
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 47, Number 8, 2017

MOD p EQUIVALENCE CLASSES OF LINEAR
RECURRENCE SEQUENCES OF DEGREE 2

MIHO AOKI AND YUHO SAKAI

ABSTRACT. Laxton introduced a group structure on
the set of equivalence classes of linear recurrence sequences
of degree 2. This result yields much information on the
divisibilities of such sequences. In this paper, we introduce
other equivalence relations for the set of linear recurrence
sequences (Gn), which are defined by G0, G1 ∈ Z and
Gn = TGn−1 − NGn−2 for fixed integers T and N = ±1.
The relations are given by certain congruences modulo p for
a fixed prime number p, which are different from Laxton’s
without modulo p equivalence relations. We determine the
initial terms G0 and G1 of all of the representatives of the

equivalence classes (Gn) satisfying p - Gn for any integer n
and give the number of equivalence classes. Furthermore, we
determine the representatives of Laxton’s without modulo p
classes from our modulo p classes.

1. Introduction. Let f(X) = X2 − TX +N ∈ Z[X], N = ±1, be
a polynomial whose roots θ1 and θ2 are not roots of unity. Then, θ1
and θ2 are units of a certain real quadratic field. Let d := T 2 − 4N
be the discriminant of f(X). We consider linear recurrence sequences
G = (Gn)n∈Z defined by

(1.1) G0, G1 ∈ Z, Gn = TGn−1 −NGn−2.

If G0 = a and G1 = b, then we denote by G = (G(a, b)). We call
F = (Fn) = (G(0, 1)) and L = (Ln) = (G(2, T )) the Lucas sequence
and the companion Lucas sequence, respectively. We fix a prime num-
ber p. It is well known that the sequence (Gn mod p) is periodic for any
G = (Gn) defined by (1.1). Let r(p) be the rank of the Lucas sequence
F = (Fn), namely, it is the smallest positive integer n satisfying p | Fn.
We can easily check r(2) = 2 if T is even and r(2) = 3 if T is odd. If
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p ̸= 2, then it was shown (Lucas [7, Sections 24, 25]) or [5, Lemma 2,
Theorem 12] that r(p) divides p − (d/p) where (∗/∗) is the Legendre
symbol.

We define two relations ∼p and ∼∗
p for the set of linear recurrence

sequences.

Definition 1.1. Let G = (Gn) and G′ = (G′
n) be linear recurrence

sequences defined by (1.1).

(1) If the congruence G1G
′
0 ≡ G′

1G0 (mod p) holds, then we write
G ∼p G′.

(2) If there are some integers m and n satisfying

Gm+1G
′
n ≡ G′

n+1Gm (mod p),

then we write G ∼∗
p G′.

Define a set Xp(f) of linear recurrence sequences by

Xp(f) := {G | linear recurrence sequences defined by (1.1)

with p - G0 or p - G1}.

We can easily show that the first relation ∼p is an equivalence relation
for the set Xp(f). Furthermore, we can show that the second relation
∼∗
p is also an equivalence relation for the set Xp(f), cf., [2, Lemma 9],

by using the following lemmata.

Lemma 1.2. Let G = (Gn) and G′ = (G′
n) be linear recurrence

sequences defined by (1.1). If Gm+1G
′
n ≡ G′

n+1Gm (mod p), then we
have the following congruences.

Gm+2G
′
n+1 ≡ G′

n+2Gm+1 (mod p)

and

GmG
′
n−1 ≡ G′

nGm−1 (mod p).

