗-globalization Ξ = (B, β, J, ι). For conve-
nience, we set J = A, ι = idA and α = β|J . Since B = A+ β1(A) and
dim(A ∩ β1(A)) = dim(I) = 7, we see that dim(B) = dim(A) + 1 = 9.
Let v ∈ A be such that v23 = 1 and vij = 0 if i ̸= 2 or j ̸= 3. Note that
v /∈ I; thus, β1(v) /∈ A and B = A ⊕ Cβ1(v) (as vector spaces). From
now on, we think A⊕ C = B and a⊕ µ = a+ µβ1(v).

In order to compute β1(a ⊕ µ), note that aI := a − a23v ∈ I,
β1(aI) = α1(aI) = aI and

(3.2) β1(a⊕ µ) = β1(aI + a23v + µβ1(v)) = (aI + µv)⊕ a23.

We claim that the ∗-algebra structure of A ⊕ C is completely de-
termined by α. On one hand, (a ⊕ λ)∗ = a∗ ⊕ λ since β1 is a ∗-
homomorphism and v∗ = v. On the other hand, using that v2 = 0 and
recalling the relation between ut(a, b) and β described in the proof of
Proposition 2.12, it follows that

(a⊕ µ)(b⊕ ν) = ab+ µβ1(v)b+ νaβ1(v) + µνβ1(v
2)

= ab+ µu1(v, b) + να1(u1(a, v))

= (ab+ µvb+ νav)⊕ 0.

Clearly, equation (3.2) and the formulas for the product and invo-
lution of A⊕ C determine Ξ up to isomorphisms (of ∗-globalizations).
Furthermore, the reader may verify that A⊕ C actually is a ∗-algebra
with those operations, β is a ∗-global action and β|A⊕0 = α. Thus, α
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has a unique ∗-globalization, which is degenerate since Ann(A⊕ C) =
C(v ⊕ −1). Hence, Proposition 3.1 implies that α does not have a
non degenerate r-globalization. However, we can still produce a ∗-
globalization out of an r-globalization.

4. Partial actions on C∗-algebras. Most, if not all, theory re-
garding partial actions on C∗-algebras has been developed for locally
compact and Hausdorff groups. Nevertheless, we consider topological
groups in general since we want to study the effect the group’s topology
has on the existence of globalizations.

Our definition of C∗-partial action is that of [1] (which is a simplified
version of [8]), except that we make no assumptions about the group’s
topology. To be precise, assume that A is a C∗-algebra and G a
topological group. We say that α = ({At}t∈G, {αt}t∈G) is a C∗-partial
action if it is a ∗-partial action and

• At is closed, i.e., At is a C∗-ideal of A, for all t ∈ G.
• {At}t∈G is a continuous family [8, Definition 3.1].
• The function {(t, a) ∈ G × A : a ∈ At−1} → A, (t, a) 7→ αt(a),
is continuous.

For future reference, we group several well-known facts about C∗-
algebras in the following:

Remark 4.1. Every ∗-homomorphism between C∗-algebras is con-
tractive and it is injective if and only if it is an isometry [11, Theo-
rem 1.5.7]. In addition, every C∗-algebra is non degenerate, and every
C∗-ideal of a C∗-algebra is assimilative since C∗-algebras have approx-
imate units [11, Theorem 1.4.2]. Finally, the algebraic sum of finitely
many C∗-ideals is closed and hence a C∗-ideal [11, Corollary 1.5.8].

It is clear, then, that the algebraic and topological structure of
C∗-partial actions are so intimately related that every morphism of
∗-partial actions between two C∗-partial actions is, automatically, con-
tinuous. Thus, a morphism of C∗-partial actions is merely a morphism
of ∗-partial actions. We will further exploit the interplay between the
topological and algebraic structures, especially when constructing C∗-
globalizations (enveloping actions in [1]).
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Definition 4.2. A C∗-globalization of the C∗-partial action α, of G on
A, is a 4-tuple Ξ = (B, β, I, ι), where B is a C∗-algebra, β is a C∗-global
action of G on B, I is a C∗-ideal of B, ι : α → β|I is an isomorphism
of ∗-partial actions and

[βI] :=
∑
t∈G

βt(I)

is dense in B.

