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MULTIGRADED HILBERT SCHEMES
PARAMETRIZING IDEALS
IN THE WEYL ALGEBRA

JEN-CHIEH HSIAO

ABSTRACT. Results of Haiman and Sturmfels [2] on
multigraded Hilbert schemes are used to establish a quasi-
projective scheme which parametrizes all left homogeneous
ideals in the Weyl algebra having a fixed Hilbert function
with respect to a given grading by an abelian group.

1. Introduction. Let S = k[x1, . . . , xn] be the polynomial algebra
over a commutative ring k. The monomials xu in S are identified with
their exponents u ∈ Nn. A grading of S by an abelian group A is a
semigroup homomorphism

deg : Nn −→ A.

We may assume that A is generated by deg(xi) for i = 1, . . . , n. For
a ∈ A, let Sa be the k-span of the monomial xu with deg(u) = a. We
have the decomposition

S =
⊕
a∈A

Sa

which satisfies Sa · Sb ⊆ Sa+b. An admissible ideal in S is a homogen-
eous ideal I with the property that (S/I)a = Sa/Ia is a locally free
k-module of finite rank (constant on Spec k) for all a ∈ A. The Hilbert
function of an admissible ideal I is a map

hI : A −→ N

defined by hI(a) := rankk(Sa/Ia).
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By fixing any function

h : A −→ N,

Haiman and Sturmfels constructed [2] a scheme Hh
S over k (called

the multigraded Hilbert scheme) which parametrizes all admissible
ideals I in S with Hilbert function hI = h. As discussed in [2],
their results recover many special cases, including Hilbert schemes of
points in affine space, toric Hilbert schemes, Hilbert schemes of abelian
groups orbits and Grothendieck Hilbert schemes. It is also mentioned
in [2, subsection 6.2] that their results can be applied to the universal
enveloping algebra of an A-graded Lie algebra. The purpose of this
note is to verify this claim for the special case of the Weyl algebra
W = k⟨x1, . . . , xn, ∂1, . . . , ∂n⟩.

In order to have a well-defined degree function on the set

B = {xα∂β | α, β ∈ Nn}

of all monomials in W , we assume that our ground ring k is an integral
domain of characteristic 0. By Proposition 2.1 of [1, Chapter 1] (the
proof works for any integral domain k), the set B forms a k-basis for W .
In general, this does not hold in the non-domain case. For example, if
k = Z[t]/⟨2t⟩, then t∂2 ∈ k⟨x, ∂⟩ acts as the zero operator on k[x]. On
the other hand, in view of the relations ∂ixi − xi∂i = 1 in W , it may
be quickly noticed that we must have deg(xi) = − deg(∂i). Therefore,
any A-grading

deg : Nn −→ A

on S extends to an A-grading deg : B → A on W by deg(xα∂β) =
deg(α)− deg(β). We have the decomposition

W =
⊕
a∈A

Wa

satisfying Wa ·Wb ⊆ Wa+b, where Wa is the k-span of the monomials
in B with degree a.

Similarly to the case of polynomial algebras, we call a homogeneous
left ideal I of W admissible if (W/I)a = Wa/Ia is a locally free k-
module of finite rank (constant on Spec k) for all a ∈ A. Note that the
Hilbert function hI : A → N of an admissible ideal I in W defined by
hI(a) = rankk(Wa/Ia) cannot have finite support. This follows from
the fact that there is no left ideal of W with finite co-rank over k.
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Indeed, if rank(W/I) is finite, then the two k-linear maps ϕx and ϕ∂ on
W/I induced by multiplications of x and ∂, respectively, would satisfy
the equality ϕ∂ϕx − ϕxϕ∂ = idW/I , which is not possible by comparing
the traces of the linear maps from both sides.

Our goal is to prove the following analog of [2, Theorem 1.1].

Theorem 1.1. Given a Hilbert function h : A → N, there exists a
quasi-projective scheme over k that represents the Hilbert functor

Hh
W : k -Alg −→ Set

where, for a k-algebra R, the set Hh
W (R) consists of homogeneous ideals

I ⊆ R⊗k W such that
(R⊗k Wa)/Ia

is a locally free R-module of rankh(a) for every a ∈ A.

