
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 47, Number 8, 2017

THE PRIMITIVE IDEAL SPACE OF THE
PARTIAL-ISOMETRIC CROSSED PRODUCT OF A

SYSTEM BY A SINGLE AUTOMORPHISM

WICHARN LEWKEERATIYUTKUL AND SAEID ZAHMATKESH

ABSTRACT. Let (A,α) be a system consisting of a C∗-
algebra A and an automorphism α of A. We describe the
primitive ideal space of the partial-isometric crossed product

A ×piso
α N of the system by using its realization as a full

corner of a classical crossed product and applying some
results of Williams and Echterhoff.

1. Introduction. Lindiarni and Raeburn [8] introduced the partial-
isometric crossed product of a dynamical system (A,Γ+, α) in which
Γ+ is the positive cone of a totally ordered abelian group Γ and α is an
action of Γ+ by endomorphisms of A. Note that, since the C∗-algebra
A is not necessarily unital, we require that each endomorphism αs must
extend to a strictly continuous endomorphism αs of the multiplier alge-
braM(A). This occurs for an endomorphism α of A if and only if there
exists an approximate identity (aλ) in A and a projection p ∈ M(A)
such that α(aλ) strictly converges to p in M(A). It should be stressed
that, if α is extendible, then we may not have α(1M(A)) = 1M(A). A

covariant representation of the system (A,Γ+, α) is defined for which
the endomorphisms αs are implemented by partial isometries, and the
associated partial-isometric crossed product A ×piso

α Γ+ of the system
is a C∗-algebra generated by a universal covariant representation such
that there is a bijection between covariant representations of the system
and nondegenerate representations of A×piso

α Γ+. This generalizes the
covariant isometric representation theory that uses isometries to rep-
resent the semigroup of endomorphisms in a covariant representation
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of the system, see [3]. The authors of [8], in particular, studied the
structure of the partial-isometric crossed product of the distinguished
system (BΓ+ ,Γ+, τ), where the action τ of Γ+ on the subalgebra BΓ+

of ℓ∞(Γ+) is given by right translation. Later, in [4], the authors
showed that A×piso

α Γ+ is a full corner in a subalgebra of the C∗-algebra
L(ℓ2(Γ+)⊗A) of adjointable operators on the Hilbert A-module

ℓ2(Γ+)⊗A ≃ ℓ2(Γ+, A).

This realization led them to identify the kernel of the natural homo-
morphism

q : A×piso
α Γ+ −→ A×iso

α Γ+

as a full corner of the compact operators K(ℓ2(N) ⊗ A), when Γ+

is N := Z+. Thus, as an application, they recovered the Pimsner-
Voiculescu exact sequence in [10]. Then, in their subsequent work
[5], they proved that, for an extendible α-invariant ideal I of A (see
the definition in [1]), the partial-isometric crossed product I ×piso

α Γ+

naturally sits as an ideal in A×piso
α Γ+ such that

A×piso
α Γ+

I ×piso
α Γ+

≃ A

I
×piso

α̃ Γ+.

This is actually a generalization of [2, Theorem 2.2]. They then
combined these results to show that the large commutative diagram
of [8, Theorem 5.6] associated to the system (BΓ+ ,Γ+, τ) is valid for
any totally ordered abelian group, not only for subgroups of R. In
particular, they used this large commutative diagram for Γ+ = N to
explicitly describe the ideal structure of the algebra BN ×piso

τ N.
Here, we now consider a system (A,α) consisting of a C∗-algebra

A and an automorphism α of A. Thus, we actually have an action
of the positive cone N = Z+ of integers Z by automorphisms of
A. In the present work, we want to study Prim(A ×piso

α N), the
primitive ideal space of the partial-isometric crossed product A×piso

α N
of the system. Since A ×piso

α N is in fact a full corner of the classical
crossed product (BZ ⊗ A) × Z, see [4, Section 5], Prim(A ×piso

α N) is
homeomorphic to Prim((BZ ⊗ A) × Z). Therefore, it is sufficient to
describe Prim((BZ ⊗ A) × Z). In order to do so, we apply the results
on describing the primitive ideal space (ideal structure) of the classical
crossed products from [7, 12]. Therefore, we consider the following
two conditions:
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(1) when A is separable and abelian;
(2) when A is separable and Z acts on PrimA freely, see Section 2.

For the first condition, by applying a theorem of Williams,

Prim((BZ ⊗A)× Z)

is homeomorphic to a quotient space of

Ω(BZ)× Ω(A)× T,

where Ω(BZ) and Ω(A) are the spectrums of the C∗-algebras BZ and

A, respectively (recall that the dual Ẑ is identified with T via the map
z 7→ (γz : n 7→ zn)). By computing Ω(BZ), we parameterize the
quotient space as a disjoint union, and then we precisely identify the
open sets. For the second condition, we apply a result of Echterhoff
which shows that Prim((BZ ⊗ A) × Z) is homeomorphic to the quasi-
orbit space of

Prim(BZ ⊗A) = PrimBZ × PrimA,

(see in Section 2 that this is a quotient space of Prim(BZ ⊗A)). Again
by a similar argument to the first condition, we precisely describe the
quotient space and its topology.

We begin with a preliminary section in which the theory of the
partial-isometric crossed products is recalled, as well as some brief
discussions on the primitive ideal space of the classical crossed products.
In Section 3, for a system (A,α) consisting of a C∗-algebra A and an
automorphism α of A, we apply the works of Williams and Echterhoff
to describe Prim(A ×piso

α N) using the realization of A ×piso
α N as a

full corner of the classical crossed product (BZ ⊗ A) × Z. As some
examples, we compute the primitive ideal space of C(T)×piso

α N, where
the action α is given by rotation through the angle 2πθ with θ rational
and irrational. Moreover, the description of the primitive ideal space
of the Pimsner-Voiculescu Toeplitz algebra associated to the system
(A,α) is completely obtained, as it is isomorphic to A ×piso

α−1 N. Also,

we discuss necessary and sufficient conditions under which A ×piso
α N

is GCR (postliminal or type I). Finally, in Section 4, we discuss the
primitivity and simplicity of A×piso

α N.
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2. Preliminaries.