Suppose we are given a C∗-globalization, Ξ = (B, β, I, ι), of the C∗-
partial action α (of G on A). Then, [βI] is a β-invariant ∗-subalgebra
of B and [Ξ] := ([βI], β|[βI], I, ι) is a ∗-globalization of α. From Lemma
2.2 and Theorem 2.1 of [1], there is only one way of reversing the process
Ξ  [Ξ]. Moreover, we can regard the proofs of those results as the
method for constructing a C∗-globalization out of a ∗-globalization.
In addition, Propositions 2.12 and 3.1, Theorem 2.14 and Remark 4.1
imply that α has a (nondegenerate) ∗-globalization if and only if it
satisfies Theorem 2.14 (b). Moreover, α has at most one ∗-globalization.

Up to this point, we have focused our discussion on the construction
of β (regarded as a ∗-partial action). At some point, topology, i.e., con-
tinuity, must come into play, and it is not clear at all that condition (b)
of Theorem 2.14 relates to topology. In fact, it is the continuity of α
itself that implies the continuity of β.

Lemma 4.3. Suppose that G is a topological group, and write Gdis

when regarding G as a discrete group. Let β be a C∗-global action of
Gdis on B and I an ideal of B such that [βI] is dense in B. Then, β
is a C∗-global action of G if and only if α := β|I is a C∗-partial action
of G.

Proof. The direct implication is [1, Example 2.1]. For the converse,
it suffices to show that t 7→ βt(a) is continuous at e (the group’s unit)
for all a ∈ I.

Let a and t belong to I and G, respectively. From [1, Lemma 2.1],
it follows that

∥βt(a)− a∥ = sup{∥(βt(a)− a)βr(b)∥ : r ∈ G, b ∈ I, ∥b∥ ≤ 1}
= sup{∥(βr−1t(a)− βr−1(a))b∥ : r ∈ G, b ∈ I, ∥b∥ ≤ 1}
= sup{∥(βrt(a)− βr(a))b∥ : r ∈ G, b ∈ I, ∥b∥ ≤ 1}.
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Given r ∈ G and b ∈ I, ∥b∥ ≤ 1, we have

(βrt(a)− βr(a))b ∈ βrt(I)I + βr(I)I = Irt + Ir.

Thus, for every approximate unit {vλ}λ∈Λ of Irt + Ir, we have

∥(βrt(a)− βr(a))b∥ = lim
λ

∥(βrt(a)− βr(a))bvλ∥.

By [11, Proposition 1.5.9], for every λ ∈ Λ, there exist c ∈ I+rt and
d ∈ I+r such that vλ = c + d. Thus, ∥c∥, ∥d∥ ≤ ∥vλ∥ ≤ 1. If {wµ}µ∈M

is an approximate unit of It, then

∥(βrt(a)− βr(a))bc∥
= ∥aβt−1r−1(bc)− βt−1(a)βt−1r−1(bc)∥
= lim

µ
∥aβ(rt)−1(bc)− βt−1(wµ)βt−1(a)β(rt)−1(bc)∥

≤ lim sup
µ

∥a− βt−1(wµa)∥ ≤ lim sup
µ

∥a− αt−1(wµa)∥.

Recall that the canonical approximate unit of It is {µ}µ∈Mt , where
Mt := {c ∈ I+t : ∥a∥ < 1} is a directed set with its natural order.
According to previous calculations,

∥(βrt(a)− βr(a))bc∥ ≤ lim
µ∈Mt

sup{∥a− αt−1(νa)∥ : ν ∈Mt, ν ≥ µ}.

In order to simplify our notation, we denote by C(t) the limit on the
right-hand side of the previous inequality. With s = rt, we obtain

∥(βrt(a)− βr(a))bd∥ = ∥(βst−1(a)− βs(a))bd∥ ≤ C(t−1).

Altogether, we obtain ∥βt(a) − a∥ ≤ C(t) + C(t−1); therefore, all we
need to show is that limt→e C(t) = 0.