Lemma 1.3. Assume that G = (Gn) ∈ Xp(f). If p | Gn, then we have
p - Gn−1 and p - Gn+1.
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These two lemmata follow from the recurrence formula in (1.1). Now,
we consider the quotient sets using these relations. We set

Xp(f) := Xp(f)/∼p ,

Yp(f) := {(Gn) ∈ Xp(f) | p - Gn for any n ∈ Z},
X∗
p (f) := Xp(f)/∼∗

p ,

Y ∗
p (f) := {(Gn) ∈ X∗

p (f) | p - Gn for any n ∈ Z},

where (Gn) is the equivalence class which includes (Gn). The sets Yp
and Y ∗

p are well defined, that is, we will show in Section 2, Lemma 2.1,
that, if (Gn)∼p (G′

n) (or (Gn)∼∗
p (G

′
n)) and p - Gn for any n ∈ Z,

then we have p - G′
n for any n ∈ Z. For any G = (Gn) ∈ Xp(f)

satisfying p | Gν for some ν ∈ Z, we have F1Gν ≡ 0 ≡ Gν+1F0 (mod p).
Therefore, we have G ∼∗

p F = (G(0, 1)) (the Lucas sequence) and obtain
the following lemma.

Lemma 1.4. We have

Xp(f) = {(G(a, 1)) | a = 0, . . . , p− 1} ∪ {(G(1, 0))}

and
X∗
p (f) = F ∪ Y ∗

p (f).

For any integer G, not divisible by p, we denote an inverse element
modulo p by G−1(∈ Z), i.e., GG−1 ≡ 1(mod p).

Definition 1.5. Assume that G = (Gn) ∈ Xp(f). We define the
sequence (gn)n∈Z, 0 ≤ gn ≤ p− 1 or gn = ∞, by

gn

{
≡ GnG

−1
n+1(mod p) if p - Gn+1,

= ∞ otherwise.

We call the sequence (gn) the second sequence of G. In particular, we
denote the second sequence of the Lucas sequence F by (fn).

We will show in Section 2 that the second sequences (gn) have the
periods which divide r(p), Proposition 2.6. In Section 3, we will show
the following theorems by using Proposition 2.6. These theorems are
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generalizations of our previous results in the case T = 1, N = −1,
[1, 2].

Theorem 1.6. We have

Yp(f) = {(G(a, 1)) | 1 ≤ a ≤ p− 1, a ̸= f1, . . . , fr(p)−2}

and
|Yp(f)| = p+ 1− r(p).

Theorem 1.7. Assume that p ̸= 2, and set

s(p) :=
p− (d/p)

r(p)
.

There exist integers αi (i = 1, . . . , s(p) + (d/p), 1 ≤ αi ≤ p − 1)
satisfying the following conditions.

(1) For the sequence (Gn) = (G(αi, 1)), we have p - Gn for any
n ∈ Z.

(2) Let Ai be the second sequence of (G(αi, 1)). Then, we have

{a ∈ Z | 1 ≤ a ≤ p−1, a ̸= f1, . . . , fr(p)−2} =

s(p)+(d/p)⨿
i=1

Ai (disjoint union).

Theorem 1.8. Assume that p ̸= 2. Let αi (i = 1, . . . , s(p) + (d/p)) be
the integers in Theorem 1.7. We have

Y ∗
p (f) =

{
(G(αi, 1))

∣∣∣∣ i = 1, . . . , s(p) +

(
d

p

)}
and

|Y ∗
p (f)| = s(p) +

(
d

p

)
.

In the case p = 2, we have

X2(f) = {(G(0, 1))(= F), (G(1, 1)), (G(1, 0))},

Y2(f) =

{
∅ if T is odd,

(G(1, 1)) otherwise,
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X∗
2 (f) =

{
(G(0, 1)) if T is odd,

(G(0, 1)), (G(1, 1)) otherwise,

Y ∗
2 (f) =

{
∅ if T is odd,

(G(1, 1)) otherwise.

In Section 4, we will explain the relation between our “modulo p” equiv-
alence classes and Laxton’s “without modulo p” equivalence classes [6].
He introduced a commutative group structure on certain sets of equiv-
alence classes G(f) and G∗(f). We will show that the certain subsets
of Xp(f) and X∗

p (f) have the same group structures and are isomor-
phic to finite quotient groups of G(f) and G∗(f) (Theorem 4.5). From
these facts, by using our theorems, we can give the representatives of
Laxton’s quotient groups. In Section 5, we give some examples.