2.1. The partial-isometric crossed product. A partial-isometric
representation of N on a Hilbert space H is a map

V : N −→ B(H)

such that each Vn := V (n) is a partial isometry, and Vn+m = VnVm for
all n,m ∈ N.

A covariant partial-isometric representation of (A,α) on a Hilbert
space H is a pair (π, V ) consisting of a nondegenerate representation

π : A −→ B(H)

and a partial-isometric representation V : N → B(H) such that

(2.1) π(αn(a)) = Vnπ(a)V
∗
n and V ∗

n Vnπ(a) = π(a)V ∗
n Vn

for all a ∈ A and n ∈ N.
Note that every system (A,α) admits a nontrivial covariant partial-

isometric representation [8, Example 4.6]: let π be a nondegenerate
representation of A on H. Define

Π : A −→ B(ℓ2(N,H))

by (Π(a)ξ)(n) = π(αn(a))ξ(n). If

H := span{ξ ∈ ℓ2(N,H) : ξ(n) ∈ π(αn(1))H for all n},

then the representation Π is nondegenerate on H. Now, for every
m ∈ N, define Vm on H by (Vmξ)(n) = ξ(n + m). Then, the pair
(Π|H, V ) is a partial-isometric covariant representation of (A,α) on H.
It is easily seen that, if we take π faithful, then Π will be faithful
as well, and H = ℓ2(N, H) whenever α(1) = 1 (e.g., when α is an
automorphism).

Definition 2.1. A partial-isometric crossed product of (A,α) is a
triple (B, jA, jN) consisting of a C∗-algebra B, a nondegenerate ho-
momorphism iA : A → B, and a partial-isometric representation
iN : N →M(B) such that:

(i) the pair (jA, jN) is a covariant representation of (A,α) in B;



THE PARTIAL-ISOMETRIC CROSSED PRODUCT 2703

(ii) for every covariant partial-isometric representation (π, V ) of (A,α)
on a Hilbert space H, there exists a nondegenerate representation

π × V : B −→ B(H)

such that (π × V ) ◦ iA = π and (π × V ) ◦ iN = V ; and
(iii) the C∗-algebra B is spanned by {iN(n)∗iA(a)iN(m) : n,m ∈

N, a ∈ A}.

From [8, Proposition 4.7], the partial-isometric crossed product of
(A,α) always exists, and it is unique up to isomorphism. Thus, we
write the partial-isometric crossed product B as A×piso

α N.

We recall that, by [8, Theorem 4.8], a covariant representation (π, V )
of (A,α) on H induces a faithful representation π × V of A ×piso

α N if
and only if π is faithful on the range of (1− V ∗

n Vn) for every n > 0 (it
can actually be seen that it is sufficient to verify that π is faithful on
the range of (1− V ∗V ), where V := V1).

2.2. The primitive ideal space of crossed products associated
to second countable locally compact transformation groups.
Let Γ be a discrete group which acts on a topological space X. For
every x ∈ X, the set

Γ · x := {s · x : s ∈ Γ}

is called the Γ-orbit of x. The set Γx := {s ∈ Γ : s · x = x}, which is a
subgroup of Γ, is called the stability group of x. We say the Γ-action is
free or Γ acts on X freely if Γx = {e} for all x ∈ X. Consider a relation
∼ on X such that, for x, y ∈ X, x ∼ y if and only if Γ · x = Γ · y. It may
be observed that this is an equivalence relation on X. The set of all
equivalence classes equipped with the quotient topology is denoted by
O(X) and called the quasi-orbit space, which is always a T0-topological
space. The equivalence class of each x ∈ X is denoted by O(x) and
called the quasi-orbit of x.

Now, let Γ be an abelian countable discrete group which acts on a
second countable locally compact Hausdorff space X. So (Γ, X) is a
second countable locally compact transformation group with Γ abelian.
Then, the associated dynamical system (C0(X),Γ, τ) is separable with
Γ abelian, and thus, the primitive ideals of C0(X)×τ Γ are known, see
[12, Theorem 8.21]. Furthermore, the topology of Prim(C0(X) ×τ Γ)
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has been beautifully described [12, Theorem 8.39]. Therefore, here,
we want to briefly recall the discussion on Prim(C0(X) ×τ Γ). The
interested reader may consult [12] to find that this is indeed a huge
and deep discussion.

Let N be a subgroup of Γ. If we restrict the action τ to N , then
we obtain a dynamical system (C0(X), N, τ |N ) with the associated

crossed product C0(X) ×τ |N N . Suppose that XΓ
N is the Green’s

((C0(X)⊗C0(Γ/N))×τ⊗ltΓ)−(C0(X)×τ |NN)-imprimitivity bimodule,
the structure of which can be found in [12, Theorem 4.22]. If (π, V ) is a

covariant representation of (C0(X), N, τ |N ), then IndΓN (π×V ) denotes
the representation of C0(X)×τ Γ induced from the representation π×V
of C0(X)×τ |N N via XΓ

N . Now, for x ∈ X, let

εx : C0(X) −→ C ≃ B(C)

be the evaluation map at x and w a character of Γx. Then, the pair
(εx, w) is a covariant representation of (C0(X),Γx, τ |Γx) such that the
associated representation εx × w of C0(X) × Γx is irreducible, and

hence, from [12, Proposition 8.27], IndΓΓx
(εx × w) is an irreducible

representation of C0(X)×τ Γ. Thus, ker (Ind
Γ
Γx
(εx ×w)) is a primitive

ideal of C0(X)×τ Γ. Note that, if a primitive ideal is obtained in this
way, then we say it is induced from a stability group. In fact, by [12,
Theorem 8.21], all primitive ideals of C0(X) ×τ Γ are induced from

stability groups. Moreover, since, for every w ∈ Γ̂x, there is a γ ∈ Γ̂
such that w = γ|Γx , every primitive ideal of C0(X)×τΓ is actually given

by the kernel of an induced irreducible representation IndΓΓx
(εx × γ|Γx)

corresponding to a pair (x, γ) in X × Γ̂. In order to see the description
of the topology of Prim(C0(X)×τ Γ), first note that, if (x, γ) and (y, µ)

belong to X × Γ̂ such that Γ · x = Γ · y (which implies that Γx = Γy)
and γ|Γx = µ|Γx , then by [12, Lemma 8.34],

ker
(
IndΓΓx

(εx × γ|Γx)
)
= ker

(
IndΓΓy

(εy × µ|Γy )
)
.