Fix ε > 0. Since α is a partial action of G on I, there are
neighborhoods V ⊂ G and W ⊂ B of e and a, respectively, such that
∥αs(b)−a∥ < ε/2, for all s ∈ V and b ∈ Is−1 ∩W . Take δ > 0 such that
the ball of center a and radius δ, B(a, δ), is contained in W . Then,

U := {r ∈ G : B(a, δ/2) ∩ Ir ̸= ∅}

is an open set containing e. For every r ∈ U ∩ V −1, there exists a
b ∈ Ir ∩ B(a, δ/2); thus, limµ∈Mr ∥a − µa∥ = dist(a, Ir) ≤ δ/2. Take
µr ∈Mr such that ∥a− νa∥ < δ for all ν ∈Mr with ν ≥ µr. Then, for
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every r ∈ U ∩V −1 we have C(r) < ε since, for all ν ∈Mr with ν ≥ µr,
the inequality ∥a− αr−1(νa)∥ ≤ ε/2 holds and implies

sup{∥a− αr−1(ν′a)∥ : ν′ ∈Mr, ν
′ ≥ ν} < ε. �

Corollary 4.4. Let α = ({At}t∈G, {αt}t∈G) be a C∗-partial action,
and use the expression αdis to denote α, when considered as a C∗-
partial action of Gdis. Then, α has a C∗-globalization if and only if
αdis has a C∗-globalization.

Proof. As mentioned above, the direct implication is immediate. For
the converse, assume that αdis has a C∗-globalization Ξ = (B, β, I, ι).
Lemma 4.3 implies that Ξ is a C∗-globalization since β|I is isomorphic
(as a ∗-partial action) to the C∗-partial action α and ∗-homomorphisms
between C∗-algebras are homeomorphisms (Remark 4.1). �

We are now ready to prove the main theorem of this section.

Theorem 4.5. Let α = ({At}t∈G, {αt}t∈G) be a C∗-partial action.
Then the following are equivalent :

(a) α has a C∗-globalization.
(b) α has an r-globalization.
(c) For all (t, a, b) ∈ G×A×A, there exists a u ∈ At such that, for

all c ∈ At, cu = αt(αt−1(c)a)b.

Proof. We already know (a) implies (b), which in turn, implies (c)
(Theorem 2.14). It is clear from the discussion preceding Lemma 4.3
that, to show (c) implies (b), it suffices to prove that uc = αt(aαt−1(bc)),
with a, b, c and t as in (c). If {vλ}λ∈Λ is an approximate unit to At,
then

du = lim
λ
αt(αt−1(vλ)aαt−1(bc)) = αt(aαt−1(bc)).

In order to show that (b) implies (a), we assume, without loss of
generality, that G is discrete. From Proposition 3.1, we conclude that α
has a nondegenerate ∗-globalization Ξ = (B, β, I, ι). Since essentially
this is the unique ∗-globalization, we may assume A = I, ι is the identity
and α = β|A.
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The ring of centralizers of A, M(A), is, in fact, the multiplier
C∗-algebra of A, which we view as the C∗-algebra of adjointable
operators of the right Hilbert module A (with the usual inner product
⟨a, b⟩ = a∗b). For every t ∈ G and b ∈ B, the function A → A,
a 7→ βt(b)a, is an adjointable operator with adjoint

a 7−→ βt(b
∗)a.

Thus, for every t ∈ G, there exists a ∗-homomorphism

ψt : B −→M(A)

such that ψt(b)a = βt(b)a. According to [1, proof of Theorem 2.1] the
C∗-norm of B should be

(4.1) ∥b∥ := sup{∥ψt(b)∥ : t ∈ G}.

In order to prove the supremum is finite, take t1, . . . , tn ∈ G and
a1, . . . , an ∈ A such that

b =
n∑

j=1

βtj (aj).

For every r ∈ G and c ∈ A, we have u := βrtj (aj)c ∈ Artj and

∥u∥2 = ∥u∗βrtj (aj)c∥ = ∥αrtj (αt−1
j r−1(u

∗)aj)c∥ ≤ ∥u∥∥aj∥∥c∥.

Thus,

∥ψr(b)c∥ =

∥∥∥∥ n∑
j=1

βrtj (aj)c

∥∥∥∥ ≤ ∥c∥
n∑

j=1

∥aj∥,

and
∑n

j=1 ∥aj∥ is an upper bound of {∥ψt(b)∥ : t ∈ G}.

