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ON A GENERALIZATION OF WOLFF’S IDEAL
THEOREM FOR CERTAIN SUBALGEBRAS OF H∞(D)

D.P. BANJADE, M. EPHREM, A. INCOGNITO AND M. WILKERSON

ABSTRACT. We settle an open question proposed in [2]
to generalize Wolff’s ideal theorem on certain uniformly
closed subalgebras of H∞(D). Also, we discuss some sub-
algebras where Wolff’s ideal theorem holds without the addi-
tional condition F (0) ̸= 0.

1. Introduction. In 1962, Carleson [3] proved his celebrated corona
theorem characterizing when a finitely generated ideal of H∞(D) is all
of H∞(D). In functional notation, Carleson’s corona theorem can be
expressed as the ideal I generated by a finite set of functions

{fi}ni=1 ⊂ H∞(D)

is the entire space H∞(D), provided that there exists a δ > 0 such that

(1.1)

( n∑
i=1

|fi(z)|2
)1/2

≥ δ for all z ∈ D.

In light of this, Wolff [13] later attempted to generalize the corona
theorem by proposing the following question: does

(1.2)

( n∑
i=1

|fi(z)|2
)1/2

≥ |h(z)| for all z ∈ D, fj , h ∈ H∞(D)

imply hp ∈ I? Unfortunately, the answer is negative for p = 1 (see
Rao’s example in Garnett [4, page 369, Ex-3] and Treil showed with
a counterexample that condition (1.2) is insufficient for p = 2 as well
[11]. Wolff provided the following for all p ≥ 3:
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Theorem 1.1 ([13]). If fj ∈ H∞(D), j = 1, 2, . . . , n, h ∈ H∞(D) and( n∑
j=1

|fj(z)|2
)1/2

≥ |h(z)| for all z ∈ D,

then, hp ∈ I({fj}nj=1), p ≥ 3.

(See Garnett [4, page 319, Theorem 2.3].)

Wolff’s theorem has been extended to various subalgebras ofH∞(D).
For example, in [2], the authors obtained an analogous result to Wolff’s
theorem on the subalgebra of H∞(D) given by

C+BH∞(D) = {α+Bg : α ∈ C, g ∈ H∞(D)},

where B is a fixed Blaschke product. A similar result was obtained
in [1] for the subalgebra

H∞
I (D) = {f ∈ H∞(D) : f = c+ ϕ, c ∈ C and ϕ ∈ I},

where I is a proper ideal of H∞(D). Moreover, in [5], the authors
extended Wolff’s result to matrix cases. It was proven there that a
similar result holds true for semi-infinite matrices on any algebra of
functions in which Wolff’s ideal theorem is already known to hold.

For this paper, we consider the following subalgebra: Let K ⊂ Z+,
and define

H∞
K (D) = {f ∈ H∞(D) : f (j)(0) = 0 for all j ∈ K}.

We consider those sets K for which H∞
K (D) is a subalgebra of H∞(D)

under the usual product of functions.

For the remainder of the paper we use f and fi to represent complex-
valued scalar functions and F to denote a vector-valued function.
Similarly, we let c and ci denote complex numbers and C a complex
vector. For {fj}∞j=1 ⊂ H∞(D), if we let

F (z) = (f1(z), f2(z), . . .),

we use F (z)∗ to denote the adjoint of F (z).

We also let H∞
l2 (D) denote the Hilbert space of bounded, analytic

functions that map D to l2, that is, an element F ∈ H∞
l2 (D) is an
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infinite-dimensional row vector, the entries of which consist of functions
fi ∈ H∞(D) such that

∥F∥2∞ =

∞∑
i=1

sup
z∈D

|fi(z)|2 < ∞.

2. The subalgebra H∞
K (D). Not every setK defines an algebra; for

example, K = {2}. Although there is not a complete characterization
of the set K for which H∞

K (D) is an algebra, Ryle and Trent [9] have
given certain criteria which the set K must meet.