2. Mod p equivalence classes.

Lemma 2.1. Assume that G = (Gn), G′ = (G′
n) ∈ Xp(f). If G ∼p G′

(or G ∼∗
p G′) and p - Gn for any n ∈ Z, then we have p - G′

n for any
n ∈ Z.

Proof. If G ∼p G′, then we have G1G
′
0 ≡ G′

1G0 (mod p). Assume
that there exists an integer ℓ such that p | G′

ℓ. Using Lemma 1.2,
we have Gℓ+1G

′
ℓ ≡ G′

ℓ+1Gℓ (mod p). Since p divides G′
ℓ and does

not divide G′
ℓ+1, by Lemma 1.3, we obtain p | Gℓ. This contradicts

the assumption. We can similarly show the assertion for the case
G ∼∗

p G′. �

From Lemma 2.1, we know that the sets Yp and Y ∗
p in Section 1

are well defined. Next, we will show that any second sequence has the
period dividing r(p). Let G = (Gn) be a linear recurrence sequence
defined by (1.1). Then, we have

Gn =
(G1 −G0θ1)θ

n
2 − (G1 −G0θ2)θ

n
1

θ2 − θ1
, n ∈ Z.(2.1)

Set

Λ(G) := (G1 −G0θ1)(G1 −G0θ2) = G2
1 − TG0G1 +NG2

0.

From (2.1), we can show the following lemma.
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Lemma 2.2. Let G = (Gn) be a linear recurrence sequence defined by
(1.1). For any n,m ∈ Z, we have

Gn+m = FmGn+1 −NFm−1Gn.

Proof. Set B = G1 −G0θ1 and A = G1 −G0θ2. Then, we have

FmGn+1 −NFm−1Gn

=
(θm2 − θm1 )(Bθn+1

2 −Aθn+1
1 )−N(θm−1

2 − θm−1
1 )(Bθn2 −Aθn1 )

(θ2 − θ1)2

=
B(θm+n+1

2 −Nθm+n+1
2 ) +A(−θn+1

1 θm2 +Nθn1 θ
m−1
2 )

(θ2 − θ1)2

+
B(−θm1 θn+1

2 +Nθm−1
1 θn2 ) +A(θm+n+1

1 −Nθm+n+1
1 )

(θ2 − θ1)2
.

Since N = θ1θ2, we have A(−θn+1
1 θm2 + Nθn1 θ

m−1
2 ) = 0. In the

same manner, we get B(−θm1 θn+1
2 + Nθm−1

1 θn2 ) = 0. Furthermore,
the equalities

B(θm+n+1
2 −Nθm+n−1

2 ) = Bθm+n
2 (θ2 −Nθ−1

2 ) = Bθm+n
2 (θ2 − θ1)

and

A(θm+n+1
1 −Nθm+n−1

1 ) = Aθm+n
1 (θ1 −Nθ−1

1 ) = Aθm+n
1 (θ1 − θ2)

hold. Therefore, we have

FmGn+1 −NFm−1Gn =
Bθm+n

2 (θ2 − θ1) +Aθm+n
1 (θ1 − θ2)

(θ2 − θ1)2

=
Bθm+n

2 −Aθm+n
1

θ2 − θ1
= Gm+n. �

We can show the following lemma by induction on n.

Lemma 2.3. Let G = (Gn) be a linear recurrence sequence defined by
(1.1). For any n ∈ Z, we have

G2
n − TGn−1Gn +NG2

n−1 = N(G2
n+1 − TGnGn+1 +NG2

n).
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Assume that G = (Gn) ∈ Xp(f) satisfies p | Gν for some ν ∈ Z.
Since the sequence (Gn mod p) is periodic, there exists the integer
r(G, p) such that p | Gn if and only if r(G, p) | n− ν. The next lemma
easily follows.

Lemma 2.4. Let G = (Gn) ∈ Xp(f) satisfy p | Gν for some ν ∈ Z.
Then, we have r(G, p) = r(p).