The function b 7→ ∥b∥ is a seminorm since it is the supremum of the
seminorm norms b 7→ ∥ψr(b)∥. Moreover, for all r ∈ G and a, b ∈ B, we
have ∥ab∥ ≤ ∥a∥∥b∥ since ∥ψr(ab)∥ ≤ ∥ψr(a)∥∥ψr(b)∥. The C∗-identity
∥b∗b∥ = ∥b∥2 easily follows due to

∥ψt(b)∥2 = ∥ψt(b)
∗ψt(b)∥ = ∥ψt(b

∗b)∥.

Assume that ∥b∥ = 0. Then, βr(b)a = 0 for all r ∈ G and a ∈ A.
Since, clearly, ψr(b

∗) = 0, we conclude that

(aβr(b))(aβr(b))
∗ = (aβr(b))βr(b

∗)a∗ = 0.
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Hence, the C∗-identity of A implies aβr(b) = 0 for all r ∈ G and
a ∈ A. Note that, if π is the canonical morphism associated to Ξ, then
π(b) = 0. This implies b = 0 since B is non degenerate (Lemma 2.10).

Let B be the completion of B with respect to ∥ ∥, which is a C∗-
algebra. Each one of the ∗-homomorphisms βt ∈ Aut(B) is an isometry
since ψr(βt(b)) = ψrt(b); thus, there exists a unique ∗-homomorphism
βt ∈ Aut(B) extending βt. From uniqueness of the extension, it follows
that β : G → Aut(B) is a C∗-global action such that β|B = β. Thus,
Remark 2.1 implies

β|A = β|B|A = β|A = α.

By construction, [βA] = B; (B, β,A, ι) is a C∗-globalization of α
if and only if A is a C∗-ideal of B. The inclusion of A into B is
an isometry since it is an injective ∗-homomorphism between two C∗-
algebras, meaning that A is closed in B. Then, A is a C∗-ideal of B
due to the fact that

AB ⊂ AB ⊂ A ⊃ BA ⊃ BA. �

Theorem 4.5 (c) asserts the existence of a certain element u for each
(t, a, b) ∈ G×A×A. That element is the limit of the net given in (b),
below.

Proposition 4.6. Let α = ({At}t∈G, {αt}t∈G) be a C∗-partial action.
Then, the following are equivalent.

(a) α has a C∗-globalization.
(b) There exist U, V ⊂ A such that :

(i) spanAU = spanV A = A, and
(ii) for all (t, a, b) ∈ G × U × V , there exists an approximate unit

of At−1 , {vλ}λ∈Λ, such that {αt(vλa)b}λ∈Λ converges.

Proof. Suppose (a) holds. Define U = V := A and take (t, a, b) ∈
G × A × A. Let u be the element given in Theorem 4.5 (c). Then,
for every approximate unit of At−1 , {vλ}λ∈Λ, the net {αt(vλa)b}λ∈Λ

converges to u since {αt(vλ)}λ∈Λ is an approximate unit of At and
αt(vλ)u = αt(vλa)b.
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Now, assume (b) is true. Fix (t, a, b) ∈ G × A × A for which there
exists an approximate unit {vλ}λ∈Λ such that {αt(vλa)b}λ∈Λ converges
to an element u. Note that u belongs to At since it is the limit of a net
contained in At. We claim that, given every other approximate unit of
At−1 , {wµ}µ∈M , the net {αt(wµa)b}µ∈M converges to u. Indeed, since
{αt(wµ)}µ∈M is an approximate unit of At

u = lim
µ

lim
λ
αt(wµ)αt(vλa)b = lim

µ
lim
λ
αt(wµvλa)b = lim

µ
αt(wµa)b.

Thus, u is completely determined by (t, a, b), and we denote it ut(a, b).
Moreover, if c ∈ At−1 then

αt(c)ut(a, b) = lim
λ
αt(c)αt(vλa)b = lim

λ
αt(cvλa)b = αt(ca)b.

We claim that (b) holds if we consider AU and V A instead of U
and V , respectively. Indeed, take a ∈ U , b ∈ V , c, d ∈ A and an
approximate unit of At−1 , {vλ}λ∈Λ. Hence, {αt(vλca)bd}λ∈Λ converges
to αt(cαt−1(ut(a, b)d)) since, for all λ ∈ Λ,

αt(vλca)bd = αt(vλc)ut(a, b)d = αt(vλcαt−1(ut(a, b)d))

and limλ αt(vλcαt−1(ut(a, b)d)) = αt(cαt−1(ut(a, b)d)). From now on,
we assume that U = AU and V = V A.