In Section 4, we will recall the techniques from [2] that are needed
in the proof of Theorem 1.1. Roughly speaking, we first show that, for
any finite set of degrees D, the Hilbert functor Hh

WD
is represented by a

quasi-projective scheme that is a closed subscheme of a certain relative
Grassmann scheme. Here, the k-module

WD =
⊕
a∈D

Wa,

and, by abusing notation, the restriction of the Hilbert function h :
A → N to D is also denoted by h. Then, we specify a special finite
set D such that Hh

W is a subfunctor of Hh
WD

represented by a closed

subscheme of Hh
WD

.

Although the strategy of proving Theorem 1.1 is very similar to
the polynomial algebra case, there are still several issues that require
some modifications. For example, the key feature that makes these
mechanisms work for the multigraded Hilbert scheme Hh

S is the nice
behaviors of monomial ideals in S, e.g., the fact that antichains of
monomial ideals in S are finite [3] is essential in the construction of
Hh

S . In Section 2, we will see that monomial ideals inW do not have the
expected behaviors in general. In particular, the naive generalization
of Gröbner basis theory to Weyl algebra does not work very well. For
example, the ideal ⟨∂2, x∂− 1⟩ and its naive initial ideal ⟨∂2, x∂⟩ = ⟨∂⟩
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in W = k⟨x, ∂⟩ do not have the same Hilbert function. In order to
get around this, we consider the initial ideal of a left ideal in W as
a monomial ideal in the associated graded algebra grW (which is a
polynomial algebra) and utilize the Gröbner basis theory for the Weyl
algebra developed in [4]. Basic facts about the Gröbner basis theory
for W will be reviewed in Section 3. Finally, the proof of Theorem 1.1
will be elaborated in Section 5.

The same results of this paper applied to right ideals may be achieved
similarly.

2. Monomial ideals in the Weyl algebra. Let k be an integral
domain of characteristic 0, and let W = k⟨x, ∂⟩ = k⟨x1, . . . , xn, ∂1, . . . ,
∂n⟩ be the nth Weyl algebra. Many classical facts regarding the Weyl
algebra are proved under the assumption that k is a field, see e.g., [1].
This has an advantage in that W is left and right Noetherian. For our
purposes, we will not make this assumption. Many classical properties
of the Weyl algebra extend to this more general setting. For example,
by [1, Chapter 1, Proposition 2.1] (the proof of which works for integral
domain k) the set

B = {xα∂β | α, β ∈ Nn}

forms a k-basis for W , where xα = xα1
1 · · ·xαn

n and ∂β = ∂β1

1 · · · ∂βn
n .

The unique expression of an element δ of W in terms of this k-basis B is
called the canonical form of δ. In this paper, elements in B are the only
monomials of the Weyl algebra W , and a product of monomials in W
may not be a monomial. Also, the total degree of the monomial xα∂β

is |α| + |β|, and the total degree of an element in W is defined as the
total degree of its leading monomials. The total degrees of elements
of W induce the Bernstein filtration on W , whose associated graded
ring grW = k[x, ξ] = k[x1, . . . , xn, ξ1, . . . , ξn] is the polynomial algebra
of 2n variables over k. Moreover, by considering the isomorphism of
free k-modules

Ψ : k[x, ξ] −→ W = k⟨x, ∂⟩

that sends xαξβ to xα∂β , we have the following Leibniz formula which
is helpful for the multiplication of elements in W . Note that, in the
formula of Proposition 2.1, the denominator k1! · · · kn! is used only to
obtain a nice expression. We will never need to find the inverse of
elements in the domain k.



MULTIGRADED HILBERT SCHEMES 2679

Proposition 2.1. [4, Theorem 1.1.1]. For any two polynomials f
and g in k[x, ξ], we have

Ψ(f) ·Ψ(g) =
∑

k1,...,kn≥0

1

k1! · · · kn!
Ψ

(
∂kf

∂ξk
· ∂

kg

∂xk

)
.

In particular, we have a convenient formula for multiplying two
monomials.

Corollary 2.2. Let xα∂β , xα′
∂β′

be monomials in W . We have

(xα∂β) · (xα′
∂β′

) =
∑

k1,...,kn≥0

( n∏
i=1

ki!

(
βi

ki

)(
α′
i

ki

)
xαi+α′

i−ki∂βi+β′
i−ki

)
.

