SOME FINITE GENERALIZATIONS OF GAUSS'S SQUARE EXPONENT IDENTITY

JI-CAI LIU

ABSTRACT. We obtain three finite generalizations of Gauss's square exponent identity. For example, we prove that, for any non-negative integer m,

$$\sum_{k=-m}^{m} (-1)^k \begin{bmatrix} 3m-k+1\\ m+k \end{bmatrix} (-q;q)_{m-k} q^{k^2} = 1,$$

where

$$\begin{bmatrix} n \\ m \end{bmatrix} = \prod_{k=1}^{m} \frac{1 - q^{n-k+1}}{1 - q^k}$$
 and $(a;q)_n = \prod_{k=0}^{n-1} (1 - aq^k).$

These identities reduce to Gauss's famous identity

$$\sum_{k=-\infty}^{\infty} (-1)^k q^{k^2} = \frac{(q;q)_{\infty}}{(-q;q)_{\infty}}$$

by letting $m \to \infty$.

1. Introduction. Euler's pentagonal number theorem [1, Corollary 1.7] plays an important role in the partition theory

(1.1)
$$\sum_{j=-\infty}^{\infty} (-1)^j q^{j(3j+1)/2} = (q;q)_{\infty}.$$

Here, and throughout the note, we use the following q-series notation:

$$(a;q)_0 = 1,$$
 $(a;q)_n = \prod_{k=0}^{n-1} (1 - aq^k),$ $(a;q)_\infty = \prod_{k=0}^{\infty} (1 - aq^k),$

²⁰¹⁰ AMS *Mathematics subject classification*. Primary 11B65, Secondary 33D15.

 $Keywords\ and\ phrases.$ Gauss's identity, $q\mbox{-binomial}$ coefficients, pentagonal number theorem.

Received by the editors on May 24, 2016, and in revised form on May 27, 2016. DOI:10.1216/RMJ-2017-47-8-2723 Copyright ©2017 Rocky Mountain Mathematics Consortium

and

$$\begin{bmatrix} n \\ m \end{bmatrix} = \begin{bmatrix} n \\ m \end{bmatrix}_q = \begin{cases} \frac{(q;q)_n}{(q;q)_m(q;q)_{n-m}} & \text{if } 0 \leqslant m \leqslant n, \\ 0 & \text{otherwise.} \end{cases}$$

Berkovich and Garvan [6] found some finite generalizations of Euler's pentagonal number theorem. For example, they proved that

(1.2)
$$\sum_{j=-L}^{L} (-1)^{j} \begin{bmatrix} 2L-j\\L+j \end{bmatrix} q^{j(3j+1)/2} = 1.$$

Note that

$$\lim_{L \to \infty} \begin{bmatrix} 2L - j \\ L + j \end{bmatrix} = \frac{1}{(q;q)_{\infty}}.$$

Thus, letting $L \to \infty$ in (1.2) reduces to (1.1). By using a well-known cubic summation formula, Warnaar [14] obtained another interesting finite generalization of Euler's pentagonal number theorem.

Gauss's triangular exponent identity and square exponent identity [1, Corollary 2.10] are stated as follows

(1.3)
$$\sum_{k=0}^{\infty} q^{k(k+1)/2} = \frac{(q^2; q^2)_{\infty}}{(q; q^2)_{\infty}},$$

(1.4)
$$\sum_{k=-\infty}^{\infty} (-1)^k q^{k^2} = \frac{(q;q)_{\infty}}{(-q;q)_{\infty}}$$

In particular, identity (1.4) can be used to prove Lagrange's four-square theorem, see [7, page 106]. Euler's pentagonal number theorem (1.1) and Gauss's identities (1.3)–(1.4) were historically spectacular achievements at the time of their discovery. However, with progress, the following Jacobi's triple product identity [1, Theorem 2.8] implies all of them. For $z \neq 0$ and |q| < 1,

$$\sum_{k=-\infty}^{\infty} z^k q^{k^2} = (q^2; q^2)_{\infty} (-zq; q^2)_{\infty} (-q/z; q^2)_{\infty}.$$

2724

Shanks [12] proved that

$$\sum_{s=0}^{n-1} \frac{P_n}{P_s} q^{s(2n+1)} = \sum_{s=1}^{2n} q^{s(s-1)/2},$$

where $P_n = (q^2; q^2)_n / (q; q^2)_n$. Identity (1.3) directly follows from the above finite identity.

Some similar finite identities have been widely studied by several authors, see, for example, [2, 5, 9, 10, 11, 13, 15].

Motivated by the work of Berkovich and Garvan [6] and Warnaar [14], we shall prove three similar finite generalizations for Gauss's square exponent identity.

