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MULTIVARIABLE ISOMETRIES
RELATED TO CERTAIN CONVEX DOMAINS

AMEER ATHAVALE

ABSTRACT. Several interesting results exist in the lit-
erature on subnormal operator tuples having their spectral
properties tied to the geometry of strictly pseudoconvex do-
mains or to that of bounded symmetric domains in Cn.
We introduce a class Ω(n) of convex domains in Cn which,
for n ≥ 2, is distinct from the class of strictly pseudocon-
vex domains and the class of bounded symmetric domains
and which lends itself to the application of theories related
to the abstract inner function problem and the ∂-Neumann
problem, allowing us to make a number of interesting obser-
vations about certain subnormal operator tuples associated
with the members of the class Ω(n).

1. Introduction. We use B(H) to denote the algebra of bounded
linear operators on a complex infinite-dimensional separable Hilbert
space H and I to denote the identity operator on H. An n-tuple
S = (S1, . . . , Sn) of commuting operators Si in B(H) is said to be
subnormal if there exist a Hilbert space K containing H and an n-
tuple N = (N1, . . . , Nn) of commuting normal operators Ni in B(K)
such that NiH ⊂ H and Ni|H = Si for 1 ≤ i ≤ n. Among all the
normal extensions of a subnormal tuple S, there is a ‘minimal normal
extension,’ which is unique up to unitary equivalence, see [28]. An
n-tuple T = (T1, . . . , Tn) of commuting operators Ti in B(H) is said
to be essentially normal if the operators T ∗

i Tj − TjT
∗
i are compact for

all i and j, while T is said to be cyclic if there exists a vector f in H
(referred to as a cyclic vector for T ) such that the linear span

∨{T k11 T k22 · · ·T knn f : ki are non-negative integers}

is dense in H. Several interesting results exist in the literature on sub-
normal operator tuples (and, in particular, on essentially normal and/or
cyclic subnormal operator tuples) having their spectral properties tied
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to the geometry of strictly pseudoconvex domains or to that of bounded
symmetric domains in Cn (refer, for example, to [4, 6, 15, 16, 17,
18, 20, 21, 48]). These results are largely manifestations of the
functional calculus for subnormal operator tuples thriving upon some
elegant function-theoretic results valid in the context of those two types
of domains. (We refrain from referring to an endless list of papers that
specifically deal with subnormal operator tuples related to the unit
ball Bn in Cn, which is a strictly pseudoconvex as well as a bounded
symmetric domain).

In Section 2, we introduce a class Ω(n) of convex domains in Cn whose
members are parameterized by n-tuples p with the coordinates of p
being tuples (of varying lengths) of positive integers subject to certain
constraints. For n ≥ 2, the class Ω(n) of domains Ωp turns out to be
distinct from the class of strictly pseudoconvex domains and the class of
bounded symmetric domains. The new class allows for the application
of the theory related to the abstract inner function problem (refer to
[1, 17]) as well as of the theory related to the ∂-Neumann problem
(refer to [7, 22]). The multiplication tuples associated with the Hardy-
type function spaces associated with the domains Ωp turn out to be
so-called (regular) A-isometries. We record a few properties of the
domains Ωp that are relevant for the application of some known results
in the literature to those A-isometries; these applications mostly result
from the existence of an abundance of inner functions on the domains
Ωp as in the case of domains that are either strictly pseudoconvex or
bounded symmetric (refer to [1, 17]).

In Section 3, we record parts of the theory related to the ∂-Neumann
problem and the tangential Neumann problem which are of interest to
us. The ∂-Neumann problem (respectively, tangential Neumann prob-
lem) will be seen to be of particular relevance in the context of the
multiplication tuples Mνp,z (respectively, Mσp,z) associated with the
Bergman (respectively, Hardy) spaces of the domains Ωp. Indeed,
among our concerns in Section 3 will be the compactness of the
so-called ∂-Neumann operator and that of the so-called tangential
Neumann operator, since the compactness of the ∂-Neumann operator
(respectively, tangential Neumann operator) guarantees the essential
normality of the tuple Mνp,z (respectively, Mσp,z).

In Section 4, we discuss multivariable isometries associated with cer-
tain convex domains Σp that are more general than the domains Ωp,



MULTIVARIABLE ISOMETRIES 21

providing an intrinsic characterization of such multivariable isometries
(referred to as ∂Σp-isometries). In particular, a succinct characteriza-
tion of a ∂Σp-isometry is derived for a special type of Σp, which is an
apt generalization of that of a ‘spherical isometry,’ see [3]. We also
dwell there on the intertwining of a ∂Ωp-isometry with certain other
subnormal tuples. Finally, we elaborate upon the significance of the
domains Ωp for some operator theoretic considerations that go beyond
the topic of multivariable isometries.

For any terminology employed from the area of several complex
variables and for any standard results quoted from there, the references
[29, 34, 41] should be more than adequate.

2. Convex domains Ωp. Let p = (p1, p2, . . . , pn) be an n-tuple
of mi-tuples pi = (pi,1, pi,2, . . . , pi,mi) where, for each i satisfying
1 ≤ i ≤ n, pi,1, pi,2, . . . , pi,mi (with mi ≥ 2) are relatively prime
positive integers so that gcd{pi,1, pi,2, . . . , pi,mi} = 1. The subset Ωp of
Cn is defined by

Ωp =

{
z = (z1, z2, . . . , zn) ∈ Cn :

n∑
i=1

mi∑
j=1

|zi|2pi,j < 1

}
.

The set Ωp is easily seen to be a convex complete Reinhardt domain in
Cn with the real analytic boundary

∂Ωp =

{
z = (z1, z2, . . . , zn) ∈ Cn :

n∑
i=1

mi∑
j=1

|zi|2pi,j = 1

}
.

Some of the results in Sections 2 and 3 as stated for the domains Ωp also
hold for certain domains more general than Ωp; these will be pointed

out explicitly in Section 4. We use the symbol Ω(n) to denote the
class of domains Ωp in Cn parameterized by the tuples p as described
above. For z ∈ C, z denotes the complex conjugate of z and, for any
complex-valued function ϕ, ϕ is the function satisfying ϕ(z) = ϕ(z).

Remark 2.1. For n = 1, the domains Ωp reduce to the open unit
disks in the plane (of various radii) centered at the origin for which the
theme of the paper already stands well-explored (refer, for example, to
[10, 14]). For that reason, and for the validity of certain assertions to
follow, we assume hereafter in any discussion involving Ωp that n ≥ 2.
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Remark 2.2. The domain Ωp equals {z ∈ Cn : u(z) < 0}, where

u(z) =
n∑
i=1

mi∑
j=1

|zi|2pi,j − 1.