A left ideal in W is called a left monomial ideal if it is generated
by monomials. Unlike the monomial ideals in a polynomial algebra,
it may occur that an element in a left monomial ideal I is a sum of
monomials which are not in I. For example, in the first Weyl algebra
W = k⟨x, ∂⟩, the element ∂x = x∂+1 is in the principal ideal I = Wx
generated by x, but the identity 1 (hence, x∂) is not in I by considering
the total degrees of elements in W . Moreover, there exists an infinite
antichain of monomial ideals in W , see Example 2.6. Thus, the direct
generalization of the main theorem in [3] does not hold for the Weyl
algebra. Nonetheless, we still have the following analog of Dickson’s
lemma for monomial ideals in polynomial algebras.

Proposition 2.3. Every left monomial ideal of W is generated by
finitely many monomials.

Proof. Let I be a left monomial ideal of W . By passing to the
associated graded algebra with respect to the Bernstein filtration, it
may be observed that the ideal gr I is a monomial ideal of grW . By
Dickson’s lemma, gr I is finitely generated by monomials of degrees
≤ m for some m. Standard arguments regarding filtered algebras, see,
for example, the proof of [1, Theorem 8.2.3], show that I is generated
by elements with total degree ≤ m, say f1, . . . , ft. We only need finitely
many monomials in I to generate f1, . . . , ft; thus, I is, in fact, generated
by finitely many monomials. �
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Example 2.4. Every left monomial ideal in the first Weyl algebra
W = k⟨x, ∂⟩ is principally generated by one monomial. In order to see
this, suppose that I is a left monomial ideal of W and assume that
xα∂β ∈ I. Observe that, by Corollary 2.2, we have

(i) (x∂)(xα∂β) = xα+1∂β+1+αxα∂β , so xα+1∂β+1 ∈ I, and hence,
xα+s∂β+t ∈ I for all 0 ≤ t ≤ s;

(ii) for α ≥ 1, ∂(xα∂β) = xα∂β+1 + axα−1∂β , xα∂β+1 ∈ I if and
only if xα−1∂β ∈ I.

It suffices to show that, for any two monomials xα∂β and xα′
∂β′

in I, there exists a monomial xα′′
∂β′′ ∈ I such that xα∂β , xα′

∂β′ ∈
Wxα′′

∂β′′
. We may assume by symmetry that β′ ≥ β and consider

only the following cases.

(a) [0 ≤ β′−β ≤ α′−α]. In this case, xα′
∂β′

= xα+(α′−α)∂β+(β′−β) ∈
Wxα∂β by (i); thus, we simply take (α, β) = (α′′, β′′).

(b) [α′ − α < β′ − β]. In this case, take β′′ = β and

α′′ =

{
0 if α′ − β′ + β ≤ 0;

α′ − β′ + β otherwise.

It follows from (i) that xα∂β , xα′
∂β′ ∈ Wxα′′

∂β′′
. On the other hand,

the Leibniz formula in (ii) also shows that, if xα′′+1∂β′′
and xα′′+1∂β′′+1

are both in I, then xα′′
∂β′′ ∈ I. Hence, if there exists an m ∈ N such

that
{xα′′+m∂β′′+i | 0 ≤ i ≤ m} ⊂ I,

then xα′′
∂β′′ ∈ I. The proof of this example is completed by taking

m = α+ β′ − β − α′′. Indeed, for β′ − β ≤ i ≤ m,

0 ≤ (β′′ + i)− β′ ≤ m+ (β − β′) ≤ m+ (α′′ − α′) = (α′′ +m)− α′;

thus, by (i),

{xα′′+m∂β′′+i | β′ − β ≤ i ≤ m} ⊂ Wxα′
∂β′

⊂ I.

Also, for 0 ≤ i < β′ − β,

0 ≤ i = (β′′ + i)− β < β′ − β = (α′′ +m)− α;

thus, again by (i),

{xα′′+m∂β′′+i | 0 ≤ i < β′ − β} ⊂ Wxα∂β ⊂ I.
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The observations in Example 2.4 also imply the following lemma.

Lemma 2.5. In the first Weyl algebra W , if xα′
∂β′ ∈ Wxα∂β with

α ≥ 1, then

[(α′, β′)− (α, β)] ∈ Σ = {(s, t) ∈ N2 | 0 ≤ t ≤ s}.