Theorem 1.1. For any positive integer m and complex number q, we have

(1.5)
$$\sum_{k=-m}^{m} (-1)^k \begin{bmatrix} 3m-k+1\\m+k \end{bmatrix} (-q;q)_{m-k} q^{k^2} = 1,$$

(1.6)
$$(1-q^{2m})\sum_{k=-m}^{m}(-1)^k \begin{bmatrix} 3m-k\\m+k \end{bmatrix} \frac{(-q;q)_{m-k}}{1-q^{3m-k}}q^{k^2} = 1,$$

(1.7)
$$\sum_{k=-m}^{m} (-1)^k \begin{bmatrix} 3m-k-1\\m+k-1 \end{bmatrix} (-q;q)_{m-k} q^{k^2} = 1.$$

If |q| < 1, then (1.5)–(1.7) reduce to (1.4) by letting $m \to \infty$. Replacing k by -m + k on the left-hand sides of (1.5)–(1.6), and k by -m + k + 1 on the left-hand side of (1.7), we can rewrite Theorem 1.1 as:

$$\sum_{k=0}^{2m} (-1)^{m+k} \frac{(q;q)_{4m-k+1}(-q;q)_{2m-k}q^{(m-k)^2}}{(q;q)_{4m-2k+1}(q;q)_k} = 1,$$

$$(1-q^{2m})\sum_{k=0}^{2m} (-1)^{m+k} \frac{(q;q)_{4m-k}(-q;q)_{2m-k}q^{(m-k)^2}}{(q;q)_{4m-2k}(q;q)_k(1-q^{4m-k})} = 1,$$

$$\sum_{k=0}^{2m-1} (-1)^{m+k+1} \frac{(q;q)_{4m-k-2}(-q;q)_{2m-k-1}q^{(m-k-1)^2}}{(q;q)_{4m-2k-2}(q;q)_k} = 1.$$

These basic hypergeometric forms of Theorem 1.1 may be helpful in finding the highest reasonable level of generality of such identities.

2. Proof of Theorem 1.1. In order to prove Theorem 1.1, we need the following lemma.

Lemma 2.1. ([1, page 35]). Let $0 \le m \le n$ be integers. Then,

$$\begin{bmatrix} n \\ m \end{bmatrix} = \begin{bmatrix} n-1 \\ m-1 \end{bmatrix} + q^m \begin{bmatrix} n-1 \\ m, \end{bmatrix}$$
$$\begin{bmatrix} n \\ m \end{bmatrix} = \begin{bmatrix} n-1 \\ m \end{bmatrix} + q^{n-m} \begin{bmatrix} n-1 \\ m-1 \end{bmatrix}$$

Proof of Theorem 1.1. In fact, (1.5)-(1.7) can be deduced from the following identities:

(2.1)
$$\sum_{k=0}^{n} (-1)^{k} \begin{bmatrix} 2n-k+1\\k \end{bmatrix} (-q;q)_{n-k} q^{\binom{k}{2}} = \begin{cases} 0 & \text{if } n=2m-1,\\ (-1)^{m} q^{m(3m+1)} & \text{if } n=2m, \end{cases}$$

$$(2.2) \quad (1-q^n) \sum_{k=0}^n (-1)^k \begin{bmatrix} 2n-k \\ k \end{bmatrix} \frac{(-q;q)_{n-k}}{1-q^{2n-k}} q^{\binom{k}{2}} \\ = \begin{cases} 0 & \text{if } n = 2m-1, \\ (-1)^m q^{m(3m-1)} & \text{if } n = 2m, \end{cases}$$

(2.3)
$$\sum_{k=0}^{n} (-1)^{k} \begin{bmatrix} 2n-k \\ k \end{bmatrix} (-q;q)_{n-k} q^{\binom{k}{2}} = \begin{cases} (-1)^{m-1} q^{3m^{2}-3m+1} & \text{if } n = 2m-1, \\ (-1)^{m} q^{m(3m-1)} & \text{if } n = 2m. \end{cases}$$

Before proving these results, we shall draw conclusions from them.