For b ∈ ∂Ωp, let

Tb(∂Ωp) =
{
X = (X1, . . . , Xn) ∈ Cn :

n∑
j=1

∂u

∂zj
(b)Xj = 0

}
be the complex tangent space to ∂Ωp at b. The Levi form

Lu(b,X) =
n∑

j,k=1

∂2u

∂zj∂zk
(b)XjXk

is non-negative for every b ∈ ∂Ωp and X ∈ Tb(∂Ωp). However, for some
permissible choices of p, the Levi form Lu(b,X) is zero for some b ∈ ∂Ωp
and some non-zero X ∈ Tb(∂Ωp). Thus, Ωp (although a pseudoconvex
domain) is not in general strictly pseudoconvex at every point of its
boundary ∂Ωp, and the class Ω(n) is distinct from the class of strictly
pseudoconvex domains in Cn.

Remark 2.3. By a result of Cartan [8], every bounded symmetric
domain D in Cn is homogeneous in the sense that the automorphism
group of D acts transitively on D. Also, by a result of Pinchuk [37],
every bounded homogeneous domain in Cn with smooth boundary is
biholomorphically equivalent to the unit ball Bn in Cn. If Ωp were to
be a bounded symmetric domain, it would thus be biholomorphically
equivalent to Bn. A result of Sunada [46], however, states that two
Reinhardt domains D1 and D2 in Cn that contain the origin are
biholomorphically equivalent if and only if there exist positive numbers
r1, . . . , rn and a permutation σ of {1, . . . , n} such that

D2 = {(r1zσ(1), . . . , rnzσ(n)) : (z1, . . . , zn) ∈ D1}.

It follows that the class Ω(n) is distinct from the class of bounded
symmetric domains in Cn.

Let K ⊂ Cn be compact, and let A be a unital closed subalgebra of
C(K) containing n-variable complex polynomials. The Shilov boundary
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of A is defined to be the smallest closed subset S of K such that

∥f∥∞,K = ∥f∥∞,S , f ∈ A.

Of special interest to us is the subalgebra A(Ωp) = {f ∈ C(Ωp) : f

is holomorphic on Ωp} of C(Ωp), where

Ωp =

{
z = (z1, z2, . . . , zn) ∈ Cn :

n∑
i=1

mi∑
j=1

|zi|2pi,j ≤ 1

}
is the closure of Ωp. If O(Ωp) is the vector space of functions f

such that f is holomorphic on an open neighborhood Uf of Ωp, then
(referring to the first line of Remark 3.2) it is easy to see that the
closure of O(Ωp) in the sup norm with respect to Ωp is A(Ωp).

Proposition 2.4. The Shilov boundary of A(Ωp) coincides with the
topological boundary ∂Ωp of Ωp.

Proof. Since Ωp is a bounded pseudoconvex domain in Cn with
smooth boundary, it follows from [36, Folgerung 5] (see also [24])
that the Shilov boundary of A(Ωp) is the closure of the set of strictly
pseudoconvex points in ∂Ωp. It is easy to see that any point b =
(b1, . . . , bn) of ∂Ωp for which each bi is non-zero is a point of strict
pseudoconvexity. But such points are dense in ∂Ωp so that the Shilov
boundary of A(Ωp) is ∂Ωp. �

Let K be a compact subset of Cn, let A be a closed subspace of
C(K), and let η be a positive regular Borel measure on K. The triple
(A,K, η) is said to be regular (in the sense of [1]) if, for any positive
function ϕ in C(K), there exists a sequence of functions {ϕm}m≥1 in A
such that |ϕm| < ϕ on K and limm→∞ |ϕm| = ϕ η-almost everywhere.

Proposition 2.5. For any positive regular Borel measure µp on Ωp
with supp(µp) ⊂ ∂Ωp, the triple (A(Ωp),Ωp, µp) is regular as is the
triple (A(Ωp)|∂Ωp, ∂Ωp, µp).

Proof. For p = (p1, p2, . . . , pn) with pi = (pi,1, pi,2, . . . , pi,mi), let
N = m1 + · · ·+mn. Consider

f(z) = (z1
p1,1 , . . . , z1

p1,m1 , . . . , zn
pn,1 , . . . , zn

pn,mn ), z ∈ Ωp.
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Clearly, f maps ∂Ωp into the topological boundary ∂BN of the unit

ball BN of CN . Thus, the regularity of the triple (A(Ωp),Ωp, µ) will
follow from [17, Proposition 2.5] provided we verify f to be injective.
The regularity of the triple (A(Ωp)|∂Ωp, ∂Ωp, µ) will then be an easy
consequence of the Tietze extension theorem. Thus, let z = (z1, . . . , zn)
and w = (w1, . . . , wn) be distinct points of Ωp so that zi ̸= wi for some i.
If only one of zi and wi is non-zero, then clearly f(z) ̸= f(w). Thus,
suppose that both zi and wi are non-zero. Using the coprimality of
pi,1, pi,2, . . . , pi,mi , we choose integers ni,1, ni,2, . . . , ni,mi such that

mi∑
j=1

ni,jpi,j = 1.

If one were to have zi
pi,j = wi

pi,j for every j such that 1 ≤ j ≤ mi,
then that would clearly force the contradiction zi = wi. Therefore,
zi
pi,j ̸= wi

pi,j for some j satisfying 1 ≤ j ≤ mi, showing that
f(z) ̸= f(w). �

Here, we refer the reader to [18, Section 2]. If µ is a scalar spectral
measure of the minimal normal extension N ∈ B(K)n of a subnormal
tuple S ∈ B(H)n, then there is an isomorphism ΨN of the von Neumann
algebra L∞(µ) onto the von Neumann algebra W ∗(N) generated by
Ni ∈ B(K). The restriction algebra

RS = {f ∈ L∞(µ) : ΨN (f)H ⊂ H}

is a weak∗ closed subalgebra of L∞(µ). Let K ⊂ Cn be compact,
and let A be a unital closed subalgebra of C(K) containing n-variable
complex polynomials. Following [20], we call a subnormal tuple S an
A-isometry if the spectral measure of the minimal normal extension N
of S is supported on the Shilov boundary of A and if A is contained in
RS . Given a normalized positive regular Borel measure µp supported
on ∂Ωp, we let H2(µp) be the closure of A(Ωp) in L2(µp). Letting
σp denote the normalized surface area measure on ∂Ωp, we refer to
H2(σp) as the Hardy space of Ωp. In view of Proposition 2.4 and
the discussion in [18, Section 2], the multiplication tuple Mµp,z =
(Mµp,z1 , . . . ,Mµp,zn) of multiplications by the coordinate functions zi
on H2(µp) is an A(Ωp)-isometry (and has the multiplication tuple
Nµp,z = (Nµp,z1 , . . . , Nµp,zn) associated with L2(µp) as its minimal
normal extension); also, in light of Proposition 2.5, Mµp,z is regular in
the sense of [20], that is, in the sense of [18, Definition 2.6].
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The preceding observations allow us to bring all of the results in
[16, 18, 20, 21] related to a regular A-isometry to bear upon the
multiplication tuple Mµp,z; we highlight in Remarks 2.6 and 2.7 below
a few implications of the results in those references. We also point
out that some of those results are derived exploiting Prunaru’s work
in [38].