We can easily justify the existence, for all t ∈ G, of a unique bilinear
function

ut : spanU × spanV −→ At

such that αt(c)ut(a, b) = αt(ca)b for all a ∈ spanU, b ∈ spanV and
c ∈ At−1 . Note also that

∥ut(a, b)∥2 = ∥αt(αt−1(ut(a, b)
∗)a)b∥ ≤ ∥ut(a, b)∥∥a∥∥b∥,

whence there exists a unique continuous bilinear function

vt : A×A −→ At

extending ut.

Given (t, a, b) ∈ G×A×A and c ∈ At−1 , take sequences

{an}n∈N ⊂ spanU and {bn}n∈N ⊂ spanV
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converging to a and b, respectively. Then, α satisfies Theorem 4.5 (c)
since, for all c ∈ At−1 ,

αt(c)vt(a, b) = lim
n
αt(c)ut(an, bn) = lim

n
αt(can)bn = αt(ca)b. �

Combining Theorem 4.5 with Corollary 2.15, we obtain:

Corollary 4.7. Let α = ({At}t∈G, {αt}t∈G) be a C∗-partial action.
If At has an orthogonal complement for all t ∈ G, then α has a C∗-
globalization.

Corollary 4.8. Let α = ({At}t∈G, {αt}t∈G) be a C∗-partial action
with A unital. Then, α has a C∗-globalization if and only if At is a
unital algebra, for all t ∈ G.

Proof. The proof follows directly from [5, Theorem 4.5] and Theo-
rem 4.5. �

For partial actions on locally compact and Hausdorff spaces, the next
result can be shown using [1, Proposition 2.1] instead of Theorem 4.5.

Corollary 4.9. Let

α = ({At}t∈G, {αt}t∈G) and β = ({Bt}t∈G, {βt}t∈G)

be C∗-partial actions. If α has a C∗-globalization and there exists a
∗-homomorphism ϕ : A→M(B) such that :

(a) spanϕ(At)B = Bt for all t ∈ G, and
(b) ϕ(αt(a))βt(b) = βt(ϕ(a)b) for all t ∈ G, a ∈ At−1 and b ∈ Bt−1 ,

then β has a C∗-globalization.

Proof. It suffices to prove that β satisfies Theorem 4.5 (c). First,
observe that, by Cohen-Hewitt’s theorem, Bt = ϕ(At)B for all t ∈ G.
The same theorem implies At = AtAt; thus, Bt = ϕ(At)Bt.

Given (t, b1, b2) ∈ G × B × B, take a1, a2 ∈ A and c1, c2 ∈ B such
that b∗1 = ϕ(a∗1)c

∗
1 and b2 = ϕ(a2)c2. Let u be the element given for α

and (t, a1, a2) in Theorem 4.5 (c). Then, c1ϕ(u)c2 ∈ Bt since u ∈ At.
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It suffices to show that βt(d)c1ϕ(u)c2 = βt(db1)b2 for all d ∈ Bt−1 .
Given d ∈ Bt−1 , take d′ ∈ Bt−1 and e ∈ At−1 such that βt−1(c∗1βt(d

∗)) =
ϕ(e∗)d′∗. Then,

βt(d)c1ϕ(u)c2 = βt(d
′)ϕ(αt(e)u)c2 = βt(d

′)ϕ(αt(ea1)a2)c2

= βt(d
′)ϕ(αt(ea1))ϕ(a2)c2 = βt(d

′ϕ(e)ϕ(a1))b2

= βt(db1)b2. �

We conclude this section with an example showing that condition (a)
above cannot be weakened to (a′) Bt = span {ϕ(a)b : a ∈ At, b ∈ Bt}
for all t ∈ G.

Consider G := Z2 and A = B := C[0, 1]. Let α be the trivial global
action of G on A, and define β in such a way that β1 is the identity on
the C∗-ideal C0([0, 1)). If we consider the identity map,

ϕ : C[0, 1] −→M(C[0, 1]) = C[0, 1],

then conditions (a′) and (b) are satisfied and α has a C∗-globalization
but β does not.