Lemma 2.1 ([9]). Let K ⊆ N be such that H∞
K (D) is an algebra.

Then:

(i) k0 /∈ K if and only if zk0 ∈ H∞
K (D).

(ii) If j, k /∈ K, then j + k /∈ K.

(iii) Suppose k0 ∈ K. If 1 < j < k0 satisfies j /∈ K, then k0−j ∈ K.

We will assume that K is finite due to the consequences of the next
lemma.

Lemma 2.2 ([10]). If H∞
K (D) is an algebra, then there exist d ∈ N,

a finite set {ni}pi=1 ⊂ N with n1 < · · · < np and gcd(n1, . . . , np) = 1,
and a positive integer N0 > np such that

N−K = {n1d, n2d, . . . , npd,N0d, (N0 + j) d : j ∈ N}.

Lemma 2.2 states that the nontrivial sets K ⊂ N for which H∞
K (D)

is an algebra are the sets K for which there exist l1 < · · · < lr in N with
gcd(l1, . . . , lr) = d such that N−K is the semigroup of N generated by
{l1, . . . , lr} under addition.

Thus, the elements of H∞
K (D) have the form

f(z) = c0 + c1z
n1d + · · ·+ cjz

njd + cj+1z
(nj+1)d + cj+2z

(nj+2)d + · · · ,

where ci ∈ C. Letting w = zd yields

g(w) = c0 + c1w
n1 + · · ·+ cj−1w

nj−1 +
∞∑
k=0

cj+kw
nj+k.
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Therefore, g(w) is contained in the algebra H∞
K1

(D), where

K1 = {1, . . . , n1 − 1, n1 + 1, . . . , n2 − 1, n2 + 1, . . . , nj − 1}

is a finite set.

The above argument suggests that finding a solution to the ideal
problem in H∞

K (D) where K is infinite can be reduced to a simpler
problem involving two steps. First, solve the corresponding problem
in H∞

K1
(D), where K1 is finite as above. Then, take those solutions in

H∞
K1

(D) and compose them with zd in order to obtain the solution in
H∞

K (D).

We define algebras comprised of vectors with entries in H∞
K (D) as

follows:

H∞
K,n(D) =

{
{fj}nj=1 : fj ∈ H∞

K (D) for j = 1, 2, . . . , n

and sup
z∈D

n∑
j=1

|fj(z)|2 < ∞
}
.

Here, multiplication is entrywise, and n can either be a positive integer
or ∞. We write the elements of H∞

K,n(D) as row vectors such that F ∈
H∞

K,n(D).

In [2], Banjade, et al., established the partial analogues of Wolff’s
theorem in this algebra. The results there required the additional
assumption that F (0) ̸= 0.

Theorem 2.3 ([2]). Let

F = (f1, f2, . . .) ∈ H∞
K,n(D)

and h ∈ H∞
K (D), with

1 ≥
√
F (z)F (z)∗ ≥ |h(z)| for all z ∈ D.

Also, assume that F (0) ̸= 0. Then, there exists a

V = (v1, v2, . . .) ∈ H∞
K,n(D)

such that
F (z)V (z)T = h3(z) for all z ∈ D
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and

∥V ∥∞ ≤ C0 +
∥G(kp)(0)∥l2
kp!∥F (0)∥l2

.

Here, kp is the largest element of K, and G is an H∞ solution obtained
as in [12].

3. Main results. In [2], the authors proposed the following open
question: can Wolff’s theorem be fully extended to the subalgebras
H∞

K (D) of H∞(D) without the additional assumption that F (0) ̸= 0?
In this paper, we prove that the answer is negative. We also discuss
the subalgebras on which the assumption F (0) ̸= 0 can be removed to
establish Wolff’s theorem.

Proposition 3.1. Let F = (f1, f2, . . .) ∈ H∞
K,n(D) and h ∈ H∞

K (D),
with 1 ≥

√
F (z)F (z)∗ ≥ |h(z)| for all z ∈ D. If F (0) = 0, then the

existence of V = (v1, v2, . . .) ∈ H∞
K,n(D) such that

F (z)V (z)T = h3(z) for all z ∈ D

cannot be guaranteed.