Remark 2.6. Let Pµp be the orthogonal projection of L2(µp) onto

H2(µp), and let, for ϕ ∈ L∞(µp), Nµp,ϕ denote the operator of

multiplication by ϕ on L2(µp). We let Tµp,ϕ stand for PµpNµp,ϕ|H2(µp)
and refer to T (Mµp,z) = {Tµp,ϕ : ϕ ∈ L∞(µp)} as the set of Mµp,z-
Toeplitz operators. In addition, we use H∞

A(Ωp)
(µp) to denote the weak∗

closure of A(Ωp) in L
∞(µp) and refer to any member θ of H∞

A(Ωp)
(µp)

satisfying |θ| = 1 µp-almost everywhere as a µp-inner function. It
follows from [18, Corollary 3.3] that T (Mµp,z) equals the set

{X ∈ B(H2(µp)) : Tµp,θ̄XTµp,θ = X for every µp-inner function θ}.

Further, if C∗(T (Mµp,z)) is the C
∗-subalgebra of B(H2(µp)) gener-

ated by T (Mµp,z), SC(Mµ,z) the two-sided closed ideal in C∗(T (Mµp,z))
generated by semicommutators Tµp,ϕTµp,ψ − Tµp,ϕψ (ϕ, ψ ∈ L∞(µp)),

and (Nµp,z)
′ the commutant in B(L2(µp)) of {Nµp,z1 , . . . , Nµp,zn}, then

[18, Corollary 3.7] yields the existence of a short exact sequence of C∗-
algebras

0 −→ SC(Mµp,z)
ι−→ C∗(T (Mµp,z))

π−→ (Nµp,z)
′ −→ 0,

where ι is the inclusion map and π is a unital ∗-homomorphism which
is, in fact, a left inverse of the compression map

ρ : (Nµp,z)
′ −→ B(H2(µp)),

given by
ρ(Y ) = PµpY |H2(µp),

Y ∈ (Nµp,z)
′.

Remark 2.7.

(a) Let AMµp,z be the weak∗-closed subalgebra of B(H2(µp)) gener-

ated by Mµp,zi , 1 ≤ i ≤ n, and the identity operator on H2(µp). It is a
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consequence of [20, Corollary 6] that the weak operator topology and
the weak∗ operator topology coincide on AMµp,z

and that every unital
weak∗-closed subalgebra of AMµp,z

is reflexive; in particular, Mµp,z is

reflexive (refer to [20] for the relevant definitions).

(b) It is a consequence of [16, Corollary 2] that the set T (Mµp,z) of
Mµp,z-Toeplitz operators is 2-hyperreflexive with the 2-hyperreflexivity
constant κ2(T (Mµp,z)) being less than or equal to 2 (refer to [31] for
the relevant definitions).

As the results in [18, 21] show, some extra mileage may be obtained
out of the notion of a regular A-isometry T under the additional
assumption that T is essentially normal. We plan to explore the
essential normality of the multiplication tuple Mσp,z associated with

the Hardy space H2(σp) of Ωp, and, for that purpose, we invoke in the

next section the theory related to the famous ∂-Neumann problem.

3. ∂-Neumann operator and the tangential Neumann oper-
ator. While a basic reference for the material in this section is [22],
we find, in addition, [48] to be a convenient reference for our purposes
(see also [44]). Indeed, some of the arguments in [48] are adaptations
and extensions of the arguments in [22] to the context of the Hardy
and Bergman spaces of strictly pseudoconvex domains, and our task
here is to push through the analogs of those arguments in the context
of the domains Ωp.

Let Ω be a bounded pseudoconvex domain in Cn with its boundary
∂Ω = {z ∈ Cn : ρ(z) = 0} defined by a smooth function

ρ : Cn −→ R

satisfying dρ(z) ̸= 0 if ρ(z) = 0.

For 0 ≤ q ≤ n (≥ 2), let C∞
q (Ω) be the vector space of (0, q)-forms

with coefficients in C∞(Ω), the vector space of complex-valued func-
tions f such that f is infinitely differentiable on an open neighborhood
Uf of Ω. The Cauchy-Riemann operator ∂ gives rise to (a special ver-
sion of) the Dolbeault complex (or the Cauchy-Riemann complex)

0 −→ C∞
0 (Ω)

∂̄0−→ C∞
1 (Ω) −→ · · · ∂̄n−1−→ C∞

n (Ω) −→ 0.

Using the normalized volumetric measure ν on Ω, an inner product
on C∞

q (Ω) may be defined in a natural way (refer to [48, Chapter 2,
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Section 2.1]). Let L2
q(Ω) be the Hilbert space completion of C∞

q (Ω)

in this inner product, with the corresponding norm on L2
q(Ω) being

denoted by ∥ · ∥ (for any q). The closure of ∂q will still be denoted by

∂q; thus, ∂q is a densely defined closed (linear) operator from L2
q(Ω)

into L2
q+1(Ω). The Hilbert space adjoint of ∂q will be denoted by ∂

∗
q+1

(unlike ∂
∗
q in [48, (2.1.13)] which, in view of the subsequent formulas

employed there, is a notational inaccuracy). The (qth) ∂-Neumann

Laplacian is defined by �q = ∂q−1∂
∗
q + ∂

∗
q+1∂q (with ∂n, ∂−1, ∂

∗
n+1

and ∂
∗
0 being interpreted as zero operators). For 1 ≤ q ≤ n, �q turns

out to be invertible with a bounded inverse Nq (refer to [22, 27]); the

operator Nq is referred to as the (qth) ∂-Neumann operator.

For 0 ≤ q ≤ n (≥ 2), let R∞
q (∂Ω) be the vector space obtained by

restricting the members of C∞
q (Ω) to ∂Ω. If

f =
∑

i1<···<iq

ϕi1,...,iqzi1 ∧ · · · ∧ ziq

and
g =

∑
i1<···<iq

ψi1,...,iqzi1 ∧ · · · ∧ ziq

(in the standard notation) are in R∞
q (∂Ω), then f is said to be pointwise

orthogonal to g if ∑
i1<···<iq

ϕi1,...,iq (b)ψi1,...,iq (b) = 0

for every b ∈ ∂Ω (notation: f ⊥ g). If N∞
q (∂Ω) is the vector space

{f ∈ R∞
q (∂Ω) : f ∧ (∂ρ|∂Ω) = 0},

then we declare C∞
q (∂Ω) to be the vector space

{f ∈ R∞
q (∂Ω) : f ⊥ g for all g ∈ N∞

q (∂Ω)};

it is to be noted that C∞
n (∂Ω) = {0}. The Cauchy-Riemann operator ∂

induces the tangential Cauchy-Riemann operator ∂b (refer to [22, 33])
that gives rise to (a special version of) the Kohn-Rossi complex (or the
tangential Cauchy-Riemann complex)

0 −→ C∞
0 (∂Ω)

∂̄b,0−→ C∞
1 (∂Ω) −→ · · · ∂̄b,n−2−→ C∞

n−1(∂Ω) −→ 0.
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The vector space C∞
q (∂Ω) can be naturally equipped with an inner

product by using the normalized surface area measure σ on ∂Ω (refer
to [48, Chapter 2, subsection 2.2]). Let L2

q(∂Ω) be the Hilbert space

completion of C∞
q (∂Ω) in this inner product. The closure of ∂b,q will

still be denoted by ∂b,q; thus, ∂b,q is a densely defined closed (linear)
operator from L2

q(∂Ω) into L2
q+1(∂Ω). The Hilbert space adjoint of

∂b,q will be denoted by ∂
∗
b,q+1 (with the notational inaccuracy in [48,

(2.2.9)] noted). The (qth) Kohn Laplacian is defined by

�b,q = ∂b,q−1∂
∗
b,q + ∂

∗
b,q+1∂b,q

(with ∂b,n−1, ∂b,−1, ∂
∗
b,n and ∂

∗
b,0 being interpreted as zero operators).