5. Partial action on equivalence bimodules. In [1], Abadie
defined Morita equivalence of C∗-partial actions using partial actions
on positive C∗-trings. Recall that positive C∗-trings are precisely
equivalence bimodules [1, 12, 13].

In this section, we give a necessary and sufficient condition for
the existence of a globalization of a partial action on an equivalence
bimodule.

We adopt the terminology of [12] and agree that “AXB is an
equivalence bimodule” means “X is an A−B-equivalence bimodule.”
Let AXB and CYD be equivalence bimodules. A function ϕ : X → Y is
an Hb-homomorphism if it is linear and

ϕ(x⟨y, z⟩B) = ϕ(x)⟨ϕ(y), ϕ(z)⟩D

for all x, y, z ∈ X . Such functions are contractive and, with the previous
notation, there exist [1] unique ∗-homomorphisms

lϕ : A −→ C and ϕr : B −→ D
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such that

lϕ(A⟨x, y⟩) = C⟨ϕ(x), ϕ(y)⟩ and ϕr(⟨x, y⟩B) = ⟨ϕ(x), ϕ(y)⟩D
for all x, y ∈ X .

Given a C∗-ideal I of A, by Cohen-Hewitt’s theorem,

IX := {ax : a ∈ I, x ∈ X}

is a closed submodule of X . We denote IB the C∗-ideal of B induced
by I (or IX ) through X , that is,

IB = span {⟨u, v⟩B : u, v ∈ IX}.

In a similar way, we define, for a C∗-ideal J of B, XJ and AJ . Recall
that A

IB = I and J = AJ
B.

For a closed subspace Z of X , the following are equivalent:

(i) there exists a C∗-ideal I of A such that Z = IX ,
(ii) there exists a C∗-ideal J of B such that Z = XJ ,
(iii) X⟨Z,X⟩B ⊂ Z, and
(iv) A⟨X ,Z⟩X ⊂ Z.

If these conditions are satisfied, then AZ := spanA⟨Z,Z⟩ and ZB are
C∗-ideals,

Z = AZX = XZB,

and we say that Z is an ideal of X . Every ideal Z of X is an AZ −ZB-
equivalence bimodule.

Definition 5.1. We say γ = ({γt}t∈G, {Xt}t∈G) is an Hb-partial action
if:

• X is an (A−B-)equivalence bimodule and G a topological
group.

• γ is a set theoretic partial action of G on X .
• {Xt}t∈G is a continuous family of ideals of X .
• γt : Xt−1 → Xt is an Hb-homomorphism for all t ∈ G.
• The function

{(t, x) ∈ G×X : x ∈ Xt−1} −→ X , (t, x) 7→ γt(x),

is continuous.
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Assume that δ is an Hb-partial action G on CYD. We say that

ϕ : γ −→ δ

is a morphism if it is an Hb-homomorphism from X to Y which is also
G-equivariant.

From [1], we know that, for every Hb-partial action γ of G on AXB,
there are unique C∗-partial actions,

α = ({αt}t∈G, {At}t∈G)

and

β = ({βt}t∈G, {Bt}t∈G),

such that

• At = AXt and Bt = XtB for all t ∈ G.
• αt(A⟨x, y⟩) = A⟨γt(x), γt(y)⟩ and βt(⟨x, y⟩B) = ⟨γt(x), γt(y)⟩B
for all t ∈ G and x, y ∈ Xt−1 .

We will call α the left side of γ and β the right side of γ, and we will
denote them as lγ and γr, respectively.

Example 5.2. Every C∗-partial action α on a C∗-algebra A is an Hb-
partial action on AAA. In addition, α = lα = αr.

Example 5.3. Given an Hb-global action of G on AXB , γ, and an
ideal Y of X , the restriction γ|Y is an Hb-partial action on the AY−YB-
equivalence bimodule Y. In this case,

l(γ|Y) = (lγ)|AY and (γ|Y)r = γr|YB .

Definition 5.4. Let γ be an Hb-partial action of G on X . By an Hb-
globalization of γ, we mean a 4-tuple Ξ = (Y, δ,Z, ι) such that Y is an
equivalence bimodule, δ is an Hb-global action of G on Y, Z is an ideal
of Y, ι : γ → δ|Z is an isomorphism of Hb-partial actions and [βZ] is
dense in Y.