Proof. We proceed by counterexample. If we consider the set

K = {1, 2, 3, 6, 7, 11},

then there exist f, h ∈ H∞
K such that

|h(z)| ≤ |f(z)| for all z ∈ D.

However, as is seen below, there is not necessarily a g in H∞
K such that

h3 = fg.

It is clear from Lemma 2.1 that H∞
K (D) is an algebra. Also, any

element f in H∞
K (D) looks like:

f(z) = c0 + c4z
4 + c5z

5 + c8z
8 + c9z

9 + c10z
10 + c12z

12 + · · ·

for some collection of ci ∈ C.
If we take h(z) = z4 and f(z) = 2z4 + z5, we clearly see that

h, f ∈ H∞
K (D). In addition, they satisfy |h(z)| ≤ |f(z)| for all z ∈ D

and f(0) = 0.
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If there were a g such that h3 = fg, then we would have

z12 = (2z4 + z5)g.

This suggests that g is of the form

g(z) =
z8

2 + z
=

z8

2

∞∑
n=0

(−1)n
(
z

2

)n

=
z8

2
− z9

4
+

z10

8
− z11

16
+ · · · ,

which implies that g /∈ H∞
K (D) for K = {1, 2, 3, 6, 7, 11} since there is

a nonzero coefficient on the z11 term. Thus, there is no g in H∞
K such

that h3 = fg. �

This proves that the answer to the question asked in [2] is, indeed,
negative. However, there are some algebras in which Theorem 2.3 is
true without the additional condition that F (0) ̸= 0.

Let h ∈ H∞
K (D) be such that

[F (z)F (z)∗]1/2 ≥ |h(z)| for all z ∈ D.

F (0) = 0 implies F0 = 0, and thus, h0 = 0. Let r be the smallest
element of K such that Fr ̸= 0. This means that F (z) and h(z)
can be written as F (z) = zrFH(z) and h(z) = zrH(z), FH(z) and
H(z) ∈ H∞

K (D), where

K = {k − r : k ∈ K and k − r > 0}.

Theorem 3.2. Let F = (f1, f2, . . .) ∈ H∞
K,n(D) and h ∈ H∞

K (D), with
1 ≥

√
F (z)F (z)∗ ≥ |h(z)| for all z ∈ D. If H∞

K (D) is a subalgebra of
H∞(D), then there exists a V = (v1, v2, . . .) ∈ H∞

K,n(D) such that

F (z)V (z)T = h3(z) for all z ∈ D

and

∥V ∥∞ ≤ C0 +
∥G(kp)(0)∥l2
kp!∥F (0)∥l2

.

Here, kp is the largest element of K, and G is an H∞ solution obtained
as in [12].
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Proof. Let h ∈ H∞
K (D) be such that√
F (z)F (z)∗ ≥ |h(z)| for all z ∈ D.

Since F (0) = 0 implies F0 = 0, we assume that r is the smallest element
of K such that Fr ̸= 0, which means that F and H can be expressed
as F (z) = zrFH(z) and h(z) = zrH(z), FH(z) and H(z) ∈ H∞

K (D).
Moreover,

|H(z)| ≤
√
FH(z)FH(z)∗ for all z ∈ D.

The condition Fr ̸= 0 implies that FH(0) ̸= 0. In addition,
since H∞

K (D) is an algebra, Theorem 2.3 implies that there exists a
G ∈ H∞

K (D) such that H3 = FHG. Therefore,

h3 = (zrH)3 = (zrFH)(z2rG) = FV,

where V = z2rG = zr(zrG) ∈ H∞
K (D) as zr, zrG ∈ H∞

K (D). Also, since
|V (z)| ≤ |G(z)| for all z ∈ D, the same norm estimate from [2] also
works well here. �

Example 3.3. Theorem 3.2 may be demonstrated with this example.
Let K be the set of all positive odd integers. Then, H∞

K (D) is an
algebra, and the elements of H∞

K (D) are of the form

F (z) = C0 + C1z
2 + C4z

4 + C6z
6 + C8z

8 + · · · .