For 1 ≤ q ≤ n−1, �b,q turns out to be invertible with a bounded inverse
Nb,q (refer to [22, 32]); the operator Nb,q is referred to as the (qth)
complex Green operator or the (qth) tangential Neumann operator.

Let W−1
1 (Ω) be the vector space of (0, 1)-forms f with coefficients

in the Sobolev space W−1(Ω) of order −1, and let ∥f∥2−1 be the sum
of squares of the W−1(Ω) norms of the coefficients of f . We say that a
compactness estimate holds (for Ω) if, for every positive ϵ, there exists
a C(ϵ) such that

∥f∥2 ≤ ϵ{∥∂1f∥2 + ∥∂∗1f∥2}+ C(ϵ)∥f∥2−1

for all (0, 1)-forms f that lie in Domain(∂1)∩Domain(∂
∗
1) (⊂ L2

1(Ω) ⊂
W−1

1 (Ω)).

It is said that ∂Ω satisfies the Catlin property (P ) if, for every
positive M , there exists a plurisubharmonic function λ in C∞(Ω) with
0 ≤ λ ≤ 1 such that

n∑
j,k=1

∂2λ

∂zj∂zk
(b)tjtk ≥M{|t1|2 + · · ·+ |tn|2}

for all points t = (t1, . . . , tn) in Cn and for all points b of ∂Ω.

Remark 3.1. If a bounded pseudoconvex domain Ω has real analytic
boundary ∂Ω, then it follows from [9, Theorem 2] and [19, Lemma 2]
that ∂Ω satisfies the Catlin property (P ); in particular, ∂Ωp satisfies
the Catlin property (P ).
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The closure of A(Ωp) in L
2(νp), where νp is the normalized volume-

tric measure on Ωp, will be referred to as the Bergman space of Ωp
and will be denoted by A2(νp). The tuple of multiplications by the
coordinate functions zi on A2(νp) will be denoted by Mνp,z. Let

P̃νp be the orthogonal projection of L2(νp) onto A2(νp), and let, for

ϕ ∈ L∞(νp), Ñνp,ϕ denote the operator of multiplication by ϕ on L2(νp).

We let T̃νp,ϕ stand for P̃νpÑνp,ϕ|A2(νp) and refer to T̃νp,ϕ as a Bergman-

Toeplitz operator. The adjoint of the Bergman-Toeplitz operator T̃νp,ϕ

(respectively,Mµp,z-Toeplitz operator Tµp,ϕ of Remark 2.6) equals T̃νp,ϕ̄
(respectively, Tµp,ϕ̄).

Remark 3.2. The domain Ωp is starlike with respect to the origin, and

any f ∈ A(Ωp) can be uniformly approximated on Ωp by the sequence

{fm} of functions fm inO(Ωp) where fm(z) = f((1−(1/m))z). Further,

Ωp is polynomially convex so that any function such as fm that is

holomorphic on an open neighborhood of Ωp is the uniform limit (on

Ωp) of polynomials by the Oka-Weil approximation theorem, see [41,
Chapter VI, Theorem 1.5]. It is then clear that the Hardy space
H2(σp) (respectively, Bergman space A2(νp)) as previously defined is
really the closure of polynomials in L2(σp) (respectively, L

2(νp)) with
the constant function 1 in H2(σp) (respectively, A

2(νp)) being a cyclic
vector for Mσp,z (respectively, Mνp,z). The multiplication tuple Mσp,z

(respectively, Mνp,z) can be looked upon as a multivariable weighted
shift, with the positive weights ofMσp,z (respectively,Mνp,z) computed
by checking the action of each Mσp,zi (respectively, Mνp,zi) on the
members of the orthonormal basis obtained by applying the Gram-
Schmidt process to the constant function 1 and the powers of zi in
the Hardy space H2(σp) (respectively, Bergman space A2(νp)) (refer
to [30]). For an arbitrary Ωp, such computations can turn out to be
formidable as can be gathered, for example, by referring to similar
computations carried out in [12] in the context of ‘complex ellipsoids’
in Cn.
Proposition 3.3. The semicommutator T̃νp,ϕT̃νp,ψ − T̃νp,ϕψ of the

Bergman-Toeplitz operators T̃νp,ϕ and T̃νp,ψ is compact for any con-

tinuous functions ϕ and ψ on Ωp.

Proof. In view of Remark 3.1, ∂Ωp satisfies the Catlin property (P ).
The Catlin property (P ) implies that a compactness estimate holds
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for Ωp (refer to [9, Theorem 1]). That, in turn, implies that the

∂-Neumann operator N1 corresponding to Ωp is compact (refer to
[7, Lemma 11].) Now, arguing exactly as in [48, Lemma 2.1.24], it

may be proven that ∂
∗
1N1 is a compact operator. (The symbol ∂

∗
0 in

the proof of [48, Lemma 2.1.24] should be corrected to ∂
∗
2.) Next,

using the compactness of ∂
∗
1N1 and arguing as in [48, Lemma 2.1.22,

Theorem 4.1.18], it may be proven that

(I − P̃νp)Ñνp,ϕ|A2(νp) : A
2(νp) −→ L2(νp)

is compact for any ϕ that is continuous on Ωp. And, as in [48,
Corollary 4.1.21], that leads to the compactness of the semicommutator

T̃νp,ϕT̃νp,ψ − T̃νp,ϕψ for any continuous functions ϕ and ψ on Ωp . �

Corollary 3.4. The commutator T̃νp,ϕT̃νp,ψ−T̃νp,ψT̃νp,ϕ of the Bergman-

Toeplitz operators T̃νp,ϕ and T̃νp,ψ is compact for any continuous func-

tions ϕ and ψ on Ωp; in particular, the multiplication tuple Mνp,z is
essentially normal.

Proposition 3.5. Let n ≥ 3. For Ωp ⊂ Cn, the semicommutator
Tσp,ϕTσp,ψ − Tσp,ϕψ of the Mσp,z-Toeplitz operators Tσp,ϕ and Tσp,ψ is
compact for any continuous functions ϕ and ψ on ∂Ωp.