Thus, define a relation on X × Γ̂ such that (x, γ) ∼ (y, µ) if

Γ · x = Γ · y and γ|Γx = µ|Γx .(2.2)

It may easily be seen that ∼ is an equivalence relation on X × Γ̂.

Now, consider the quotient space X× Γ̂/ ∼ equipped with the quotient
topology. Then we have:
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Theorem 2.2 ([12, Theorem 8.39]). Let (Γ, X) be a second countable
locally compact transformation group with Γ abelian. Then, the map

Φ : X × Γ̂ −→ Prim(C0(X)×τ Γ)

defined by
Φ(x, γ) := ker

(
IndΓΓx

(εx × γ|Γx)
)

is a continuous and open surjection and factors through a homeomor-

phism of X × Γ̂/ ∼ onto Prim(C0(X)×τ Γ).

Remark 2.3. In Theorem 2.2, note that Prim(C0(X)×τ Γ) is then a
second countable space. This is due to the fact that it is mentioned in
[12, Remark 8.40], the quotient map

q : X × Γ̂ −→ X × Γ̂/ ∼

is open. Moreover, X and Γ̂ both are second countable.

Theorem 2.2 can be applied to see that the primitive ideal space of
the rational rotation algebra is homeomorphic to T2. The interested
reader is referred to [12, Example 8.45] for the proof.

2.3. The primitive ideal space of crossed products by free
actions. Let (A,Γ, α) be a classical dynamical system with Γ discrete.

Then, the system gives an action of Γ on the spectrum Â of A by

s · [π] := [π ◦ α−1
s ] for every s ∈ Γ and [π] ∈ Â, see [11, Lemma 7.1]

and [12, Lemma 2.8]. This also induces an action of Γ on PrimA such
that s · P := αs(P ) for each s ∈ Γ and P ∈ PrimA.

Recall that, if π is a (nondegenerate) representation of A on H with
kerπ = J , then Indπ denotes the induced representation π̃ × U of
A×α Γ on ℓ2(Γ, H) associated to the covariant pair (π̃, U) of (A,Γ, α)
defined by

(π̃(a)ξ)(s) = π(α−1
s (a))ξ(s) and (Utξ)(s) = ξ(t−1s)

for every a ∈ A, ξ ∈ ℓ2(Γ,H) and s, t ∈ Γ. Note that, by Ind J , we
mean ker(Indπ).

Now, let (A,Γ, α) be a classical dynamical system in which A is
separable and Γ is an abelian discrete countable group. If Γ acts
on PrimA freely, then each primitive ideal kerπ = P of A induces
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a primitive ideal of A ×α Γ, namely, IndP = ker(Indπ), and the
description of Prim(A×α Γ) is completely available:

Theorem 2.4 ([7, Corollary 10.16]). Suppose in the system (A,Γ, α)
that A is separable and Γ is an amenable discrete countable group. If
Γ acts on PrimA freely, then the map

O(PrimA) −→ Prim(A×α Γ)

O(P ) 7−→ IndP = ker(Indπ)

is a homeomorphism, where π is an irreducible representation of A with
kerπ = P . In particular, A×α Γ is simple if and only if every Γ-orbit
is dense in PrimA.

The above theorem may be applied to see that the irrational rotation
algebras are simple. The interested reader may refer to [7, Example
10.18] or [12, Example 8.46] for more details.

3. The primitive ideal space of A ×piso
α N by automorphic

action. First, recall that, if T is the isometry in B(ℓ2(N)) such that
T (en) = en+1 on the usual orthonormal basis {en}∞n=0 of ℓ2(N), then
we have

K(ℓ2(N)) = span{Tn(1− TT ∗)T ∗
m : n,m ∈ N}.

Now, consider a system (A,α) consisting of a C∗-algebra A and
an automorphism α of A. Let the triples (A ×piso

α N, jA, v) and
(A×αZ, iA, u) be the partial-isometric crossed product and the classical
crossed product of the system, respectively. Here, our goal is to
completely describe the primitive ideal space of A ×piso

α N and its
topology. Observe [4] that the kernel of the natural homomorphism

q : (A×piso
α N, jA, v) −→ (A×α Z, iA, u),

given by q(v∗njA(a)vm) = u∗niA(a)um, is isomorphic to the algebra of
compact operators K(ℓ2(N)) ⊗ A. Therefore, we have a short exact
sequence

(3.1) 0 −→ (K(ℓ2(N))⊗A)
µ−→ A×piso

α N q−→ A×α Z −→ 0,
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where µ(Tn(1 − TT ∗)T ∗
m ⊗ a) = v∗njA(a)(1 − v∗v)vm for all a ∈ A

and n,m ∈ N. Thus, Prim(A ×piso
α N), as a set, is given by the sets

Prim(K(ℓ2(N)) ⊗ A) and Prim
(
A ×α Z). With no conditions on the

system, we do not have much information regarding Prim(A ×α Z)
in general. However, from [4, Proposition 2.5], we do know that
ker q ≃ K(ℓ2(N)) ⊗ A is an essential ideal of A ×piso

α N. There-
fore, Prim(K(ℓ2(N)) ⊗ A), which is homeomorphic to PrimA, sits in
Prim(A ×piso

α N) as an open dense subset. We will identify this open
dense subset, namely, the primitive ideals {IP : P ∈ PrimA} of
Prim(A ×piso

α N), derived from PrimA, shortly. Moreover, see in [4,
Section 5] that A×piso

α N is a full corner of the classical crossed product
(BZ ⊗A)×β⊗α−1 Z, where

BZ := span{1n : n ∈ Z} ⊂ ℓ∞(Z),

and the action β of Z on BZ is given by translation such that βm(1n) =
1n+m for all m,n ∈ Z. Thus, Prim(A ×piso

α N) is homeomorphic to
Prim((BZ⊗A)×β⊗α−1 Z), and hence, it suffices to describe Prim((BZ⊗
A) ×β⊗α−1 Z) and its topology. In order to do this, we consider two
conditions on the system that enable us to apply a theorem of Williams
and a result by Echterhoff. We shall also identify those primitive ideals
of A×piso

α N derived from Prim(A×α Z), which form a closed subset of
Prim(A×piso

α N). However, first, let us identify the primitive ideals IP .