The nexus between Hb-partial actions and C∗-partial actions is the
linking partial action [1]. In order to describe this action, we begin
with an Hb-partial action of a group G on AXB , γ, and set α := lγ
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and β := γr. The linking algebra of X is the algebra of generalized
compact operators of the A-Hilbert module X ⊕A, L(X ) = K(X ⊕A).
In matrix representation,

L(X ) =

(
A X
X̃ B

)
,

with X̃ being the B-A-equivalence bimodule adjoint to X .

The linking partial action of γ,

L(γ) = ({L(γ)t}t∈G, {L(X )t}t∈G),

is the unique C∗-partial action such that, for all t ∈ G: L(X )t = L(Xt)
and

L(γ)t
(
a x
ỹ b

)
=

(
αt(a) γt(x)

γ̃t(y) βt(b)

)
for all x, y ∈ Xt−1 , a ∈ At−1 and b ∈ Bt−1 .

In the case where δ is an Hb-partial action of G on Y and π : γ → δ
is an isomorphism, the morphism

L(π) : L(γ) −→ L(δ),

defined as

L(π)
(
a x
ỹ b

)
=

(lπ(a) π(x)

π̃(y) πr(b)

)
,

is an isomorphism with inverse L(π−1).

Proposition 5.5. If Ξ = (CYD, δ,Z, ι) is an Hb-globalization of γ,
then

• (L(Y),L(δ),L(Z),L(ι)) is a C∗-globalization of L(γ).
• (C, lδ, CZ ,

lι) is a C∗-globalization of lγ.
• (D, δr,ZD, ι

r) is a C∗-globalization of γr.

Proof. Straightforward and is therefore left to the reader. �

In the same manner in which equivalence bimodules are constructed
from C∗-algebras and projections, Hb-partial actions are constructed
from C∗-partial actions and equivariant projections.
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Theorem 5.6. Let α be a C∗-partial action of G on A. Also, let
p ∈ M(A) be a projection (p∗p = p) such that spanApA = A and
αt(pa) = pαt(a) for all t ∈ G and a ∈ At−1 . If X := (1 − p)Ap,
C := (1− p)A(1− p) and D := pAp, then:

(a) X is a C−D-equivalence bimodule,
(b) X is α-invariant,
(c) the restriction of α to X , γ, is an Hb-partial action.
(d) C and D are α-invariant, lγ = α|C and γr = α|D.

Moreover, α is isomorphic (as a C∗-partial action) to L(γ), and α has
a C∗-globalization if and only if γ has an Hb-globalization.

Proof. The proof of claims (a)–(d) are left to the reader. The
standard identification of A with L(X ) is an isomorphism of C∗-partial
actions between α and L(γ). Then, in the case where γ has an Hb-
globalization, L(γ) has a C∗-globalization, and this implies that α has
a C∗-globalization.

In order to prove the converse, assume that α has a C∗-globalization.
Then, we can assume, without loss of generality, that there exists a C∗-
partial action, β of G on B, such that A is an ideal of B, α = β|A and

[βA] = B.

We claim that there exists a projection p ∈M(B) such that

βt(pb) = pβt(b) and pa = pa,

for all t ∈ G, b ∈ B and a ∈ A. In order to prove this, it suffices to
show that, for all t1, . . . , tn ∈ G and a1, . . . , an ∈ A,

(5.1)

∥∥∥∥ n∑
j=1

βtj (paj)

∥∥∥∥ ≤
∥∥∥∥ n∑

j=1

βtj (aj)

∥∥∥∥.
From [1, Lemma 2.1], we conclude that it is sufficient to show that

for all r ∈ G and b ∈ A with ∥b∥ < 1,∥∥∥∥ n∑
j=1

βtj (paj)βr(b)

∥∥∥∥ ≤
∥∥∥∥ n∑

j=1

βtj (aj)

∥∥∥∥.
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Take r ∈ G and b ∈ B as before, and note that pajβt−1
j r(b) ∈ At−1

j r.