Proof. In view of Remark 3.1, ∂Ωp satisfies the Catlin property (P ).
It follows from [40, Theorem 1.4] that the tangential Neumann oper-
ator Nb,1 corresponding to Ωp is compact. Now, arguing exactly as in
the Bergman case, an analog of [48, Lemma 2.2.19] may be proven to

obtain that ∂
∗
b,1Nb,1 is a compact operator. Next, using the compact-

ness of ∂
∗
b,1Nb,1 (and arguing as in the Bergman case) analogs of [48,

Lemma 2.2.18, Theorem 4.2.17] may be established to obtain that

(I − Pσp)Nσp,ϕ|H2(σp) : H
2(σp) −→ L2(σp)

is compact for any ϕ that is continuous on ∂Ωp. And, that leads to
an analog of [48, Corollary 4.2.20], yielding the compactness of the
semicommutator Tσp,ϕTσp,ψ − Tσp,ϕψ for any continuous functions ϕ
and ψ on ∂Ωp. �
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Corollary 3.6. Let n ≥ 3. For Ωp ⊂ Cn, the commutator Tσp,ϕTσp,ψ−
Tσp,ψTσp,ϕ of the Mσp,z-Toeplitz operators Tσp,ϕ and Tσp,ψ is compact
for any continuous functions ϕ and ψ on ∂Ωp; in particular, the multi-
plication tuple Mσp,z is essentially normal.

We do not know whether the tangential Neumann operator Nb,1 cor-
responding to an arbitrary Ωp ⊂ C2 is compact; as such, a different
strategy is adopted below to prove the essential normality of the
multiplication pair Mσp,z ∈ (B(H2(σp))

2 for any Ωp ⊂ C2.

Proposition 3.7. For Ωp ⊂ C2, the multiplication pair Mσp,z is
essentially normal.

Proof. Since Ωp (⊂ C2) is a pseudoconvex complete Reinhardt do-
main with real analytic boundary, it follows from the work of Sheu [45]
that there is a ∗-isomorphism Ψ of the C∗-algebra A generated by the
set

{T̃νp,ϕ : ϕ is continuous on Ωp}

with the C∗-algebra B generated by the set

{Tσp,ϕ : ϕ is continuous on ∂Ωp}.

In view of Remark 3.2 and [30, Corollary 13], the C∗-algebras A and B
are irreducible. Let K(A2(νp)) (respectively, K(H2(σp))) be the C∗-
algebra of compact operators on A2(νp) (respectively, H2(σp)). Since
A has, by Corollary 3.4, a non-trivial intersection with K(A2(νp)) and,
since A is irreducible, A contains K(A2(νp)) (refer to [11]). Consider

Ψ|K(A2(νp)) : K(A2(νp)) −→ B(H2(σp)).

Since Ψ(K(A2(νp))) is an ideal of B and since B is irreducible,
(Ψ|K(A2(νp),H

2(σp)) is an irreducible representation of K(A2(νp)).
Then, it follows from [11, Corollary 16.12] that Ψ(K(A2(νp)) =
K(H2(σp)). Letting Ti = Ψ−1(Mσp,zi), it is clear that the compactness
of

M∗
σp,ziMσp,zj −Mσp,zjM

∗
σp,zi ∈ B(H2(σp))

would follow from that of

T ∗
i Tj − TjT

∗
i ∈ B(A2(νp)).

However, the compactness of T ∗
i Tj − TjT

∗
i ∈ B(A2(νp)) can easily be

deduced from the result of Proposition 3.3 and the fact that the uniform
limit of compact operators is compact. �
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The results of Corollary 3.6 and Proposition 3.7 allow us to bring
all of the results in [18, 21] related to an essentially normal regular
A-isometry to bear upon the multiplication tuple Mσp,z; we highlight
in Remark 3.8 below a couple of implications of the results in those
works.

Remark 3.8.

(a) Let Ta(Mσp,z) be the set

{Tσp,ϕ : ϕ ∈ H∞
A(Ωp)

(σp)}.

For ϕ ∈ L∞, let Hσp,ϕ be the Hankel operator from H2(σp) to

H2(σp)
⊥ = L2(σp)⊖H2(σp),

defined by Hσp,ϕ = (I−Pσp)Nσp,ϕ|H2(σp). In view of the observations
in the proof of [18, Corollary 3.3], and in view of [21, Corollary 5.1],
an operator S ∈ B(H2(σp)) is in the essential commutant of Ta(Mσp,z)
if and only if S equals Tσp,ϕ + K for some compact operator K on

H2(σp) and some ϕ in L∞(σp) for which the Hankel operator Hσp,ϕ is
compact.

(b) From [18, Proposition 3.10], the existence of a short exact se-
quence of C∗-algebras

0 −→ K(H2(σp))
ι−→ B π−→ C(∂Ωp) −→ 0

may be deduced where K(H2(σp)) and B are as in the proof of Propo-
sition 3.7, ι is the inclusion map and π is a unital ∗-homomorphism
satisfying π(Tσp,ϕ) = ϕ for any ϕ ∈ C(∂Ωp).

4. ∂Σp-isometries. Let p = (p1, p2, . . . , pn) be an n-tuple of mi-
tuples pi = (pi,1, pi,2, . . . , pi,mi) where pi,1, . . . , pi,mi (with mi ≥ 1) are
positive integers. The subset Σp of Cn is defined by

Σp =

{
z = (z1, z2, . . . , zn) ∈ Cn :

n∑
i=1

mi∑
j=1

|zi|2pi,j < 1

}
.

The set Σp is easily seen to be a convex complete Reinhardt domain in
Cn with the real analytic boundary

∂Σp =

{
z = (z1, z2, . . . , zn) ∈ Cn :

n∑
i=1

mi∑
j=1

|zi|2pi,j = 1

}
.
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We use the symbol Σ(n) to denote the class of domains Σp in Cn.
Trivially, Σ(n) is a superclass of the class Ω(n). The domain Σp is a
so-called complex ellipsoid in case mi = 1 for each i; we also note that,
for any n, Bn ∈ Σ(n) \ Ω(n).

Definition 4.1. If S = (S1, . . . , Sn) is a subnormal n-tuple of (com-
muting) operators Si in B(H) such that the spectral measure ρN of the
minimal normal extension N of S is supported on ∂Σp, then S is called
a ∂Σp-isometry.

Remark 4.2. The statements (and proofs) of Propositions 2.4, 3.3,
3.5 and 3.7, along with those of Corollaries 3.4 and 3.6 hold, and the
contents of Remarks 3.1 and 3.2 remain applicable with Σp in the place
of Ωp and with the obvious corresponding interpretations of A(Σp), σp,
νp, H

2(σp), A
2(νp), Mσp,z, Mνp,z, A and B. We also note that any

Σp-isometry S ∈ B(H)n is an A(Σp)-isometry. (Indeed, if µp is a scalar
spectral measure of the minimal normal extension N of S, then µp is
supported on ∂Σp where ∂Σp is the Shilov boundary of A(Σp) by the
analog of Proposition 2.4 for Σp; thus, we need only check that A(Σp) is
contained in the restriction algebra RS of S. Let f ∈ A(Σp). Choosing
fm as in Remark 3.2 and using the Taylor functional calculus for S
(refer to [47]), it is obtained that

fm(N)|H = fm(S) ∈ B(H).

Since the sequence {fm} converges to f uniformly on ∂Σp, it is clear
that f(N)H ≡ ΨN (f)H is contained in H.) Thus, Σp-isometries, like
the less general Ωp-isometries, are examples of essentially normal A-
isometries, but Ωp-isometries come with an added bonus of regularity.