Proposition 3.1. Let π : A → B(H) be a nonzero irreducible rep-
resentation of A with P := kerπ. If the pair (Π, V ) is defined as in
[8, Example 4.6], see Section 2, then the associated representation of
(A×piso

α N, jA, v), denoted by (Π×V )P , is irreducible on ℓ2(N,H), and
does not vanish on ker q ≃ K(ℓ2(N))⊗A.

Proof. In order to see that (Π × V )P is irreducible, we show that
every ξ ∈ ℓ2(N,H)\{0} is a cyclic vector for (Π× V )P , that is,

ℓ2(N,H) = span{(Π× V )P (x)(ξ) : x ∈ (A×piso
α N)}.

We show that

(3.2) H := span{(Π×V )P (v
∗
njA(a)(1−v∗v)vm)(ξ) : a ∈ A,n,m ∈ N}

equals ℓ2(N,H) which is enough. By viewing ℓ2(N, H) as the Hilbert
space ℓ2(N)⊗H, it suffices to see that each en⊗h belongs to H, where
{en}∞n=0 is the usual orthonormal basis of ℓ2(N) and h ∈ H. Since ξ ̸= 0
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in ℓ2(N, H), there is an m ∈ N such that ξ(m) ̸= 0 in H. However,
ξ(m) is a cyclic vector for the representation

π : A −→ B(H)

as π is irreducible. Thus, we have

span{π(a)(ξ(m)) : a ∈ A} = H,

and hence,
span{en ⊗

(
π(a)ξ(m)

)
: n ∈ N, a ∈ A}

is dense in
ℓ2(N)⊗H ≃ ℓ2(N,H).

Therefore, we must only show that H contains each element en ⊗
(π(a)ξ(m)). Straightforward calculation shows

en ⊗
(
π(a)ξ(m)

)
= (V ∗

nΠ(a)(1− V ∗V )Vm)(ξ)

= (Π× V )P (v
∗
njA(a)(1− v∗v)vm)(ξ),

and therefore, en ⊗ (π(a)ξ(m)) ∈ H for every a ∈ A and n ∈ N. Thus,
we have H = ℓ2(N,H).

In order to show that (Π × V )P does not vanish on K(ℓ2(N)) ⊗ A,
first note that, since π is nonzero, π(a)h ̸= 0 for some a ∈ A, h ∈ H.
Now, if we take

(1− TT ∗)⊗ a ∈ K(ℓ2(N))⊗A,

then

(Π× V )P (µ((1− TT ∗)⊗ a)) = (Π× V )P (j(a)(1− v∗v)) ̸= 0.

This is due to the fact that, for (e0 ⊗ h) ∈ ℓ2(N,H), we have

(Π×V )P (jA(a)(1−v∗v))(e0⊗h) = Π(a)(1−V ∗V )(e0⊗h) = e0⊗π(a)h,

which is not zero in ℓ2(N,H) as π(a)h ̸= 0. �

Remark 3.2. The primitive ideals IP are actually kernels of the
irreducible representations (Π×V )P which form the open dense subset

U := {I ∈ Prim(A×piso
α N) : K(ℓ2(N))⊗A ≃ ker q ̸⊂ I}

of Prim
(
A ×piso

α N
)

homeomorphic to Prim(K(ℓ2(N)) ⊗ A). Now,

Prim(K(ℓ2(N))⊗A) itself is homeomorphic to PrimA via the (Rieffel)
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homeomorphism
P 7−→ K(ℓ2(N))⊗ P.

However, K(ℓ2(N)) ⊗ P is the kernel of the irreducible representation
(id⊗π) of K(ℓ2(N)) ⊗ A, where (id⊗π) indeed equals the restriction
(Π× V )P |K(ℓ2(N))⊗A. Therefore, we have

IP ∩ (K(ℓ2(N))⊗A) = ker((Π× V )P |K(ℓ2(N))⊗A)

= ker(id⊗π) = K(ℓ2(N))⊗ P.

Consequently, the map P 7→ IP is a homeomorphism of PrimA onto
the open dense subset U of Prim(A×piso

α N).

Now, we want to describe the topology of

(3.3) Prim((BZ ⊗A)×β⊗α−1 Z) ≃ Prim(A×piso
α N)

and identify the primitive ideals of A×piso
α N derived from A×αZ under

the following two conditions:

(1) when A is separable and abelian, by applying a theorem of
Williams, namely, Theorem 2.2;

(2) when A is separable and Z acts on PrimA freely, by applying
Theorem 2.4.

3.1. The topology of Prim((BZ ⊗ A) ×β⊗α−1 Z) when A is sepa-
rable and abelian. Suppose that A is separable and abelian. Then,
(BZ ⊗ A) ×β⊗α−1 Z is isomorphic to the crossed product C0(Ω(BZ ⊗
A))×τ Z associated to the second countable locally compact transfor-
mation group (Z,Ω(BZ⊗A)). Therefore, by Theorem 2.2, Prim((BZ⊗
A) ×β⊗α−1 Z) is homeomorphic to Ω(BZ ⊗ A) × T/ ∼. However, we
want to describe Ω(BZ ⊗ A) × T/ ∼ precisely. In order to do so, we
need to analyze Ω(BZ ⊗ A), and, since Ω(BZ ⊗ A) ≃ Ω(BZ) × Ω(A),
see [11, Theorem B.37] or [11, Theorem B.45], we must first compute
Ω(BZ).