Proof. Suppose otherwise that α′ − α < β′ − β. Applying Example
2.4 (i) to xα∂β ∈ Wxα∂β , we obtain

{xβ′−β+α−1∂β+i | 0 ≤ i ≤ β′ − β − 1} ⊂ Wxα∂β .

Since xα′
∂β′ ∈ Wxα∂β , we have

xβ′−β+α−1∂β′
= x(β′−β)−(α′−α)−1(xα′

∂β′
) ∈ Wxα∂β .

Therefore,

{xβ′−β+α−1∂β+i | 0 ≤ i ≤ β′ − β} ⊂ Wxα∂β .

Through repeated use of Example 2.4 (ii), we obtain xα−1∂β ∈ Wxα∂β ,
which is impossible in view of the Bernstein filtration on W . �

We remark that the same argument in the proof of Lemma 2.5
generalizes to the nth Weyl algebra W , namely, if xα′

∂β′ ∈ Wxα∂β

with αi ≥ 1 for some i ∈ {1, . . . , n}, then

[(α′
i, β

′
i)− (αi, βi)] ∈ Σ = {(s, t) ∈ N2 | 0 ≤ t ≤ s}.

Example 2.6. Using Lemma 2.5, it may readily be verified that

{Wx∂β | β ∈ N}

is an infinite antichain of monomial ideals in the first Weyl algebra W .

3. Gröbner bases in the Weyl algebra. In this section, the
ground ring k is a field of characteristic 0. We recall the Gröbner
bases theory for Weyl algebra over k developed in [4, subsection 1.1].

A total order ≺ on the set B of monomials in W is called a term
order for W if the following two conditions hold:

(1) 1 = x0∂0 is the ≺-smallest element;
(2) xα∂β ≺ xa∂b implies xα+s∂β+t ≺ xa+s∂b+t for all (s, t) ∈ N2n.
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The initial monomial in≺(δ) of an element δ ∈ W is the commutative
monomial xαξβ ∈ k[x, ξ] such that xα∂β is the ≺ - largest monomial
appearing in the canonical form of δ. For a W -ideal I, its initial ideal
is the ideal in k[x, ξ], generated by {in≺ δ | δ ∈ I}. A finite set G
of W is said to be a Gröbner basis for a W -left ideal I with respect
to ≺ if I is generated by G and the initial ideal in≺ I is generated
by {in≺ g | g ∈ G}. From [4, Theorem 1.1.10], every left ideal I of W
admits a Gröbner basis G with respect to any given term order ≺. Note
that not every finite monomial generating set of a monomial ideal forms
a Gröbner basis. For example, the initial ideal of I = Wx+W∂ = W
is k[x, ξ], which is not generated by x and ξ. Nonetheless, we have the
following analog of the normal form algorithm: every element δ ∈ W

has a unique normal form δ
G ∈ W with respect to G such that δ ≡ δ

G

modulo I and that every monomial appearing in the canonical form of

δ
G

is not divisible by Ψ(in≺ g) for any g ∈ G. Here, a monomial xα∂β

is said to be divisible by xa∂b in W if αi ≥ ai and βi ≥ bi for all i. A
monomial of W is called a standard monomial of I with respect to ≺
if it is not divisible by Ψ(in≺ g) for any g in a Gröbner basis G for I.

The next lemma is an immediate consequence of the normal form
algorithm.

Lemma 3.1. Let ≺ be a term order on W , and let I be a left ideal
of W .

(1) The images of the standard monomials of I in W/I form a k-
basis.

(2) The map
Ψ : grW = k[x, ξ] −→ W

induces an isomorphism between the k-vector spaces grW/ in≺ I and
W/I, which sends the standard monomials of in≺ I in grW to the
standard monomials of I in W .

(3) If I is homogeneous with respect to an A-grading of W , then
in≺ I is homogeneous with respect to the induced A-grading on grW ,
and the map Ψ restricts to an isomorphism between (grW/ in≺ I)a and
(W/I)a for each a ∈ A. In particular, the Hilbert functions of I and
in≺ I are identical.
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4. Main techniques. For the reader’s convenience, we recall the
general framework for the construction of the multigraded Hilbert
scheme in [2].