Remark 4.3. The weak∗ closure H∞
A(Σp)

(σp) of A(Σp) in L
∞(σp) can

be identified with the algebra H∞(σp) of the non-tangential boundary
limits of the members of H∞(Σp), where H∞(Σp) is the algebra of
bounded holomorphic functions on Σp. Indeed, H

∞(Σp) can be shown
to be a weak*-closed subalgebra of L∞(σp) and the map

r̃σp : H∞(Σp) −→ L∞(σp)

that associates with any f ∈ H∞(Σp) its non-tangential boundary
limit can be shown to be an isometric and a weak∗-continuous algebra
homomorphism as in the argument provided in the discussion preceding
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[18, Corollary 4.8]; further, also as per the argument there, the
inclusion

H∞
A(Σp)

(σp) ⊂ H∞(σp)(= r̃σp(H
∞(Σp))

holds. For the other direction of the inclusion, we use that r̃σp is weak∗-
continuous and that any function f ∈ H∞(Σp) can be approximated
in the weak∗ topology of L∞(σp) by the sequence {fm} where fm are
as in Remark 3.2.

An intrinsic characterization of ∂Σp-isometries can be provided using
the results of [5]. If

q(z, w) =
∑
α,β

aα,βz
αwβ

is a polynomial in the variables z = (z1, . . . , zn) and w = (w1, . . . , wn)
with real coefficients aα,β , then, for any n-tuple T = (T1, . . . , Tn) of
commuting operators in B(H), we interpret (q(z, w))(T, T ∗) to be the
operator ∑

α,β

aα,βT
∗βTα.

Since the Taylor spectrum of the minimal normal extension of a ∂Σp-
isometry S is contained in ∂Σp, it follows by a result of Curto [13]
that the Taylor spectrum of S is contained in the polynomial convex
hull of ∂Σp, which is the closure Σp of Σp. Since Σp is contained
in the closed unit polydisk in Cn centered at the origin, the spectral
projection property of the Taylor spectrum implies that any coordinate
Si of S has its spectrum contained in the unit disk in C centered at the
origin so that the spectral radius rSi of Si cannot exceed 1. Since Si
is subnormal, the norm of Si must equal rSi (refer to [10]), and hence,
Si is a contraction. The following result is now a consequence of [5,
Proposition 7] and the observations in the proof of [5, Proposition 8].

Proposition 4.4. Let S = (S1, . . . , Sn) be an n-tuple of commuting
operators Si in B(H). Statements (i) and (ii) below are equivalent :

(i) S is a ∂Σp-isometry.
(ii) (a) (Πni=1[1− ziwi]

ki)(S, S∗) ≥ 0 for all integers ki ≥ 0.
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(b) (
1−

n∑
i=1

mi∑
j=1

z
pi,j
i w

pi,j
i

)
(S, S∗) = 0.

Condition (ii)(b) of Proposition 4.4 can simply be written as

I −
n∑
i=1

mi∑
j=1

S
∗pi,j
i S

pi,j
i = 0

and, as shown below, characterizes by itself a ∂Σp-isometry for a special
type of Σp. We consider those Σp (with p = (p1, . . . , pn)) for which each

pi has at least one integer coordinate equal to 1; we use the symbol Σ̃p
to denote any such Σp and note that Σ̃p is strictly pseudoconvex. The
unit ball Bn = Σ(p1,...,pn) with pi = (1) for every i is a special example
of such a domain; we note that ∂Bn-isometries are precisely spherical

isometries. The next proposition provides a characterization of a ∂Σ̃p-
isometry that is a generalization of that of a spherical isometry.

Proposition 4.5. Let S = (S1, . . . , Sn) be an n-tuple of commuting
operators Si in B(H). Statements (i) and (ii) below are equivalent :

(i) S is a ∂Σ̃p-isometry.

(ii) (
1−

n∑
i=1

mi∑
j=1

z
pi,j
i w

pi,j
i

)
(S, S∗) = 0.

Proof. The implication (i) ⇒ (ii) is trivial. In order to prove (ii) ⇒
(i), we need only show that condition (ii) of Proposition 4.5 guarantees
condition (ii)(a) of Proposition 4.4, viz., (Πni=1[1 − ziwi]

ki)(S, S∗) ≥ 0
for all integers ki ≥ 0. We assume, without any loss of generality, that
pi,1 = 1 for each i. Let

qi(z, w) =

mi∑
j=2

z
pi,j
i w

pi,j
i +

∑
k ̸=i

mk∑
j=1

z
pk,j

k w
pk,j

k .

That the condition (ii)(a) of Proposition 4.4 holds follows by observing
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that (Πni=1[1− ziwi]
ki)(S, S∗) can be written as(

Πni=1

[{
1−

n∑
i=1

mi∑
j=1

z
pi,j
i w

pi,j
i

}
+ qi(z, w)

]ki)
(S, S∗). �

We now turn to examining the intertwining of two ∂Ωp-isometries.
By choosing S = T in the following proposition, one obtains a commu-
tant lifting theorem for a ∂Ωp-isometry.

Proposition 4.6. Let S = (S1, . . . , Sn) ∈ B(H)n and T = (T1, . . . , Tn)

∈ B(K)n be ∂Ωp-isometries, and let M = (M1, . . . ,Mn) ∈ B(H̃)n and

N = (N1, . . . , Nn) ∈ B(K̃)n be the minimal normal extensions of S
and T , respectively. If

X : H −→ K

is a bounded linear map intertwining S and T so that XSi = TiX for
all i, then X lifts to a bounded linear map

X̃ : H̃ −→ K̃

intertwining M and N and satisfying ∥X̃∥ = ∥X∥.

Proof. Since the Taylor spectra of M and N are contained in ∂Ωp,
from a result of Curto [13] (mentioned previously) the Taylor spectra
of S and T are contained in the polynomial convex hull of ∂Ωp, which

is Ωp. Let f ∈ A(Ωp). For any positive integer m ≥ 2, fm defined
by fm(z) = f((1− 1/m)z) is holomorphic on an open neighborhood of
Ωp. If X intertwines S and T , then it follows by the Taylor functional
calculus (see [47, Proposition 4.5]) that Xfm(S) = fm(T )X. If ρM
(respectively, ρN ) is the spectral measure of M (respectively, N), then
ρS = PHρM |H (respectively, ρT = PKρN |K) is the semi-spectral
measure of S (respectively, T ) with PH and PK being appropriate
projections, and, for any u ∈ H and any v ∈ K, we have

∥fm(S)u∥2 =

∫
|fm(z)|2d⟨ρS(z)u, u⟩

and

∥fm(T )v∥2 =

∫
|fm(z)|2d⟨ρT (z)v, v⟩.
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Letting v = Xu, and using Xfm(S) = fm(T )X, we obtain∫
|fm(z)|2d⟨ρT (z)Xu,Xu⟩ ≤ ∥X∥2

∫
|fm(z)|2d⟨ρS(z)u, u⟩,

which, upon letting m tend to infinity, yields∫
|f(z)|2d⟨ρT (z)Xu,Xu⟩ ≤ ∥X∥2

∫
|f(z)|2d⟨ρS(z)u, u⟩.