Lemma 3.3. Let
{−∞} ∪ Z ∪ {∞}

be the two-point compactification of Z. Then, Ω(BZ) is homeomorphic
to the open dense subset Z ∪ {∞}.
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Proof. First, note that BZ exactly consists of those functions

f : Z −→ C

such that limn→−∞ f(n) = 0 and limn→∞ f(n) exists. Thus, the
complex homomorphisms (irreducible representations) of BZ are given
by the evaluation maps {εn : n ∈ Z}, and the map

ε∞ : BZ → C

defined by ε∞(f) := limn→∞ f(n) for all f ∈ BZ. Hence, we have
Ω(BZ) = {εn : n ∈ Z} ∪ {ε∞}. Note that the kernel of ε∞ is the ideal

C0(Z) = span{1n − 1m : n < m ∈ Z}

of BZ. Now, let {−∞}∪Z∪ {∞} be the two-point compactification of
Z, which is homeomorphic to the subspace

X := {−1} ∪ {−1 + 1/(1− n) : n ∈ Z, n < 0}
∪ {1− 1/(1 + n) : n ∈ Z, n ≥ 0} ∪ {1}

of R. Then, the map

f ∈ BZ 7−→ f̃ ∈ C({−∞} ∪ Z ∪ {∞}),

where

f̃(r) :=


limn→∞ f(n) if r = ∞,

f(r) if r ∈ Z, and
0 if r = −∞,

embeds BZ in C({−∞} ∪ Z ∪ {∞}) as the maximal ideal

I := {f̃ ∈ C({−∞} ∪ Z ∪ {∞}) : f̃(−∞) = 0}.

Thus, it follows that Ω(BZ) is homeomorphic to Î, and Î itself is
homeomorphic to the open subset

{π ∈ C({−∞} ∪ Z ∪ {∞})∧ : π|I ̸= 0} = {ε̃r : r ∈ (Z ∪ {∞})}

of C({−∞} ∪ Z ∪ {∞})∧ in which each ε̃r is an evaluation map.
Thus, by the homeomorphism between C({−∞} ∪ Z ∪ {∞})∧ and
{−∞}∪Z∪{∞}, the open subset {ε̃r : r ∈ (Z∪{∞})} is homeomorphic
to the open (dense) subset Z ∪ {∞} of {−∞} ∪ Z ∪ {∞} equipped
with the relative topology. Therefore, Ω(BZ) is in fact homeomorphic
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to Z ∪ {∞}. It can easily be seen that Z ∪ {∞} is indeed a second
countable locally compact Hausdorff space with

B := {{n} : n ∈ Z} ∪ {Jn : n ∈ Z}

as a countable basis for its topology, where Jn := {n, n+1, n+2, . . .}∪
{∞} for every n ∈ Z. �

Remark 3.4. Before continuing, it needs to be mentioned that, if
A is a separable C∗-algebra (not necessarily abelian), then, by [11,
Theorem B.45] and using Lemma 3.3, (C0(Z) ⊗ A)̂ and (BZ ⊗ A)̂

are homeomorphic to Z × Â and (Z ∪ {∞}) × Â, respectively. Also,
Prim(C0(Z)⊗A) and Prim(BZ ⊗A) are homeomorphic to Z×PrimA
and (Z∪{∞})×PrimA, respectively (note that these homeomorphisms
are Z-equivariant for the action of Z). Since C0(Z)⊗A is an (essential)
ideal of BZ ⊗A, we have the following commutative diagram

Z× Â (C0(Z)⊗A)̂ Prim(C0(Z)⊗A) Z× PrimA

(Z ∪ {∞})× Â (BZ ⊗A)̂ Prim(BZ ⊗A) (Z ∪ {∞})× PrimA,

?
id

-

?
ι

-Θ

?

-

?
ι̃

-

?
id

- -Θ̃ -

where Θ and Θ̃ are the canonical continuous, open surjections, and ι
and ι̃ are the canonical embedding maps. Now, to see in what manner

Z acts on (Z ∪ {∞}) × Â (and accordingly on (Z ∪ {∞}) × PrimA),
note that, since the crossed products (C0(Z) ⊗ A) ×β⊗α−1 Z and
(C0(Z)⊗A)×β⊗id Z are isomorphic, see [12, Lemma 7.4], we have

n · (m, [π]) = (m+ n, [π])

and
n · (∞, [π]) = (n+∞, n · [π]) = (∞, [π ◦ αn])

for all n,m ∈ Z and [π] ∈ Â. Accordingly,

n · (m,P ) = (m+ n, P ) and n · (∞, P ) = (∞, α−1
n (P ))

for all n,m ∈ Z and P ∈ PrimA.
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Thus, when A is separable and abelian, using Lemma 3.3,

Ω(BZ ⊗A) = (Z ∪ {∞})× Ω(A).

Now, in order to describe

((Z ∪ {∞})× Ω(A))× T/ ∼,

note that, by Remark 3.4, Z acts on (Z ∪ {∞})× Ω(A) as follows:

n · (m,ϕ) = (m+ n, ϕ) and n · (∞, ϕ) = (∞, ϕ ◦ αn)

for all n,m ∈ Z and ϕ ∈ Ω(A). Therefore, the stability group of each
(m,ϕ) is {0}, and the stability group of each (∞, ϕ) equals the stability
group Zϕ of ϕ. Accordingly, the Z-orbit of each (m,ϕ) is Z× {ϕ}, and
the Z-orbit of (∞, ϕ) is {∞}×Z·ϕ, where Z·ϕ is the Z-orbit of ϕ. Thus,
for the pairs (or triples) ((m,ϕ), z) and ((n, ψ), w) of (Z × Ω(A)) × T,
we have

((m,ϕ), z) ∼ ((n, ψ), w) ⇐⇒ Z · (m,ϕ) = Z · (n, ψ)

⇐⇒ Z× {ϕ} = Z× {ψ}

⇐⇒ Z× {ϕ} = Z× {ψ}

⇐⇒ (Z ∪ {∞})× {ϕ} = (Z ∪ {∞})× {ψ}
⇐⇒ (Z ∪ {∞})× {ϕ} = (Z ∪ {∞})× {ψ}.

The last equivalence follows from the fact that Ω(A) is Hausdorff.
Therefore, ((m,ϕ), z) and ((n, ψ), w) are in the same equivalence class
in ((Z∪ {∞})×Ω(A))×T/ ∼ if and only if ϕ = ψ, while ((m,ϕ), z) �
((∞, ψ), w) for every ψ ∈ Ω(A) and w ∈ T, since

Z · (∞, ψ) = {∞} × Z · ψ = {∞} × Z · ψ = {∞} × Z · ψ.