Replacing n by 2m in (2.1) and (2.2), and n by 2m - 1 in (2.3), respectively, and then letting $k \to m + k$ in (2.1) and (2.2), and

 $k \rightarrow m+k-1$ in (2.3), respectively, we obtain

(2.4)
$$\sum_{k=-m}^{m} (-1)^k \begin{bmatrix} 3m-k+1\\m+k \end{bmatrix} (-q;q)_{m-k} q^{\binom{m+k}{2}} = q^{m(3m+1)},$$

(2.5)

$$(1-q^{2m})\sum_{k=-m}^{m}(-1)^{k} \begin{bmatrix} 3m-k\\m+k \end{bmatrix} \frac{(-q;q)_{m-k}}{1-q^{3m-k}}q^{\binom{m+k}{2}} = q^{m(3m-1)},$$

$$(2.6)\sum_{k=-m}^{m}(-1)^{k} \begin{bmatrix} 3m-k-1\\m+k-1 \end{bmatrix} (-q;q)_{m-k}q^{\binom{m+k-1}{2}} = q^{3m^{2}-3m+1}.$$

It is easy to verify that

(2.7)

$$\begin{bmatrix} n \\ m \end{bmatrix}_{q^{-1}} = \begin{bmatrix} n \\ m \end{bmatrix}_q q^{m(m-n)} \quad \text{and} \quad (-q^{-1}; q^{-1})_n = (-q; q)_n q^{-\binom{n+1}{2}}.$$

Replacing q by q^{-1} in (2.4)–(2.6) and then noting (2.7), we immediately obtain (1.5)–(1.7).

Thus, it remains to prove (2.1)-(2.3). Denote the left-hand sides of (2.1), (2.2) and (2.3) by U_n , V_n and W_n , respectively. We shall prove these three identities by establishing the following relationships:

(2.8)
$$(1+q^n)V_n = W_n - q^{2n-1}W_{n-1},$$

(2.9) $V_n = -q^{2n-2}U_{n-2},$

(2.10)
$$W_n = q^n U_{n-1} - q^{2n-2} U_{n-2}.$$

From (2.8)–(2.9), we obtain

$$U_n = -q^{3n-2}U_{n-2}$$
 for $n \ge 2$.

We can deduce (2.1) by induction from the initial values $U_0 = 1$ and $U_1 = 0$. Substituting (2.1) into (2.9) and (2.10), we obtain (2.2) and (2.3) directly. Therefore, it suffices to prove (2.8)–(2.10).

Since
$$1 - q^{2n} = 1 - q^{2n-k} + q^{2n-k}(1 - q^k)$$
, we have

$$(1+q^{n})V_{n} = \sum_{k=0}^{n} (-1)^{k} \begin{bmatrix} 2n-k \\ k \end{bmatrix} (-q;q)_{n-k} q^{\binom{k}{2}}$$

$$-q^{2n-1}\sum_{k=1}^{n}(-1)^{k-1}\begin{bmatrix}2n-k-1\\k-1\end{bmatrix}(-q;q)_{n-k}q^{\binom{k-1}{2}}$$
$$=W_n-q^{2n-1}\sum_{k=0}^{n-1}(-1)^k\begin{bmatrix}2n-k-2\\k\end{bmatrix}(-q;q)_{n-k-1}q^{\binom{k}{2}}$$
$$=W_n-q^{2n-1}W_{n-1}.$$

This concludes the proof of (2.8).

It is easy to verify that

(2.11)
$$\begin{bmatrix} 2n-k \\ k \end{bmatrix} \frac{1-q^n}{1-q^{2n-k}} = \begin{bmatrix} 2n-k-1 \\ k-1 \end{bmatrix} + \begin{bmatrix} 2n-k-1 \\ k \end{bmatrix} \frac{q^k}{1+q^{n-k}}.$$

Substituting (2.11) into the left-hand side of (2.2), we obtain

$$V_{n} = \sum_{k=1}^{n} (-1)^{k} \begin{bmatrix} 2n-k-1\\k-1 \end{bmatrix} (-q;q)_{n-k} q^{\binom{k}{2}} \\ + \sum_{k=0}^{n-1} (-1)^{k} \begin{bmatrix} 2n-k-1\\k \end{bmatrix} (-q;q)_{n-k-1} q^{\binom{k+1}{2}} \\ = -\sum_{k=0}^{n-1} (-1)^{k} \begin{bmatrix} 2n-k-2\\k \end{bmatrix} (-q;q)_{n-k-1} q^{\binom{k+1}{2}} \\ + \sum_{k=0}^{n-1} (-1)^{k} \begin{bmatrix} 2n-k-1\\k \end{bmatrix} (-q;q)_{n-k-1} q^{\binom{k+1}{2}}.$$

From Lemma 2.1, we have

(2.12)
$$\begin{bmatrix} 2n-k-1\\k \end{bmatrix} - \begin{bmatrix} 2n-k-2\\k \end{bmatrix} = \begin{bmatrix} 2n-k-2\\k-1 \end{bmatrix} q^{2n-2k-1}.$$

It follows that

$$V_{n} = q^{2n-2} \sum_{k=1}^{n-1} (-1)^{k} \begin{bmatrix} 2n-k-2\\k-1 \end{bmatrix} (-q;q)_{n-k-1} q^{\binom{k-1}{2}}$$
$$= -q^{2n-2} \sum_{k=0}^{n-2} (-1)^{k} \begin{bmatrix} 2n-k-3\\k \end{bmatrix} (-q;q)_{n-k-2} q^{\binom{k}{2}}$$
$$= -q^{2n-2} U_{n-2}.$$

This proves (2.9).