Fix a commutative ring k and an arbitrary index set A. Consider
the pair (T, F ) of graded k-modules

T =
⊕
a∈A

Ta

with a collection of operators

F =
∪

a,b∈A

Fa,b,

where Fa,b ⊆ Homk(Ta, Tb) satisfies Fb,c ◦ Fa,b ⊆ Fa,c and idTa ∈ Fa,a.
In fact, (T, F ) is a small category of k-modules with objects Ta and
arrows, the elements of which are in F .

For a commutative k-algebra R, we denote by R ⊗ T the graded
R-module ⊕

a

(R⊗ Ta)

with operators F̂a,b = (1R ⊗−)(Fa,b). A homogeneous submodule

L =
⊕
a

La ⊆ R⊗ T

is an F -submodule if F̂a,b(La) ⊆ Lb for all a, b ∈ A. Fix a function

h : A −→ N.

LetHh
T (R) be the set of F -submodules L ⊆ R⊗T such that (R⊗Ta)/La

is a locally free R-module of rank h(a) for each a ∈ A. We have the
Hilbert functor

Hh
T : k -Alg −→ Set.

For any subset D of A, denote by (TD, FD) the full subcategory of
(T, F ) with objects Ta and the set of arrows FD,a,b = Fa,b for a, b ∈ A.
We have a natural transformation of Hilbert functors

Hh
T −→ Hh

TD

given by restriction of degrees.
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Theorem 4.1. [2, Theorem 2.2]. Let (T, F ) be a graded k-module with
operators as above. Suppose that there exist homogeneous k-submodules
M ⊆ N ⊆ T and a subset F ′ ⊆ F satisfying the following conditions:

(i) N is a finitely generated k-module;
(ii) N generates T as an F ′-module;
(iii) for every field K ∈ k -Alg and every L ∈ Hh

T (K), M spans (K ⊗
T )/L;

(iv) there is a subset G ⊆ F ′, generating F ′ as a category, such that
GM ⊆ N .

Then, Hh
T is represented by a quasi-projective scheme over k.

We remark that the statement of Theorem 4.1 is slightly stronger
than that of [2, Theorem 2.2]. However, the same proof works in this
setting. Indeed, in the proof of [2, Theorem 2.2], only Step 6 applies to
conditions (ii) and (iv) where any element in T needs to be produced
using elements in N and operators in F . However, this does not require
the full set of F . Any subset F ′ ⊆ F satisfying conditions (ii) and (iv)
will suffice.

Moreover, hypothesis (iii) implies that

dimK(K ⊗ T )/L =
∑
a∈A

h(a)

is finite; thus, Theorem 4.1 works only for h having finite support. For
the general case, we need the following theorem.

Theorem 4.2. [2, Theorem 2.3]. Let (T, F ) be graded k-modules with
operators, and let D ⊆ A be such that Hh

TD
is represented by a scheme

over k. Assume that, for each degree a ∈ A:

(v) there is a finite subset

E ⊆
∪
b∈D

Fb,a

such that
Ta/

∑
b∈D

Eb,a(Tb)

is a finitely generated k-module;
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(vi) for every field K ∈ k -Alg and every LD ∈ Hh
TD

(K), if L′

denotes the F -submodule of K ⊗ T generated by LD, then
dim(K ⊗ Ta)/L

′
a ≤ h(a).

Then, the natural transformation

Hh
T −→ Hh

TD

makes Hh
T a subfunctor of Hh

TD
, represented by a closed subscheme of

the Hilbert scheme Hh
TD

.

In order to find a suitable finite setD of degrees satisfying hypotheses
(v) and (vi) in Theorem 4.2, we also need the following facts.

Proposition 4.3. [2, Proposition 3.2]. Let S be an A-graded polyno-
mial ring. Given a degree function

deg : Nn −→ A

and a Hilbert function
h : A −→ N,

there is a finite set of degrees D ⊆ A that satisfies the following two
properties:

(g) every monomial ideal of S with Hilbert function h is generated
by monomials of degrees in D, and

(h′) every monomial ideal I of S generated in degrees D satisfies:
if hI(a) = h(a) for all a ∈ D, then hI(a) ≤ h(a) for all a ∈ A.

Such a set D in Proposition 4.3 is called a supportive set of degrees
in [2]. There is also a so-called very supportive set E which is used
to define equations of Hh

S in the positive grading case. Since the A-
grading on W is never positive, we will not pursue here the analogous
results on very supportive sets.

