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SOME FINITE GENERALIZATIONS OF
GAUSS’S SQUARE EXPONENT IDENTITY

JI-CAI LIU

ABSTRACT. We obtain three finite generalizations of
Gauss’s square exponent identity. For example, we prove
that, for any non-negative integer m,

m∑
k=−m

(−1)k
[
3m− k + 1

m+ k

]
(−q; q)m−kq

k2
= 1,

where[
n

m

]
=

m∏
k=1

1− qn−k+1

1− qk
and (a; q)n =

n−1∏
k=0

(1− aqk).

These identities reduce to Gauss’s famous identity
∞∑

k=−∞
(−1)kqk

2
=

(q; q)∞

(−q; q)∞

by letting m → ∞.

1. Introduction. Euler’s pentagonal number theorem [1, Corollary
1.7] plays an important role in the partition theory

∞∑
j=−∞

(−1)jqj(3j+1)/2 = (q; q)∞.(1.1)

Here, and throughout the note, we use the following q-series notation:

(a; q)0 = 1, (a; q)n =
n−1∏
k=0

(1− aqk), (a; q)∞ =
∞∏
k=0

(1− aqk),
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and [
n
m

]
=

[
n
m

]
q

=

{
(q;q)n

(q;q)m(q;q)n−m
if 0 6 m 6 n,

0 otherwise.

Berkovich and Garvan [6] found some finite generalizations of Euler’s
pentagonal number theorem. For example, they proved that

L∑
j=−L

(−1)j
[
2L− j
L+ j

]
qj(3j+1)/2 = 1.(1.2)

Note that

lim
L→∞

[
2L− j
L+ j

]
=

1

(q; q)∞
.

Thus, letting L → ∞ in (1.2) reduces to (1.1). By using a well-known
cubic summation formula, Warnaar [14] obtained another interesting
finite generalization of Euler’s pentagonal number theorem.

Gauss’s triangular exponent identity and square exponent identity
[1, Corollary 2.10] are stated as follows

∞∑
k=0

qk(k+1)/2 =
(q2; q2)∞
(q; q2)∞

,(1.3)

∞∑
k=−∞

(−1)kqk
2

=
(q; q)∞
(−q; q)∞

.(1.4)

In particular, identity (1.4) can be used to prove Lagrange’s four-square
theorem, see [7, page 106]. Euler’s pentagonal number theorem (1.1)
and Gauss’s identities (1.3)–(1.4) were historically spectacular achieve-
ments at the time of their discovery. However, with progress, the fol-
lowing Jacobi’s triple product identity [1, Theorem 2.8] implies all of
them. For z ̸= 0 and |q| < 1,

∞∑
k=−∞

zkqk
2

= (q2; q2)∞(−zq; q2)∞(−q/z; q2)∞.
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Shanks [12] proved that

n−1∑
s=0

Pn

Ps
qs(2n+1) =

2n∑
s=1

qs(s−1)/2,

where Pn = (q2; q2)n/(q; q
2)n. Identity (1.3) directly follows from the

above finite identity.

Some similar finite identities have been widely studied by several
authors, see, for example, [2, 5, 9, 10, 11, 13, 15].

Motivated by the work of Berkovich and Garvan [6] and War-
naar [14], we shall prove three similar finite generalizations for Gauss’s
square exponent identity.

Theorem 1.1. For any positive integer m and complex number q, we
have

m∑
k=−m

(−1)k
[
3m− k + 1

m+ k

]
(−q; q)m−kq

k2

= 1,(1.5)

(1− q2m)

m∑
k=−m

(−1)k
[
3m− k
m+ k

]
(−q; q)m−k

1− q3m−k
qk

2

= 1,(1.6)

m∑
k=−m

(−1)k
[
3m− k − 1
m+ k − 1

]
(−q; q)m−kq

k2

= 1.(1.7)

If |q| < 1, then (1.5)–(1.7) reduce to (1.4) by letting m → ∞.
Replacing k by −m+ k on the left-hand sides of (1.5)–(1.6), and k by
−m+ k + 1 on the left-hand side of (1.7), we can rewrite Theorem 1.1
as:

2m∑
k=0

(−1)m+k (q; q)4m−k+1(−q; q)2m−kq
(m−k)2

(q; q)4m−2k+1(q; q)k
= 1,

(1− q2m)
2m∑
k=0

(−1)m+k (q; q)4m−k(−q; q)2m−kq
(m−k)2

(q; q)4m−2k(q; q)k(1− q4m−k)
= 1,

2m−1∑
k=0

(−1)m+k+1 (q; q)4m−k−2(−q; q)2m−k−1q
(m−k−1)2

(q; q)4m−2k−2(q; q)k
= 1.
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These basic hypergeometric forms of Theorem 1.1 may be helpful in
finding the highest reasonable level of generality of such identities.

2. Proof of Theorem 1.1. In order to prove Theorem 1.1, we need
the following lemma.

Lemma 2.1. ([1, page 35]). Let 0 ≤ m ≤ n be integers. Then,[
n
m

]
=

[
n− 1
m− 1

]
+ qm

[
n− 1
m,

]
[
n
m

]
=

[
n− 1
m

]
+ qn−m

[
n− 1
m− 1

]
.