2728

From Lemma 2.1, we get

$$\begin{bmatrix} 2n-k\\k \end{bmatrix} (1+q^{n-k}) - \begin{bmatrix} 2n-k-1\\k \end{bmatrix} q^n$$
$$= \begin{bmatrix} 2n-k-1\\k-1 \end{bmatrix} (1+q^{n-k}) + \begin{bmatrix} 2n-k-1\\k \end{bmatrix} q^k.$$

Thus, we have

$$W_{n} - q^{n}U_{n-1} = \sum_{k=1}^{n} (-1)^{k} \begin{bmatrix} 2n-k-1\\k-1 \end{bmatrix} (-q;q)_{n-k}q^{\binom{k}{2}} \\ + \sum_{k=0}^{n-1} (-1)^{k} \begin{bmatrix} 2n-k-1\\k \end{bmatrix} (-q;q)_{n-k-1}q^{\binom{k+1}{2}} \\ = -\sum_{k=0}^{n-1} (-1)^{k} \begin{bmatrix} 2n-k-2\\k \end{bmatrix} (-q;q)_{n-k-1}q^{\binom{k+1}{2}} \\ + \sum_{k=0}^{n-1} (-1)^{k} \begin{bmatrix} 2n-k-1\\k \end{bmatrix} (-q;q)_{n-k-1}q^{\binom{k+1}{2}}.$$

From (2.12), we have

$$W_n - q^n U_{n-1} = q^{2n-2} \sum_{k=1}^{n-1} (-1)^k {\binom{2n-k-2}{k-1}} (-q;q)_{n-k-1} q^{\binom{k-1}{2}}$$
$$= -q^{2n-2} \sum_{k=0}^{n-2} (-1)^k {\binom{2n-k-3}{k}} (-q;q)_{n-k-2} q^{\binom{k}{2}}$$
$$= -q^{2n-2} U_{n-2},$$

which is (2.10).

Acknowledgments. The author would like to thank Prof. Chan Heng Huat and the referee for valuable comments which improved the presentation of the paper.

REFERENCES

G.E. Andrews, The theory of partitions, Addison-Wesley, Reading, MA, 1976.
 _____, Truncation of the Rogers-Ramanujan theta series, Problem 83–13, SIAM Rev. 25 (1983), 402.

JI-CAI LIU

3. G.E. Andrews, *The fifth and seventh order mock theta functions*, Trans. Amer. Math. Soc. **293** (1986), 113–134.

4. G.E. Andrews, R.A. Askey and R. Roy, *Special functions*, Cambridge University Press, Cambridge, 1999.

5. G.E. Andrews and M. Merca, *The truncated pentagonal number theorem*, J. Comb. Th. **119** (2012), 1639–1643.

6. A. Berkovich and F.G. Garvan, Some observations on Dyson's new symmetries of partitions, J. Comb. Th. 100 (2002), 61–93.

7. W. Chu and L. Di Claudio, *Classical partition identities and basic hypergeo*metric series, Univ. Studi di Lecce, 2004.

8. G. Gasper and M. Rahman, *Basic hypergeometric series*, Cambridge University Press, Cambridge, 2004.

9. V.J.W. Guo and J. Zeng, *Two truncated identities of Gauss*, J. Comb. Th. **120** (2013), 700–707.

10. R. Mao, Proofs of two conjectures on truncated series, J. Comb. Th. 130 (2015), 15–25.

11. D. Shanks, A short proof of an identity of Euler, Proc. Amer. Math. Soc. 2 (1951), 747–749.

12. _____, Two theorems of Gauss, Pacific J. Math. 8 (1958), 609–612.

S.O. Warnaar, Partial-sum analogues of the Rogers-Ramanujan identities,
 J. Comb. Th. 99 (2002), 143–161.

14. _____, q-Hypergeometric proofs of polynomial analogues of the triple product identity, Lebesgue's identity and Euler's pentagonal number theorem, Ramanujan J. 8 (2004), 467–474.

15. A.J. Yee, A truncated Jacobi triple product theorem, J. Comb. Th. **130** (2015), 1–14.

Wenzhou University, College of Mathematics and Information Science, Wenzhou 325035, P.R. China

Email address: jc2051@163.com