5. Proof of Theorem 1.1. Fix any Hilbert function h : A → N,
and letD be a finite subset of degrees in A. Our first task is to construct
k-submodules M,N and a subset F ′

D ⊆ FD satisfying the hypotheses
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in Theorem 4.1 for the graded k-modules

WD =
⊕
a∈D

Wa

with the set of operators FD to be defined later.

Let F be the monoid of operators on W generated by multiplication
of monomials in W . Note that this is slightly different from the poly-
nomial case due to the non-commutativity of W . Denote the set of all
operators in F that send Wa into Wb by Fa,b. Then,

F =
∪

a,b∈A

Fa,b.

Moreover, we have Fb,c◦Fa,b ⊆ Fa,c for all a, b, c ∈ A, and Fa,a contains
the identity map on Wa for all a ∈ A. Thus, (W,F ) is a small category
of k-modules with the components Wa of W as objects and elements
of F as arrows. Note also that, for a k-algebra R, an admissible left
ideal in R⊗k W is equivalent to a left F -submodule L of R⊗k W such
that (R ⊗k Wa)/La is a locally free R-module of rank h(a) for each
a ∈ A.

Define
FD :=

∪
a,b∈D

Fa,b.

Then, (WD, FD) is a full subcategory of (W,F ). Consider, for each k-
algebra R, the setHh

WD
(R) of all admissible FD-submodules of R⊗kWD

and, for each k-algebra homomorphism

ϕ : R −→ S,

the map
Hh

WD
(ϕ) : Hh

WD
(R) −→ Hh

WD
(S).

There is a natural transformation of Hilbert functors

Hh
W −→ Hh

WD
,

given by sending L ∈ Hh
W (R) to

LD :=
⊕
a∈D

La ∈ Hh
WD

(R).
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For each a ∈ A, let Ba be the set of monomials (excluding 1 = x0∂0)
with degree a. Denote the set of minimal elements in Ba with respect
to the partial ordering

xα∂β ≤ xα′
∂β′

⇐⇒ (α, β) ≤ (α′, β′)

by G′
a. Recall that xα′

∂β′
is said to be divisible by xα∂β if (α, β) ≤

(α′, β′). By Dickson’s lemma, we have G′
a is finite for each a ∈ A.

For a, b ∈ A, let Ga,b be the set of operators on W consisting of
left multiplication by elements in G′

b−a. Denote by F ′
D the monoid

(category) generated by

GD :=
∪

a,b∈D

Ga,b.

For a, b ∈ D, denote the set of all operators in F ′
D that send Wa into Wb

by F ′
a,b. The following example shows that strict inequality F ′

D ( FD

can occur.

Example 5.1. Consider the Z-grading on the first Weyl algebra
W = k⟨x, ∂⟩ with deg(x) = − deg(∂) = 1. Let D = {0, 2} ⊆ Z.
Then, GD = {x∂, x2, ∂2}. Observe that the element ∂x3 ∈ F0,2 ⊆ FD

does not lie in the monoid F ′
D generated by elements in GD.

The A-grading on W induces an A-grading on grW by setting
deg ξ := deg ∂. The Hilbert function h : A → N can be viewed as
a Hilbert function for ideals in the polynomial algebra grW with this
induced A-grading. Let CD be the set of ideals of grW generated by
monomials in degrees D with Hilbert functions agreeing with h on D.
Denote the union over all I ∈ CD of the Ψ-images of the standard
monomials of I in (grW )D by M ′, i.e.,

M ′ = {Ψ(xαξβ) | xαξβ ∈ (grW )D \ I, for some I ∈ CD}.

Since CD is finite by [3], the set M ′ is also finite.

Let

N ′ = GDM ′ ∪
( ∪

a∈D

G′
a

)
,

M = kM ′ and N = kN ′.
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We verify that (WD, F ′
D, FD), N,M and GD satisfy the hypotheses of

Theorem 4.1 which is rewritten below.

(i) N is a finitely generated k-module;
(ii) N generates WD as an F ′

D-module;
(iii) for every field K ∈ k -Alg and every LD ∈ Hh

WD
(K), M spans

(K ⊗WD)/LD;
(iv) there is a subset GD ⊆ F ′

D, generating F ′
D as a category, such

that GDM ⊆ N .