Consider
η(·) = ⟨ρT (·)Xu,Xu⟩+ ⟨ρS(·)u, u⟩.

We have by Proposition 2.5 that (A(Ωp)|∂Ωp, ∂Ωp, η) is a regular triple.
Thus, if ϕ is any positive continuous function on ∂Ωp, then a sequence
of functions {ϕm}m≥1 exists in A(Ωp) such that |ϕm| <

√
ϕ on ∂Ωp

and limm→∞ |ϕm| =
√
ϕ η-almost everywhere. Replacing f by ϕm in

the last integral inequality and letting m tend to infinity, we obtain∫
ϕ(z) d⟨ρT (z)Xu,Xu⟩ ≤ ∥X∥2

∫
ϕ(z) d⟨ρS(z)u, u⟩,

which yields

⟨ρT (·)Xu,Xu⟩ ≤ ∥X∥2⟨ρS(·)u, u⟩ for every u in H.

Using [35, Lemma 4.1] yields the desired conclusion. �

Remark 4.7. Requiring X to be of a special type in Proposition 4.6

may guarantee the lift X̃ of X also to be of that special type. Indeed,
arguing as in [35, Theorem 5.2], we can establish the following facts:

if X is isometric, then so is X̃; if X has dense range, then so has X̃; if X

is bijective, then so is X̃. If a bounded linear map X that intertwines
n-tuples S and T is invertible (respectively, unitary), then we refer to S
and T as being similar (respectively, unitarily equivalent). It follows
from [3, Lemma 1] and Proposition 4.6 above that, if ∂Ωp-isometries
S and T are intertwined by a bounded linear map X that is injective
and has dense range (that is, if S and T are quasisimilar), then the
minimal normal extensions of S and T are unitarily equivalent (cf., [3,
Proposition 9]).

In light of Remark 3.2, it is natural to investigate analogs of Propo-
sition 4.6 for a pair of subnormal tuples, one of which is a cyclic ∂Ωp-
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isometry. It is a standard fact of subnormal operator theory (refer, for
example, to [25]) that any cyclic subnormal tuple S is, up to unitary
equivalence, a multiplication tuple Mθ,z on the closure P 2(θ) of poly-
nomials in L2(θ) for some compactly supported positive regular Borel
measure θ; in case S happens to be a cyclic ∂Ωp-isometry, θ must be
supported on ∂Ωp.

Hereafter, T = Mθ,z stands for a fixed cyclic ∂Ωp-isometry with θ
supported on ∂Ωp and having no atoms on ∂Ωp.

In order to discuss subnormal tuples S quasisimilar to T =Mθ,z, we
need only consider S = Mη,z for some compactly supported positive
regular Borel measure η on Cn as is justified by [2, Proposition 1].

Arguing almost verbatim along the lines of [4, Section 4] (refer
also to [2]), where the context was that of strictly pseudoconvex
domains, Lemmas 4.8, 4.9 and Propositions 4.10, 4.11 below may be
established. That one can use polynomials in the statements of those
lemmas and propositions is a pleasant consequence of our observations
in Remark 3.2. We point out that, as in the proof of [4, Lemma 4.5],
an appeal in the proof of Lemma 4.9 below must be made to [17,
Corollary 2.8], which is a consequence of some refinements in [17] of
Aleksandrov’s work in [1]; the requirement that θ have no atoms on
∂Ωp stems from the necessity of applying [17, Corollary 2.8].

Lemma 4.8. Let S be a cyclic subnormal tuple so that S can be
identified withMη,z for some compactly supported positive regular Borel
measure η on Cn. If there exists a bounded linear map

Y : P 2(θ) −→ P 2(η)

with dense range such that YMθ,z = Mη,zY , then there exists a cyclic
vector g for Mη,z such that∫

|p|2|g|2dη ≤
∫

|p|2dθ

for every polynomial p, and η|∂Ωp is absolutely continuous with respect
to θ.

Lemma 4.9. Let S be a cyclic subnormal tuple so that S can be
identified withMη,z for some compactly supported positive regular Borel

measure η on Cn. Assume that supp(η) ⊂ Ωp and η has no atoms on
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∂Ωp. If there exists a bounded linear map

X : P 2(η) −→ P 2(θ)

with dense range such that XMη,z =Mθ,zX, then there exists a cyclic
vector h for Mθ,z such that∫

|p|2|h|2dθ ≤
∫

|p|2d(η|∂Ωp)

for every polynomial p, and θ is absolutely continuous with respect to
η|∂Ωp.

Proposition 4.10. Let S be a cyclic subnormal tuple so that S can
be identified with Mη,z for some compactly supported positive regular
Borel measure η on Cn. Then (S =)Mη,z is quasisimilar to Mθ,z if
and only if

(a) there exists a cyclic vector g for Mη,z such that∫
|p|2|g|2dη ≤

∫
|p|2dθ

for every polynomial p, and

(b) there exists a cyclic vector h for Mθ,z such that∫
|p|2|h|2dθ ≤

∫
|p|2d(η|∂Ωp)

for every polynomial p.

Proposition 4.11. Let S be a cyclic subnormal tuple so that S can
be identified with Mη,z for some compactly supported positive regular
Borel measure η on Cn. Then (S =)Mη,z is similar to Mθ,z if and only
if there exist positive constants c and d such that∫

|p|2dη ≤ c

∫
|p|2dθ

and ∫
|p|2dθ ≤ d

∫
|p|2d(η|∂Ωp)
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for every polynomial p. Also, (S =)Mη,z is unitarily equivalent to Mθ,z

if and only if dη = |h|2dθ for some cyclic vector h for Mθ,z.

It would be interesting to know whether the statements of Proposi-
tions 4.10 and 4.11 remain valid even when θ has atoms on ∂Ωp. Since
the surface area measure σp on ∂Ωp is not absolutely continuous with
respect to the restriction νp|∂Ωp of the volumetric measure νp to ∂Ωp,
Lemma 4.9 shows, in particular, that Mσp,z cannot be quasisimilar to
Mνp,z. This negative result can actually be extended to the multipli-
cation tuples Mσp,z and Mνp,z associated with the domains Σp. The
next proposition generalizes [6, Proposition 3.4(d)] with an analogous
proof; a complete proof is presented here for the reader’s convenience.

Proposition 4.12. There is no injective bounded linear map from
A2(νp) to H2(σp) that intertwines the multiplication tuples Mνp,z and
Mσp,z associated with Σp.