Lemma 2.5. Let G = (Gn) ∈ Xp(f), and assume that

Λ(G) ≡ 0 (mod p).

Then, we have p - Gn for any n ∈ Z.

Proof. The assertion follows from the fact that p - G0 or p - G1 and
Lemmata 1.3 and 2.3. �

The next proposition asserts that the second sequences (gn) have
periods which divide r(p).

Proposition 2.6. Let G = (Gn) ∈ Xp(f) and (gn) be the second
sequence of G.

(1) If Λ(G) ̸≡ 0(mod p), then we have gm = gn if and only if

m ≡ n (mod r(p)).

(2) If Λ(G) ≡ 0(mod p), then we have gn = g0 for any n ∈ Z.

Proof.

(1) We will show the assertion for two cases.

First, we assume that p - Gn for any n ∈ Z. From the def-
inition of the second sequence, we have gn = gm if and only if
GmGn+1 ≡ Gm+1Gn (mod p). Since

Gn+1 = Fn−m+1Gm+1 −NFn−mGm

and

Gn = Fn−mGm+1 −NFn−m−1Gm,
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from Lemma 2.2, we have gm = gn if and only if
(2.2)
G2
m+1Fn−m−GmGm+1(Fn−m+1+NFn−m−1)+NG

2
mFn−m≡0 (mod p).

From recurrence formula (1.1) and Lemma 2.3, we have

G2
m+1Fn−m −GmGm+1(Fn−m+1 +NFn−m−1) +NG2

mFn−m
≡ Fn−m(G2

m+1 − TGmGm+1 +NG2
m)

≡ Fn−mNmΛ(G) (mod p).

By the assumption Λ(G) ̸≡ 0(mod p), we conclude that gm ≡ gn if and
only if m ≡ n(mod r(p)). We have obtained the proof of the case.

Next, we consider the case where p | Gν for some ν ∈ Z. We assume
that gm = ∞, that is, p | Gm+1. Then, we have gn = ∞ if and only if
m ≡ n(mod r(G, p)).

Hereon, assume that gm ̸= ∞ (that is, p - Gm+1). We consider two
subsequences of (Gn mod p):

Gm+1,(2.3)

Gm ≡ gmGm+1,

Gm−1 ≡ (Tgm − 1)NGm+1,

Gm−2 ≡ (T 2gm − T − gm)N2Gm+1,

...

Gn+1,

Gn ≡ gnGn+1,

Gn−1 ≡ (Tgn − 1)NGn+1,

Gn−2 ≡ (T 2gn − T − gn)N
2Gn+1,

...

I1Gm+1,(2.4)

Gm ≡ I0Gm+1,

Gm−1 ≡ I−1Gm+1,

Gm−2 ≡ I−2Gm+1,

...
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J1Gn+1,

Gn ≡ J0Gn+1,

Gn−1 ≡ J−1Gn+1,

Gn−2 ≡ J−2Gn+1,

...

For an integer k ≥ 0, by the assumption m ≡ n(mod r(G, p)), we have
p | Gm−k if and only if p | Gn−k. Hence, the subsequences (2.4) imply
p | I−k if and only if p | J−k. From Lemma 2.2, we have

I−k = F−kI1 −NF−k−1I0 ≡ F−k −NF−k−1gm (mod p)

and

J−k = F−kJ1 −NF−k−1J0 ≡ F−k −NF−k−1gn (mod p).

Hence, we get

(2.5) F−k−1gm ≡ F−k−1gn (mod p)

for any integer k ≥ 0 such that I−k ≡ J−k ≡ 0(mod p). Let ν be
an integer satisfying p | Gν . Since Gm−k ≡ I−kGm+1 ≡ 0(mod p),
we have m − k ≡ ν (mod r(G, p)). On the other hand, we know that
m+ 1 ̸≡ ν (mod r(G, p)) since p - Gm+1. Therefore, we obtain

k ̸≡ −1 (mod r(G, p)),

and hence, k ̸≡ −1 (mod r(p)) since r(G, p) | r(p). The congruence
(2.5) implies gm ≡ gn (mod p), and hence, gm = gn since 0 ≤ gm,
gn ≤ p− 1. By using Lemma 2.4, we can prove the case.