Conditions (i) and (iv) obviously hold by our construction. For condi-
tion (ii), given a ∈ D and xα∂β ∈ Wa, we want to show that xα∂β is
generated by N over F ′

D by induction on the total degree |α| + |β| of
xα∂β . If xα∂β ∈ G′

a ⊆ N , the statement is automatically true. For

xα∂β ∈ Wa \G′
a,

there exists an xα′
∂β′ ∈ G′

a ⊆ N such that xα∂β is divisible by xα′
∂β′

.
Note that the total degree of the element

(xα∂β − xα−α′
∂β−β′

· xα′
∂β′

) ∈ Wa

is strictly less than that of xα∂β ; thus, by inductive hypothesis, it
is generated by N over F ′

D. Therefore, it suffices to show that

xα−α′
∂β−β′ ∈ W0 acts on Wa as a sum of operators in F ′

D. In fact,

we will show that every element xᾱ∂β̄ ∈ W0 acts as a sum of operators
in F ′

D by induction on the total degree of xᾱ∂β̄ . Recall that F ′
D is the

monoid generated by ∪
a,b∈D

G′
a,b.

In particular, if xᾱ∂β̄ ∈ G′
0, it acts as an operator in Ga,a ⊆ F ′

D for
any a ∈ D. For

xᾱ∂β̄ ∈ W0 \G′
0,

there exists an xᾱ′
∂β̄′ ∈ G′

0 such that xᾱ∂β̄ is divisible by xᾱ′
∂β̄′

. Since

xᾱ−ᾱ′
∂β̄−β̄′

and (xᾱ∂β̄ −xᾱ−ᾱ′
∂β̄−β̄′ ·xᾱ′

∂β̄′
) are in W0 and have total

degree strictly less than xᾱ∂β̄ , they both act as a sum of operators in
F ′
D. We conclude that
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xᾱ∂β̄ = (xᾱ∂β̄ − xᾱ−ᾱ′
∂β̄−β̄′

· xᾱ′
∂β̄′

) + xᾱ−ᾱ′
∂β̄−β̄′

· xᾱ′
∂β̄′

also acts as a sum of operators in F ′
D. This establishes condition (ii).

We need the next lemma to verify condition (iii).

Lemma 5.2. Let R ∈ k -Alg, LD ∈ Hh
WD

(R) and L ⊆ R ⊗k W be the
left ideal generated by LD. Then, La = LD,a for all a ∈ D.

Proof. Observe that, for a ∈ D,

La =
∑
b∈D

Fb,a(LD,b) ⊇ Fa,a(LD,a) ⊇ LD,a.

Conversely, we have Fb,a(LD,b) ⊆ LD,a for any a, b ∈ D, since LD ∈
Hh

WD
(R) is an FD-submodule of R⊗k WD. �

For condition (iii), fix a field K ∈ k -Alg and an FD-submodule

LD ∈ Hh
WD

(K). Let L ⊆ K ⊗k W be the ideal generated by LD. Fix
any term order ≺ on W , and let I = in≺ L ⊂ grW be the initial ideal of
L with respect to ≺. By Lemma 3.1 (3), the Hilbert functions hI and
hL coincide. Hence, hI(a) = hLD

(a) for all a ∈ D by Lemma 5.2.
In particular, the ideal I ∈ CD. From Lemma 3.1 (2), M ′ spans
(K ⊗k WD)/LD, which is exactly the statement of condition (iii).

At this point, we have shown, by using Theorem 4.1, that Hh
WD

is
represented by a quasi-projective scheme for any finite set D of degrees
in A. In order to complete the proof of Theorem 1.1, it remains to
verify conditions (v) and (vi) (for each degree a ∈ A) in Theorem 4.2
for some suitable finite subset D of A.