Thus, if ϕ ∈ Ω(A), then all pairs ((m,ϕ), z) for every m ∈ Z and
z ∈ T are in the same equivalence class, which can be parameterized by
ϕ ∈ Ω(A). On the other hand, for the pairs ((∞, ϕ), z) and ((∞, ψ), w),
we have

((∞, ϕ), z) ∼ ((∞, ψ), w) ⇐⇒ Z · (∞, ϕ) = Z · (∞, ψ)

and

γz|Zϕ
= γw|Zϕ

⇐⇒ {∞} × Z · ϕ = {∞} × Z · ψ



THE PARTIAL-ISOMETRIC CROSSED PRODUCT 2713

and

γz|Zϕ
= γw|Zϕ

.

Therefore,

((∞, ϕ), z) ∼ ((∞, ψ), w) ⇐⇒ Z · ϕ = Z · ψ and γz|Zϕ
= γw|Zϕ

,

which means that if and only if the pairs (ϕ, z) and (ψ,w) are in
the same equivalence class in the quotient space is Ω(A) × T/ ∼
homeomorphic to Prim

(
A×α Z). Therefore, ((∞, ϕ), z) ∼ ((∞, ψ), w)

in ((Z ∪ {∞}) × Ω(A)) × T/ ∼ precisely when (ϕ, z) ∼ (ψ,w) in
Ω(A)× T/ ∼, and hence, the class of each ((∞, ϕ), z) in ((Z ∪ {∞})×
Ω(A))×T/ ∼ can be parameterized by the class of (ϕ, z) in Ω(A)×T/ ∼.
Thus, we can identify ((Z∪{∞})×Ω(A))×T/ ∼ with the disjoint union

Ω(A) ⊔ (Ω(A)× T/ ∼).

Now, we have:

Theorem 3.5. Let (A,α) be a system consisting of a separable abelian
C∗-algebra A and an automorphism α of A. Then, Prim(A×piso

α N) is
homeomorphic to Ω(A) ⊔ (Ω(A) × T/ ∼), equipped with the (quotient)
topology in which the open sets are of the form

{U ⊂ Ω(A) : U is open in Ω(A)}
∪ {U ∪W : U is a nonempty open subset of Ω(A),

and W is open in (Ω(A)× T/ ∼)}.

Proof. Since the quotient map

q : ((Z ∪ {∞})× Ω(A))× T −→ Ω(A) ⊔ (Ω(A)× T/ ∼)

is open, as well as q̃ : Ω(A)×T → Ω(A)×T/ ∼, for every n ∈ Z, every
open subset O of Ω(A), and every open subset V of T, the forward
image of open subsets {n}×O×V and Jn×O×V by q, forms a basis
for the topology of Ω(A) ⊔ (Ω(A)× T/ ∼), which is

{O ⊂ Ω(A) : O is open in Ω(A)}
∪ {O ∪ q̃(O × V ) : O is a nonempty open subset of Ω(A),

and V is open in T}.
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As the open subsets q̃(O×V ) also form a basis for the quotient topology
of Ω(A)× T/ ∼, we can see that each open subset of

Ω(A) ⊔ (Ω(A)× T/ ∼)

is either an open subset U of Ω(A) or of the form U ∪ W for some
nonempty open subset U in Ω(A) and some open subset W in Ω(A)×
T/ ∼. �

Remark 3.6. Under the condition of Theorem 3.5, the primitive ideals
of Prim(A×piso

α N) derived from Prim(A×α Z), which form the closed
subset

F := {J ∈ Prim(A×piso
α N) : K(ℓ2(N))⊗A ≃ ker q ⊂ J},

are the kernels of the irreducible representations (IndZZϕ
(ϕ× γz|Zϕ

)) ◦ q
corresponding to the equivalence classes of the pairs (ϕ, z) in Ω(A) ×
T/ ∼ (again, by using Theorem 2.2). Therefore, if J[(ϕ,z)] denotes

ker(IndZZϕ
(ϕ× γz|Zϕ

) ◦ q), then

F = {J[(ϕ,z)] : ϕ ∈ Ω(A), z ∈ T},

and the map
[(ϕ, z)] 7−→ J[(ϕ,z)]

is a homeomorphism of Prim(A×α Z) ≃ Ω(A)× T/ ∼ onto F .

Proposition 3.7. Let (A,α) be a system consisting of a separable
abelian C∗-algebra A and an automorphism α of A. Then, A ×piso

α N
is GCR if and only if Z\Ω(A) is a T0 space.

Proof. From [9, Theorem 5.6.2], A×piso
α N is GCR if and only if

K(ℓ2(N))⊗A ≃ ker q

and
A×α Z ≃ C0(Ω(A))×τ Z

are GCR. However, since A is abelian, K(ℓ2(N)) ⊗ A is automatically
CCR, and hence, it is GCR. Therefore A×piso

α N is GCR precisely when
A×α Z is GCR. From [12, Theorem 8.43], A×α Z is GCR if and only
if Z\Ω(A) is T0. �
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Proposition 3.8. Let (A,α) be a system consisting of a separable
abelian C∗-algebra A and an automorphism α of A. Then, A ×piso

α N
is not CCR.

Proof. Note that A×piso
α N is CCR if and only if

(BZ ⊗A)×β⊗α−1 Z ≃ C0(Ω(BZ ⊗A))×τ Z

is CCR since they are Morita equivalent (see [12, Proposition I.43]).
Since, for the Z-orbit of a pair (m,ϕ), we have

Z · (m,ϕ) = Z× {ϕ} = Z× {ϕ} = (Z ∪ {∞})× {ϕ},

it follows that the Z-orbit of (m,ϕ) is not closed in Ω(BZ ⊗A) = (Z ∪
{∞})×Ω(A). Therefore, by [12, Theorem 8.44], C0(Ω(BZ ⊗A))×τ Z
is not CCR, and hence, A×piso

α N is not CCR. �

Example 3.9 (Pimsner-Voiculescu Toeplitz algebra). Suppose that
T (A,α) is the Pimsner-Voiculescu Toeplitz algebra associated to the
system (A,α) (see [10]). It was shown [4, Section 5] that T (A,α) is

isomorphic to the partial-isometric crossed product A×piso
α−1N associated

to the system (A,α−1). Therefore, when A is abelian and separable,
the description of Prim(T (A,α)) completely follows from Theorem 3.5.
In particular, for the trivial system (C, id), T (C, id) is the Toeplitz

algebra T (Z) of integers isomorphic to C ×piso
id N. Thus, again from

Theorem 3.5, Prim(T (Z)) corresponds to the disjoint union {0} ⊔ T
in which every (nonempty) open set is of the form {0} ∪W for some
open subset W of T. This description is known to coincide with the
description of Prim(T (Z)) obtained from the well-known short exact
sequence

0 −→ K(ℓ2(N)) −→ T (Z) −→ C(T) −→ 0.