Proof of Theorem 1.1. In fact, (1.5)–(1.7) can be deduced from the
following identities:

(2.1)
n∑

k=0

(−1)k
[
2n− k + 1

k

]
(−q; q)n−kq

(k2)

=

{
0 if n = 2m− 1,

(−1)mqm(3m+1) if n = 2m,

(2.2) (1− qn)
n∑

k=0

(−1)k
[
2n− k

k

]
(−q; q)n−k

1− q2n−k
q(

k
2)

=

{
0 if n = 2m− 1,

(−1)mqm(3m−1) if n = 2m,

(2.3)

n∑
k=0

(−1)k
[
2n− k

k

]
(−q; q)n−kq

(k2)

=

{
(−1)m−1q3m

2−3m+1 if n = 2m− 1,

(−1)mqm(3m−1) if n = 2m.

Before proving these results, we shall draw conclusions from them.

Replacing n by 2m in (2.1) and (2.2), and n by 2m − 1 in (2.3),
respectively, and then letting k → m + k in (2.1) and (2.2), and
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k → m+ k − 1 in (2.3), respectively, we obtain

m∑
k=−m

(−1)k
[
3m− k + 1

m+ k

]
(−q; q)m−kq

(m+k
2 ) = qm(3m+1),(2.4)

(1− q2m)
m∑

k=−m

(−1)k
[
3m− k
m+ k

]
(−q; q)m−k

1− q3m−k
q(

m+k
2 ) = qm(3m−1),

(2.5)

m∑
k=−m

(−1)k
[
3m− k − 1
m+ k − 1

]
(−q; q)m−kq

(m+k−1
2 ) = q3m

2−3m+1.(2.6)

It is easy to verify that

[
n
m

]
q−1

=

[
n
m

]
q

qm(m−n) and (−q−1; q−1)n = (−q; q)nq
−(n+1

2 ).

(2.7)

Replacing q by q−1 in (2.4)–(2.6) and then noting (2.7), we immediately
obtain (1.5)–(1.7).

Thus, it remains to prove (2.1)–(2.3). Denote the left-hand sides of
(2.1), (2.2) and (2.3) by Un, Vn and Wn, respectively. We shall prove
these three identities by establishing the following relationships:

(1 + qn)Vn = Wn − q2n−1Wn−1,(2.8)

Vn = −q2n−2Un−2,(2.9)

Wn = qnUn−1 − q2n−2Un−2.(2.10)

From (2.8)–(2.9), we obtain

Un = −q3n−2Un−2 for n ≥ 2.

We can deduce (2.1) by induction from the initial values U0 = 1 and
U1 = 0. Substituting (2.1) into (2.9) and (2.10), we obtain (2.2) and
(2.3) directly. Therefore, it suffices to prove (2.8)–(2.10).

Since 1− q2n = 1− q2n−k + q2n−k(1− qk), we have

(1 + qn)Vn

=
n∑

k=0

(−1)k
[
2n− k

k

]
(−q; q)n−kq

(k2)
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− q2n−1
n∑

k=1

(−1)k−1

[
2n− k − 1

k − 1

]
(−q; q)n−kq

(k−1
2 )

= Wn − q2n−1
n−1∑
k=0

(−1)k
[
2n− k − 2

k

]
(−q; q)n−k−1q

(k2)

= Wn − q2n−1Wn−1.

This concludes the proof of (2.8).

It is easy to verify that

(2.11)

[
2n− k

k

]
1− qn

1− q2n−k
=

[
2n− k − 1

k − 1

]
+

[
2n− k − 1

k

]
qk

1 + qn−k
.

Substituting (2.11) into the left-hand side of (2.2), we obtain

Vn =

n∑
k=1

(−1)k
[
2n− k − 1

k − 1

]
(−q; q)n−kq

(k2)

+

n−1∑
k=0

(−1)k
[
2n− k − 1

k

]
(−q; q)n−k−1q

(k+1
2 )

= −
n−1∑
k=0

(−1)k
[
2n− k − 2

k

]
(−q; q)n−k−1q

(k+1
2 )

+
n−1∑
k=0

(−1)k
[
2n− k − 1

k

]
(−q; q)n−k−1q

(k+1
2 ).

From Lemma 2.1, we have

(2.12)

[
2n− k − 1

k

]
−
[
2n− k − 2

k

]
=

[
2n− k − 2

k − 1

]
q2n−2k−1.

It follows that

Vn = q2n−2
n−1∑
k=1

(−1)k
[
2n− k − 2

k − 1

]
(−q; q)n−k−1q

(k−1
2 )

= −q2n−2
n−2∑
k=0

(−1)k
[
2n− k − 3

k

]
(−q; q)n−k−2q

(k2)

= −q2n−2Un−2.

This proves (2.9).
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From Lemma 2.1, we get[
2n− k

k

]
(1 + qn−k)−

[
2n− k − 1

k

]
qn

=

[
2n− k − 1

k − 1

]
(1 + qn−k) +

[
2n− k − 1

k

]
qk.

Thus, we have

Wn − qnUn−1 =
n∑

k=1

(−1)k
[
2n− k − 1

k − 1

]
(−q; q)n−kq

(k2)

+
n−1∑
k=0

(−1)k
[
2n− k − 1

k

]
(−q; q)n−k−1q

(k+1
2 )

= −
n−1∑
k=0

(−1)k
[
2n− k − 2

k

]
(−q; q)n−k−1q

(k+1
2 )

+

n−1∑
k=0

(−1)k
[
2n− k − 1

k

]
(−q; q)n−k−1q

(k+1
2 ).

From (2.12), we have

Wn − qnUn−1 = q2n−2
n−1∑
k=1

(−1)k
[
2n− k − 2

k − 1

]
(−q; q)n−k−1q

(k−1
2 )

= −q2n−2
n−2∑
k=0

(−1)k
[
2n− k − 3

k

]
(−q; q)n−k−2q

(k2)

= −q2n−2Un−2,

which is (2.10). �
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