(2) In this case, we have p - Gn for any n ∈ Z from Lemma 2.5.
Due to the periodicity of (Gn mod p), it is sufficient to consider n ≥ 0.
First, we will show that g1 ≡ g0 (mod p). We have

g1 ≡ G1G
−1
2 ≡ G1(TG1 −NG0)

−1

≡ (T −NG0G
−1
1 )−1 ≡ (T −Ng0)

−1 (mod p).

On the other hand, since Λ(G) ≡ 0(mod p), we have

0 ≡ G2
1 − TG1G0 +NG2

0 ≡ G2
1(1− TG0G

−1
1 +NG2

0G
−2
1 )

≡ G2
1(1− Tg0 +Ng20) (mod p),
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and hence, g0 ≡ (T − Ng0)
−1 (mod p). This yields g1 ≡ g0 (mod p).

Next, we assume that gk = g0 holds for any positive integers k less
than n+ 1. Then, we have

gn+1 ≡ Gn+1G
−1
n+2 ≡ (TGn −NGn−1)(TGn+1 −NGn)

−1

≡(T−NGn−1G
−1
n )(TGn+1G

−1
n −N)−1≡(T−Ngn−1)(Tg

−1
n −N)−1

≡ (T −Ng0)(Tg
−1
0 −N)−1 ≡ g0 (mod p).

Since 1 ≤ g0, gn+1 ≤ p− 1, we have gn+1 = g0. �

Definition 2.7. Let G ∈ Xp(f) and (gn) be the second sequence of G.
We call the period r(G) of (gn) the second period of G.

The next corollary follows from Proposition 2.6.

Corollary 2.8. For G ∈ Xp(f), let r(G) be the second period of G.
Then, we have

r(G) =

{
r(p) if Λ(G) ̸≡ 0 (mod p),

1 if Λ(G) ≡ 0 (mod p).

3. Proofs of theorems. In this section, we prove the theorems in
Section 1. The next lemma follows from Lemma 2.2.

Lemma 3.1. Let G = (Gn) ∈ Xp(f) with p - G0, G1. We have p | Gn
for some n ∈ Z if and only if NG1G

−1
0 ≡ fm (mod p) for some m ∈ Z

satisfying 1 ≤ m ≤ r(p)− 2.

We fix
X ′
p(f) := {(Gn) ∈ Xp(f) | p - G0, G1}.

This set is well defined, that is, if (Gn)∼p (G′
n) and p - G0, G1, then

we have p - G′
0, G

′
1. Clearly, Yp(f) ⊂ X ′

p(f) ⊂ Xp(f) and

X ′
p(f) = {(G(a, 1)) | a = 1, . . . , p− 1}.

Proof of Theorem 1.6. From Lemma 2.2, we have

0 ≡ Fr(p) = Fn+(r(p)−n) = Fr(p)−nFn+1 −NFr(p)−n−1Fn (mod p).
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Therefore, we have fn ≡ N f−1
r(p)−n−1 (mod p). From this congruence

and Lemma 3.1, we have

{(Gn) ∈ X ′
p(f)|p|Gn for some n ∈ Z}

= {(G(a, 1)) | 1 ≤ a ≤ p− 1, Na−1 ≡ fn (mod p)

for some n (1 ≤ n ≤ r(p)− 2)}

= {(G(a, 1)) | 1 ≤ a ≤ p− 1, a ≡ fr(p)−n−1 (mod p)

for some n (1 ≤ n ≤ r(p)− 2)}

= {(G(a, 1)) | a = f1, . . . , fr(p)−2}.

Hence, we conclude that

Yp(f) = X ′
p(f)− {(G(a, 1)) | a = f1, . . . , fr(p)−2}

= {(G(a, 1)) | 1 ≤ a ≤ p− 1, a ̸= f1, . . . , fr(p)−2}.