Example 3.10. Consider the system (C(T), α) in which the action α
is given by rotation through the angle 2πθ with θ rational. By using the
discussion in [12, Example 8.46], Prim(C(T)×piso

α N) can be identified
with the disjoint union

T ⊔ T2,

in which, by Theorem 3.5, each open set is given by
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{U ⊂ T : U is open in T}
∪ {U ∪W : U is a nonempty open subset of T,

and W is open in T2}.

Moreover, the orbit space Z\T is homeomorphic to T, which is obviously
T0 (in fact, Hausdorff). Thus, it follows from Proposition 3.7 that
C(T)×piso

α N is GCR.

3.2. The topology of Prim((BZ⊗A)×β⊗α−1 Z) when A is separa-
ble and Z acts on PrimA freely. Consider a system (A,α) in which
A is separable and Z acts freely on PrimA. It follows that Z acts freely
on Prim(BZ ⊗ A), too. This is due to the facts that, firstly, by [11,
Theorem B.45], Prim(BZ ⊗A) is homeomorphic to PrimBZ ×PrimA,
and hence, it is homeomorphic to (Z ∪ {∞}) × PrimA. Then, Z acts
on

(Z ∪ {∞})× PrimA

such that

n · (m,P ) = (m+ n, P ) and n · (∞, P ) = (∞, α−1
n (P ))

for all n,m ∈ Z and P ∈ PrimA. Therefore, the stability group of each
(∞, P ) equals the stability group ZP of P , which is {0} as Z acts freely
on PrimA, and the stability group of each (m,P ) is clearly {0}. Thus,
in the separable system (BZ⊗A,Z, β⊗α−1) (with Z abelian), Z freely
acts on

Prim(BZ ⊗A) ≃ (Z ∪ {∞})× PrimA.

Therefore, by Theorem 2.4, Prim((BZ⊗A)×β⊗α−1 Z) is homeomorphic
to the quasi-orbit space

O(Prim(BZ ⊗A)) = O((Z ∪ {∞})× PrimA),

which describes Prim(A×piso
α N) as well. We want to precisely describe

the quotient topology of O((Z ∪ {∞}) × PrimA) and to identify the
primitive ideals of A×piso

α N derived from Prim(A×α Z). We have

O(m,P ) = O(n,Q) ⇐⇒ Z · (m,P ) = Z · (n,Q)

⇐⇒ Z× {P} = Z× {Q}

⇐⇒ Z× {P} = Z× {Q}
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⇐⇒ (Z ∪ {∞})× {P}

= (Z ∪ {∞})× {Q}.

Therefore, O(m,P ) = O(n,Q) if and only if {P} = {Q}, and this
occurs precisely when P = Q by the definition of the hull-kernel
(Jacobson) topology on PrimA (which is why the primitive ideal space
of any C∗-algebra is always T0 [9, Theorem 5.4.7]). Hence, all pairs
(m,P ) for every m ∈ Z have the same quasi-orbit which can be
parameterized by P ∈ PrimA, and, since

Z · (∞, Q) = {∞} × Z ·Q = {∞} × Z ·Q = {∞} × Z ·Q,

O(m,P ) ̸= O(∞, Q) for all m ∈ Z and P,Q ∈ PrimA. Moreover,

O(∞, P ) = O(∞, Q) ⇐⇒ Z · (∞, P ) = Z · (∞, Q)

⇐⇒ {∞} × Z · P = {∞} × Z ·Q.

Thus, O(∞, P ) = O(∞, Q) if and only if Z · P = Z ·Q, which means if
and only if P and Q have the same quasi-orbit (O(P ) = O(Q)) in

O(PrimA) ≃ Prim(A×α Z).

Hence, each quasi-orbit O(∞, P ) can be parameterized by the quasi-
orbit O(P ) in O(PrimA), and we can therefore identify O((Z∪{∞})×
PrimA) by the disjoint union

PrimA ⊔ O(PrimA).

Then, we have:

Theorem 3.11. Let (A,α) be a system consisting of a separable C∗-
algebra A and an automorphism α of A. Suppose that Z freely acts
on PrimA. Then, Prim(A ×piso

α N) is homeomorphic to PrimA ⊔
O(PrimA), equipped with the (quotient) topology in which the open
sets are of the form

{U ⊂ PrimA : U is open in PrimA}
∪ {U ∪W : U is a nonempty open subset of PrimA,

and W is open in O(PrimA)}.
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Proof. Note that since, from [12, Lemma 6.12], the quasi-orbit map

q : Prim(BZ ⊗A) −→ O(Prim(BZ ⊗A))

is continuous and open, the proof follows from a similar argument to
the proof of Theorem 3.5. Thus, we skip it here. �

Remark 3.12. Under the condition of Theorem 3.11, we want to
identify the primitive ideals of Prim(A×piso

α N) derived from Prim(A×α

Z), which form the closed subset

F := {J ∈ Prim(A×piso
α N) : K(ℓ2(N))⊗A ≃ ker q ⊂ J }

homeomorphic to Prim(A×αZ) ≃ O(PrimA) (see Theorem 2.4). These
ideals are actually the kernels of the irreducible representations

(Indπ) ◦ q = (π̃ × U) ◦ q

of A ×piso
α N, where π is an irreducible representation of A with

kerπ = P . However, since the pair (π̃, U) is clearly a covariant
partial-isometric representation of (A,α), we can see that, in fact,
(Indπ)◦ q = π̃×pisoU , where π̃×pisoU is the associated representation
of A ×piso

α N corresponding to the pair (π̃, U). Thus, each element of
F is of the form ker(π̃×piso U) corresponding to the quasi-orbit O(P ),
and therefore, we denote ker(π̃ ×piso U) by JO(P ). Thus, the map

O(P ) 7−→ JO(P )

is a homeomorphism of O(PrimA) onto the closed subspace F of
Prim(A×piso

α N).