If F (0) = 0, then

F (z) = z2(C1 + C4z
2 + C6z

4 + C8z
6 + · · · ).

Thus, the set K associated to K will again be the set of all consecutive
odd numbers, i.e., K = {1, 3, 5, . . .}. This means that the result holds
true on H∞

K (D) without the condition F (0) ̸= 0.

However, it is unnecessary that all the subsets K of K form a
subalgebra H∞

K (D). For example, if we take K = {1, 2, 5}, H∞
K (D)

is an algebra whose elements are of the form

f(z) = c0 + c3z
3 + c4z

4 + · · ·+ cnz
n for n ≥ 6.

In this case, f(0) = 0 implies that

f(z) = z3(c3 + c4z + c6z
3 + · · ·+ cnz

n−3) for n ≥ 3.
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Therefore, the subset K corresponding to the function

f̃ = c3 + c4z + c6z
3 + · · ·+ cnz

n−3

is K = {2}. As discussed above, H∞
K (D) is not an algebra for

K = {2} which means that our Theorem 3.2 cannot be applied on
the subalgebras H∞

K (D) associated to such a K.

Theorem 3.4. Let F = (f1, f2, . . .) ∈ H∞
K,n(D) and h ∈ H∞

K (D), with
1 ≥

√
F (z)F (z)∗ ≥ |h(z)| for all z ∈ D. If 2r > kp, then there exists a

V = (v1, v2, . . .) ∈ H∞
K,n(D) such that

F (z)V (z)T = h3(z) for all z ∈ D

and

∥V ∥∞ ≤ C0 +
∥G(kp)(0)∥l2
kp!∥F (0)∥l2

.

We note that this theorem is clear from Theorem 3.2 without the
condition 2r > kp if H∞

K (D) is an algebra.

Proof. If the subset K of the original set K does not constitute an
algebra, we take the maximal subset, say K1, of K such that H∞

K1
(D)

is an algebra. Although H∞
K (D) is not an algebra, it holds true that

H∞
K (D) ⊂ H∞

K1
(D).

We now have that h, F ∈ H∞
K (D), where h = zrH, F = zrFH , FH ,

H ∈ H∞
K (D) ⊂ H∞

K1
(D).

Moreover, |h(z)| ≤
√
F (z)F (z)∗ implies |H(z)| ≤

√
FH(z)FH(z)∗.

In addition, since H, FH ∈ H∞
K1

(D) and FH(0) ̸= 0, there exists a

G ∈ H∞
K1

(D) such that H3 = FHG. Therefore,

h3 = (zrH)3 = (zrFH)(z2rG),

and 2r > kp implies that z2rG ∈ H∞
K (D). This completes the proof. �

Example 3.5. If we consider the set K = {1, 2, 5}, the maximal subset
K1 of K = {2}, such that H∞

K1
(D) is an algebra, is simply just K1 = Φ.

Thus, H∞
K1

(D) = H∞(D). Therefore, |H(z)| ≤
√
FH(z)FH(z)∗, and
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FH(0) ̸= 0 implies that there exists a G ∈ H∞
K1

(D) = H∞(D) such that

H3 = FHG. Thus,

h3 = (z3H)3 = (z3FH)(z6G).

It is obvious that z6G belongs to H∞
K (D) as G ∈ H∞(D).

4. Future research. In this paper, we showed that Wolff’s theo-
rem does not hold true in general on H∞

K (D) without the additional
condition F (0) ̸= 0, and we also partially characterized subalgebras
where the theorem holds without this additional condition. We con-
sider this result an introductory stepping stone towards developing a
complete characterization of subalgebras of H∞(D) where Wolff’s the-
orem holds.
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