The equality |Yp(f)| = p+ 1− r(p) follows from the first assertion and
Proposition 2.6. �

Next, we give the proof of Theorem 1.7. We obtain the following
lemma from the definition of the Legendre symbol.

Lemma 3.2. Let f(X) = X2 − TX + N ∈ Z[X] and d = T 2 − 4N .
For any prime number p (̸= 2), we have

|{β ∈ Z | 1 ≤ β ≤ p− 1, f(β−1) ≡ 0 (mod p)}| =
(
d

p

)
+ 1.

Lemma 3.3. Let G = (Gn), G′ = (G′
n) ∈ Xp(f) and (gn), (g

′
n) be the

second sequences, respectively. Assume that p - Gn, G′
n for any n ∈ Z,

and let r(G) be the second period of G. Then, we have G ∼∗
p G′ if and

only if g′0 = gn for some n ∈ Z satisfying 1 ≤ n ≤ r(G).

Proof. By the definition of the second sequence, the equality g′0 = gn
for some n ∈ Z implies G ∼∗

p G′. Conversely, if G ∼∗
p G′, then there

exist integers m and n such that Gm+1G
′
n ≡ G′

n+1Gm (mod p). From
Lemma 1.2, we have Gm−n+1G

′
0 ≡ G′

1Gm−n (mod p). Therefore, we
have g′0 ≡ gm−n (mod p), and hence, g′0 = gm−n. Since the second
period of G is r(G), there exists an integer ℓ satisfying g′0 = gℓ and
1 ≤ ℓ ≤ r(G). �
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Proof of Theorem 1.7. Let α be an integer such that 1 ≤ α ≤ p− 1
and α ̸= f1, . . . , fr(p)−2. We consider the linear recurrence sequence
G = (Gn) = (G(α, 1)) and its second sequence A = (gn). Assume
that G ∼∗

p F . Then, from Lemma 1.2, there exists an integer n such
that Fn ≡ G1Fn ≡ Fn+1G0 ≡ Fn+1α(mod p). Since p - α, we have
n ̸≡ −1, 0(mod r(p)); hence, the congruence implies α = g0 = fm for
some m ∈ Z satisfying 1 ≤ m ≤ r(p) − 2. This is a contradiction. We
conclude that G ̸∼∗

p F , and hence, p - Gn for any n ∈ Z from Lemma 1.4.

Now, we choose another integer α′ satisfying 1 ≤ α′ ≤ p − 1,
α′ ̸= f1, . . . , fr(p)−2 and α′ /∈ A = (gn). For G′ = (G′

n) = (G(α′, 1)),
and its second sequence A′ = (g′n), if gn = g′m for some n,m ∈ Z,
then we have α′ = g′0 = gn−m from Lemma 1.2. This contradicts the
assumption α′ /∈ A = (gn). Hence, we have A∩A′ = ∅. By continuing
this procedure, we can choose integers αi, i = 1, . . . , s, satisfying
(3.1)

{a ∈ Z | 1 ≤ a ≤ p− 1, a ̸= f1, . . . , fr(p)−2} =
s⨿
i=1

Ai (disjoint union),

where Ai is the second sequence of (G(αi, 1)). Finally, we will prove
that

s = s(p) +

(
d

p

)
=
p− (d/p)

r(p)
+

(
d

p

)
.