(v) There is a finite subset E ⊆
∪

b∈D Fb,a such that

Wa/
∑
b∈D

Eb,a(Wb)

is a finitely generated k-module;
(vi) for every field K ∈ k -Alg and every LD ∈ Hh

WD
(K), if L

denotes the F -submodule of K ⊗ W generated by LD, then
dim(K ⊗Wa)/La ≤ h(a).
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Applying Proposition 4.3 to the case where S = grW with the
induced degree function

deg : N2n −→ A

given by deg(ξ) = deg(∂), we can find a finite subset D of A that
satisfies conditions (g) and (h′) for grW with respect to the same
Hilbert function h. From now on, fix such a finite set D. The goal
is to use Theorem 4.2 to show that the natural transformation

Hh
W −→ Hh

WD

makes Hh
W a subfunctor of Hh

WD
, represented by a closed subscheme of

the Hilbert scheme Hh
WD

. We may assume that there exists an admis-
sible function L of W , whose Hilbert function is hL = h, for otherwise,
the statement of Theorem 4.2 is null. Choose any term order ≺ on W .
By Lemma 3.1 (3), the Hilbert function hin≺ L of the initial ideal
in≺ L of L in grW coincides with h, and hence, in≺ L is generated
in degrees D by condition (g) in Proposition 4.3. Since the s-pair of
two homogeneous elements in the Weyl algebra is still homogeneous,
there exists a Gröbner basis for L consisting of homogeneous elements
in degrees D. In particular, the ideal L of W is also generated in
degrees D. Therefore, for each a ∈ A, the component

La =
∑
b∈D

Fb,a(Lb),

and it has finite k-codimension h(a) in Wa.

In order to verify condition (v), it suffices to find a finite subset

E ⊆
∪
b∈D

Fb,a

such that, for any b ∈ D, a ∈ A,

Fb,a(Lb) ⊆
∑
b′∈D

Eb′,a(Wb).

Take Eb,a = Gb,a, and let

E =
∪
b∈D

Eb,a.
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We claim that, in fact,

Fb,a(Wb) ⊆ Eb,a(Wb) = Gb,a(Wb).

Since each operator in Fb,a, which is a product of monomials, can be
written as a sum of monomials in degree a − b by Corollary 2.2, we
verify only that, if deg(xα∂β) = a− b, then xα∂β(Wb) ⊆ Gb,a(Wb). It
is certainly true that

xα∂β(Wb) ⊆ Gb,a(Wb)

when xα∂β ∈ G′
a−b. In general, we have xα∂β is divisible by some

element xα′
∂β′ ∈ G′

a−b and, by inductive hypothesis,

[xα∂β(Wb)− xα′
∂β′

· xα−α′
∂β−β′

(Wb)] ⊆ Gb,a(Wb).

Since deg(xα−α′
∂β−β′

) = 0, we have xα−α′
∂β−β′

(Wb) ⊆ Wb, and
hence,

xα∂β(Wb) ⊆ Gb,a(Wb),

as desired.

For condition (vi), fix a field K ∈ k -Alg, an element LD ∈ Hh
WD

(K),
and let L ⊆ K ⊗k W be the ideal generated by LD. From Lemma 5.2,
La = LD,a, and hence, hL(a) = h(a) for all a ∈ D. Also, we have
hL(a) = hin≺ L(a) for all a ∈ A by Lemma 3.1 (3). Let I be the
monomial ideal in grW generated by (in≺ L)D. Then, Ia = (in≺ L)a
for all a ∈ D by the same argument of Lemma 5.2, and hence,

hI(a) = hin≺ L(a) = hL(a) = h(a) for all a ∈ D.

Therefore, by condition (h′) of Proposition 4.3,

hL(a) = hin≺ L(a) ≤ hI(a) ≤ h(a) for all a ∈ A.

This establishes condition (vi).

Example 5.3. Let k be a field. Consider the finest possible A-grading
on W , where A = Zn and

deg(xi) = − deg(∂i) = ei.

Under this A-grading, any homogeneous ideals are generated by ele-
ments in W of the form xap(θ)∂b, a, b ∈ Nn. From [4, Lemma 2.3.1],
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such ideals are the torus-fixed ideals of W , which are used in the algo-
rithms for solving systems of linear partial differential equations.

Fixing a Hilbert function h : A → N, we remark that, if I, J ∈
Hh

W (k) and if I is holonomic, then J is also holonomic. Indeed, using
the notation in [4], the Hilbert functions of in≺(0,e)

I and in≺(0,e)
J

coincide by Lemma 3.1. Therefore, from [4, Theorem 1.1.6], the ideals
in(0,e) I and in(0,e) J in grW also have the same Hilbert functions under
the A-grading inherited from that of W . In particular, dim in(0,e) I =
dim in(0,e) J , and the holonomicity of J follows.
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