Then,∥∥∥∥ n∑
j=1

βtj (paj)βr(b)

∥∥∥∥ =

∥∥∥∥ n∑
j=1

βtj (pajβt−1
j r(b))

∥∥∥∥ · · ·
=

∥∥∥∥ n∑
j=1

βr−1tj (pajβt−1
j r(b))

∥∥∥∥ =

∥∥∥∥ n∑
j=1

αr−1tj (pajβt−1
j r(b))

∥∥∥∥ · · ·
=

∥∥∥∥ n∑
j=1

pαr−1tj (ajβt−1
j r(b))

∥∥∥∥ ≤
∥∥∥∥ n∑

j=1

αr−1tj (ajβt−1
j r(b))

∥∥∥∥ · · ·
=

∥∥∥∥ n∑
j=1

βr−1tj (ajβt−1
j r(b))

∥∥∥∥ ≤
∥∥∥∥ n∑

j=1

βtj (aj)

∥∥∥∥.
Set Y := (1 − p)Ap ⊂ B, note that X ⊂ Y and define ι : X → Y

as the canonical inclusion. Remark 2.1 implies that, if β|Y |X = β|X =
β|A|X = α|X = γ, then (Y, β|Y ,X , ι) is an Hb-globalization of γ. �

Corollary 5.7. An Hb-partial action has an Hb-globalization if and
only if its linking partial action has a C∗-globalization.

Proof. Let γ be a partial action of G on the A-B-equivalence bi-
module X . The thesis directly follows from the previous theorem with
α = L(γ) and p = ( 1 0

0 0 ) since L(γ)|pL(X )(1−p) is isomorphic to γ. �

As a consequence of Corollary 5.7, we obtain that the group’s
topology does not affect the existence of Hb-globalizations since it does
not affect the existence of C∗-globalizations. This conclusion may also
be derived from our final result, which also implies that a C∗-partial
action has a C∗-globalization if and only if it has an Hb-globalization.

Theorem 5.8. An Hb-partial action has an Hb-globalization if and
only if its left and right sides have C∗-globalizations.

Proof. The direct implication follows from Proposition 5.5. In order
to prove the converse, assume that γ is an Hb-partial action of the
topological group G on AXB and that both sides of γ, α := lγ and β :=
γr, have C∗-globalizations. Given t ∈ G, set At := AXt and Bt := XtB.
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It suffices to show that L(γ) has a C∗-globalization. To do this, we
use Proposition 4.6 with

U = V =

{(
0 x
ỹ 0

)
: x, y ∈ X

}
.

Fix (t, ξ, η) ∈ G×U ×V . Let {vλ}λ∈Λ be an approximate unit of At−1

and {wµ}µ∈M one of Bt−1 . Consider K = Λ×M with the order

(λ, µ) ≤ (λ′, µ′) ⇐⇒ λ ≤ λ′ and µ ≤ µ′,

and define, for every κ = (λ, µ) ∈ K,

dκ :=

(
vλ 0
0 wµ

)
.

Then, {dκ}κ∈K is an approximate unit of L(X )t.

Suppose that

ξ =

(
0 x
ỹ 0

)
and η =

(
0 u
ṽ 0

)
.

Then, for all κ = (λ, µ) ∈ K,

L(γ)t(dκξ)η =

(
⟨γt(vλx), v⟩l 0

0 ⟨γt(ywµ), u⟩r

)
.

By the Cohen-Hewitt theorem, there exist b, c ∈ B and z, w ∈ X
such that x = zb and v = wc. In addition, {βt(wµb)c

∗}µ∈M converges
to an element p ∈ Bt−1 . The upper left corner of L(γ)t(dκξ)η is

⟨γt(vλx), v⟩l = ⟨γt(vλazb), wc⟩l = lim
µ

lim
ν

⟨γt(vλzwµfνb)c
∗, w⟩l

= lim
µ

lim
ν

⟨γt(vλzwµ)βt(fνb)c
∗, w⟩l = lim

µ
⟨γt(vλzwµ)p, w⟩l

= lim
µ

⟨γt(vλzwµβt−1(p)), w⟩l = ⟨γt(vλzβt−1(p)), w⟩l.

Note that zβt−1(p) ∈ Xt−1 ; thus, limλ ⟨γt(vλx), v⟩l = ⟨γt(zβt−1(p)), w⟩l.
Using symmetry, we conclude that {⟨γt(ywµ), u⟩r}µ∈M converges.

Hence, {L(γ)t(dκξ)η}κ∈K converges. �
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