Proof. We note that

n∑
i=1

(M∗
σp,zi)

pi,1(Mσp,zi)
pi,1 + · · ·+ (M∗

σp,zi)
pi,mi (Mσp,zi)

pi,mi

is the identity operator on H2(σp) so that

S ≡ ((Mσp,z1)
p1,1 , . . . , (Mσp,zn)

pn,mn )

is a spherical isometry. It follows from [3, Proposition 2] that S is
subnormal and that the minimal normal extension M of S has its
spectral measure ρM supported on ∂BQ, where Q = m1 + · · ·+mn. It
also follows from Taylor functional calculus (see [47]) and the spectral
inclusion property for subnormal tuples (see [39]) that the minimal
normal extension N of

T ≡ ((Mνp,z1)
p1,1 , . . . , (Mνp,zn)

pn,mn )

has its spectral measure ρN supported on the closure BQ of BQ.
Suppose that there exists an injective bounded linear map

Y : A2(νp) −→ H2(σp)

satisfying YMνp,zi = Mσp,ziY for all i. Then, Y also satisfies Y Ti =

SiY for all i. If 1νp is the constant function of A2(νp) taking the value 1,



MULTIVARIABLE ISOMETRIES 41

then for any m-variable polynomial q ∈ C[z], we have∫
∂BQ

|q(z)|2d∥ρM (z)Y 1νp∥2 = ∥q(S)Y 1νp∥2 ≤ ∥Y ∥2∥q(T )1νp∥2

= ∥Y ∥2
∫
B̄Q

|q(z)|2d∥ρN (z)1νp∥2.

Appealing to [42, Theorem 3.5], we choose a sequence {qn} of polyno-
mials in C[z] such that qn are bounded in absolute value by 1, uniformly
converge to 0 on compact subsets of BQ and satisfy

lim
n→∞

|qn(z)| = 1 z-almost everywhere [∥ρM (·)Y 1νp∥2].

Replacing q by qn in the previous inequality, letting n tend to ∞ and
noting that the measure ∥ρN (·)1νp∥2 vanishes on ∂BQ, we arrive at the
absurdity 0 < ∥Y 1νp∥2 ≤ 0. �

Remark 4.13. Combining [43, Theorem 2.3] with our observation
in the proof of Proposition 3.5 that the ∂-Neumann operator N1

corresponding to Ωp is compact, the short exact sequence of C∗-algebras

0 −→ K(A2(νp))
ι−→ A π−→ C(∂Ωp) −→ 0

is obtained, where K(A2(νp)) and A are as in the proof of Proposi-
tion 3.7, ι is the inclusion map and π is a unital ∗-homomorphism satis-

fying π(T̃νp,ϕ) = ϕ|∂Ωp for any ϕ ∈ C(Ωp). In view of Remark 4.2, even

the ∂-Neumann operator N1 corresponding to Σp is compact; as such,
[43, Theorem 2.3] yields that the short exact sequence as recorded here
is obtained with Ωp replaced by Σp (and with the associated symbols
interpreted accordingly). On the other hand, the short exact sequence
of Remark 3.8 (b) was derived by appealing to [18, Proposition 3.10]
which necessitated that the multiplication tupleMσp,z there be regular;
this, in turn, forced us to use the full strength of the definition of Ωp
via Proposition 2.5. It may then be asked, in particular, whether the
short exact sequence of Remark 3.8 (b) is obtained with Ωp replaced
by Σp. Indeed, it is obtained if Σp is chosen to be a complex ellipsoid

(see [12, Theorem 2.1]) and also if Σp is chosen to be Σ̃p since a ∂Σ̃p-

isometry is an essentially normal A(Σ̃p)-isometry (by Remark 4.2) and

is, moreover, regular by the virtue of Σ̃p being strictly pseudoconvex
(refer to [20]).
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While the main focus of the present paper has been on multivariable
isometries associated with the domains Ωp, Proposition 3.3 as well as
the analysis in the present section suggest that even subnormal tuples
that have the spectral measures of their minimal normal extensions
supported on Ωp (and not just on ∂Ωp) are worth exploring. In order to
corroborate that assertion, we first proceed to verify that the domains
Ωp satisfy the properties (F1), (F2), (F3) and (F4) as enunciated in
[17, Section 1]. (It will also be clear that the domains Σp satisfy the
properties (F1), (F2) and (F4)).

(F1) The closure Ωp of Ωp is a Stein compactum of Cn: this follows
from the fact that Ωp is a compact convex subset of Cn (refer to [41,
Chapter 3]).

(F2) O(Ωp), the vector space of functions f such that f is holomor-

phic on an open neighborhood Uf of Ωp, is weak*-dense in H∞(Ωp):
this follows from our observation in the last line of Remark 4.3.

It may be recalled that A(Ωp) is the closure of O(Ωp) in the sup

norm with respect to Ωp.

(F3) There exist a natural number N and an injective mapping
f ∈ A(Ωp)

N such that the image of the Shilov boundary of A(Ωp)
is contained in the topological boundary of the unit ball BN : this
follows from Proposition 2.4 and our observations in the proof of
Proposition 2.5.

(F4) There exists a positive regular Borel measure µ supported on
the Shilov boundary of Ωp (which, as we know, is ∂Ωp) such that the
canonical map rµ from

O(Ωp) −→ L∞(µ)

extends to an algebra homomorphism

r̃µ : H∞(Ωp) −→ L∞(µ)

that is isometric and weak∗-continuous (which is the same as calling µ a
‘faithful Henkin measure’). Since the non-tangential boundary limit of
any f ∈ O(Ωp) is the restriction of f to ∂Ωp, the normalized surface area
measure σp on ∂Ωp is a faithful Henkin measure in light of Remark 4.3.

Remark 4.14. The preceding observations allow us to apply [17,
Theorem 1.4] to those operator tuples T ∈ B(H)n that possess an
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isometric and a weak∗-continuous H∞(Ωp)-functional calculus

ΦT : H∞(Ωp) −→ B(H)

(satisfying ΦT (1) = I and ΦT (zi) = Ti for all i) so that, for such
tuples T , we have the following: the weak operator topology and the
weak∗ operator topology coincide on the algebra ΦT (H

∞(Ωp)), and
any unital weak∗-closed subalgebra of ΦT (H

∞(Ωp)) is reflexive (cf.,
Remark 2.7 (a)).

Let T ∈ B(H)n be an operator tuple possessing a contractive and
a weak∗-continuous H∞(Ωp)-functional calculus ΦT . Suppose, further,
that T has its Taylor spectrum dominating in Ωp so that the sup norm
of any f ∈ H∞(Ωp) equals the supremum of |f | over the intersection of
Ωp with the Taylor spectrum σ(T ) of T . Since Ωp is a bounded convex
domain with smooth boundary, Ωp satisfies the ‘Gleason property’ so
that, for any a ∈ Ωp and any f ∈ H∞(Ωp), we have

f(z)− f(a) =
n∑
i=1

(zi − ai)fi(z), z ∈ Ωp,

where the so-called Leibenzon divisors fi are given by

fi(z) =

∫ 1

0

∂f

∂zi
(a+ t(z − a)) dt

and are in H∞(Ωp) (refer to [23, 26]). Using this and arguing exactly
as in [15, Lemma 2.3.6], it may be proven that, for any f ∈ H∞(Ωp),
f(σ(T )∩Ωp) is contained in the Taylor spectrum of ΦT (f). That easily
leads to the sup norm of f with respect to Ωp being less than or equal
to ∥ΦT (f)∥. Thus, in this case, the functional calculus ΦT is indeed
isometric.
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