For the next remark, we need to recall that the primitive ideal space
of any C∗-algebra A is locally compact [6, Corollary 3.3.8]. A locally
compact space X (not necessarily Hausdorff) is called almost Hausdorff
if each locally compact subspace U contains a relatively open nonempty
Hausdorff subset (see [12, Definition 6.1.]). If a C∗-algebra is GCR,
then it is almost Hausdorff (see the discussion in [12, pages 171, 172]).
Finally if A is separable, then, by applying [11, Theorem A.38 and
Proposition A.46], it follows that PrimA is second countable.

Remark 3.13. It follows from [13] that, if (A,Z, α) is a separable

system in which Z acts on Â freely, then A×α Z is GCR if and only if
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A is GCR and every Z-orbit in Â is discrete. However, every Z-orbit
in Â is discrete if and only if, for each [π] ∈ Â, the map Z → Z · [π]
defined by

n 7−→ n · [π] = [π ◦ α−1
n ]

is a homeomorphism, and this statement itself, by [12, Theorem 6.2
(Mackey-Glimm Dichotomy)], is equivalent to stating that the orbit

space Z\Â is T0. Therefore, we can rephrase the statement of [13] to

state that, if (A,Z, α) is a separable system in which Z acts on Â freely,

then A×α Z is GCR if and only if A is GCR and the orbit space Z\Â
is T0.

Proposition 3.14. Let (A,α) be a system consisting of a separable
C∗-algebra A and an automorphism α of A. Suppose that Z freely acts

on Â. Then, A×piso
α N is GCR if and only if A is GCR and the orbit

space Z\Â is T0.

Proof. The proof follows from a similar argument to the proof of
Proposition 3.7 and Remark 3.13. �

Example 3.15. Consider the system (C(T), α) in which the action α
is given by rotation through the angle 2πθ with θ irrational. Then, Z
freely acts on Prim(C(T)) = C(T)̂ = T (see [7, Example 10.18] or [12,
Example 8.45]). Therefore, from Theorem 3.11, Prim(C(T) ×piso

α N)
can be identified with the disjoint union T ⊔ O(T). However, the
quasi-orbit space O(T) contains only one point as each Z-orbit is dense
in T (see [12, Lemma 3.29]). We parameterize this one point by 0
(note that O(T) is homeomorphic to the primitive ideal space of the
irrational rotation algebra Aθ := C(T) ×α Z, which is simple). Thus,
Prim(C(T)×piso

α N) is actually identified with

T ⊔ {0},

where each open set is given by

{U ⊂ T : U is open in T}∪{U∪{0} : U is a nonempty open subset of T}.

Here, we would like to mention that 0 in T ⊔ {0} corresponds to the
primitive ideal K(ℓ2(N)) ⊗ C(T) of C(T) ×piso

α N. Finally, although
C(T) is GCR (in fact CCR), the orbit space Z\T is not T0 as each
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Z-orbit is dense in T. Therefore, it follows from Proposition 3.14 that
C(T)×piso

α N is not GCR.

Remark 3.16. Recall that, since the Pimsner-Voiculescu Toeplitz
algebra T (A,α) is isomorphic to A ×piso

α−1 N (see Example 3.9), if A
is separable and Z freely acts on PrimA, then the description of
Prim(T (A,α)) is obtained completely from Theorem 3.11.

4. Primitivity and simplicity of A ×piso
α N. In this section, we

discuss the primitivity and simplicity of A ×piso
α N. Recall that a

C∗-algebra is called primitive if it has a faithful nonzero irreducible
representation, and it is called simple if it has no nontrivial ideal.

Theorem 4.1. Let (A,α) be a system consisting of a C∗-algebra A
and an automorphism α of A. Then, A×piso

α N is primitive if and only
A is primitive.

Proof. If A×piso
α N is primitive, it has a faithful nonzero irreducible

representation
ρ : A×piso

α N −→ B(H).

Then, since the restriction of ρ to the ideal K(ℓ2(N)) ⊗ A ≃ ker q is
nonzero, it gives an irreducible representation of K(ℓ2(N)) ⊗ A which
is clearly faithful. Thus, it follows that K(ℓ2(N))⊗A is primitive, and
therefore, A must be primitive as well.

Conversely, if A is primitive, then it has a faithful nonzero irreducible
representation π on some Hilbert space H (P = kerπ = {0}). We show
that the associated irreducible representation (Π×V )P of A×piso

α N on
ℓ2(N,H) is faithful. From [8, Theorem 4.8], it is sufficient to see that,
if Π(a)(1− V ∗V ) = 0, then a = 0. If Π(a)(1− V ∗V ) = 0, then

Π(a)(1− V ∗V )(e0 ⊗ h) = (e0 ⊗ π(a)h) = 0 for all h ∈ H.

It follows that π(a)h = 0 for all h ∈ H, and therefore, π(a) = 0. Since
π is faithful, we must have a = 0. This completes the proof. �

Remark 4.2. Note that Theorem 4.1 simply means that, in the
homeomorphism P 7→ IP mentioned in Remark 3.2, P is the zero
ideal if and only if IP is the zero ideal. This is due to the fact that, if



THE PARTIAL-ISOMETRIC CROSSED PRODUCT 2721

A×piso
α N is primitive, then its zero ideal as one of its primitive ideals

is of the form IP (derived from PrimA), as K(ℓ2(N))⊗A ̸= 0.

Finally it is easy to see that A×piso
α N is not simple. This is due to

the fact that, as we see, it contains K(ℓ2(N)) ⊗ A as a nonzero ideal.
Moreover, if

K(ℓ2(N))⊗A = A×piso
α N,

then
A×α Z ≃ (A×piso

α N)/(K(ℓ2(N))⊗A)

must be the zero algebra. Thus, it follows that A = 0, which is
a contradiction as we have A ̸= 0. Therefore, A ×piso

α N contains
K(ℓ2(N)) ⊗ A as a proper nonzero ideal, and hence, we have proved
the following:

Theorem 4.3. Let (A,α) be a system consisting of a C∗-algebra A
and an automorphism α of A. Then A×piso

α N is not simple.
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