If β−1, 1 ≤ β ≤ p− 1, is a solution of

f(X) = X2 − TX +N ≡ 0 (mod p),

then the sequence G = (gn) = (G(β, 1)) satisfies Λ(G) ≡ 0(mod p).
On the other hand, for the sequence G′ = (g′n) = (G(fi, 1)), i =
1, . . . , r(p) − 2, we have Λ(G′) = ±F−2

i+1Λ(F) ̸≡ 0 (mod p) from
Lemma 2.3. Hence, we conclude that β ̸= f1, . . . , fr(p)−2. The cardinal-
ity of the second sequence of (G(β, 1)) is 1 from Proposition 2.6. On the
other hand, for any integer α such that 1 ≤ α ≤ p−1, α ̸= f1, . . . , fr(p)−2

and f(α−1) ̸≡ 0 (mod p), the cardinality of the second sequence of
(G(α, 1)) is r(p). Then, the equality (3.1) and Lemma 3.2 yield

(p− 1)− (r(p)− 2) =

(
d

p

)
+ 1 +

{
s−

((
d

p

)
+ 1

)}
r(p).
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From this equality, we obtain

s =
p− (d/p)

r(p)
+

(
d

p

) (
= s(p) +

(
d

p

))
. �

In conclusion, we will give the proof of Theorem 1.8.

Proof of Theorem 1.8. Let

G = (G(a, 1)), G′ = (G(a′, 1)) ∈ Yp(f),

1 ≤ a ≤ p− 1, a ̸= f1, . . . , fr(p)−2,

1 ≤ a′ ≤ p− 1, a′ ̸= f1, . . . , fr(p)−2,

and A be the second sequence of G. From Lemma 3.3, we have G ∼∗
p G′

if and only if a′ ∈ A. By Theorem 1.7 and its proof, since the
set {αi | i = 1, . . . , s(p) + (d/p)} contains the representatives of Ai

(i = 1, . . . , s(p) + (d/p)), we obtain the first assertion of the theorem.
The equality |Y ∗

p (f)| = s(p)+(d/p) follows from the first assertion. �

4. Relation to Laxton’s equivalence classes. In this section, we
will explain the relation between our modulo p equivalence classes and
Laxton’s [6]. We also recommend the book [3] by Ballot. We consider
the two relations ∼ and ∼∗ (without modulo p). Let G = (Gn) and
G′ = (G′

n) be linear recurrence sequences defined by (1.1).

Definition 4.1.

(1) If there are some non-zero integers λ and µ satisfying λGn = µG′
n

for any n ∈ Z, then we write G ∼ G′.

(2) If there are some non-zero integers λ, µ and an integer ν satisfying
λGn+ν = µG′

n for any n ∈ Z, then we write G ∼∗ G′.

These two relations are equivalence relations for the set

F (f) := {G | linear recurrence sequences defined by (1.1)

with G0 ̸= 0 or G1 ̸= 0}.

Note that either assumption G0 ̸= 0 or G1 ̸= 0 is equivalent to Λ(G) ̸= 0
by our assumption of f(X). Consider the quotient sets using the
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relations:

G(f) := F (f)/ ∼ , G∗(f) := F (f)/ ∼∗ .

Laxton introduced a commutative group structure on G∗(f). For any
G = (Gn),H = (Hn) ∈ F (f), with

Gn :=
Bθn2 −Aθn1
θ2 − θ1

, Hn :=
Dθn2 − Cθn1
θ2 − θ1

,

where B = G1 − G0θ1, A = G1 − G0θ2, D = H1 − H0θ1 and
C = H1 −H0θ2. He defined the product G × H = W = (Wn) ∈ F (f)
by

(4.1) Wn =
BDθn2 −ACθn1

θ2 − θ1
, n ∈ Z.

He showed that this product yields commutative group structures on
G∗(f) with the identity F (the class of Lucas sequence), namely, for
G,H ∈ G∗(f), their product is given byW. We consider not only G∗(f)
but also G(f) to correspond to our set Xp(f). Denote

I(f, p) := {G ∈ G(f) | Λ(G) ̸≡ 0 (mod p) for some G ∈ G},
I∗(f, p) := {G ∈ G∗(f) | Λ(G) ̸≡ 0 (mod p) for some G ∈ G},
G(f, p) := {G ∈ G(f)|p|G0 for all G = (Gn) ∈ G},
G∗(f, p) := {G ∈ G∗(f)|p|Gn for all G = (Gn) ∈ G and some n ∈ Z}.

The sets I(f, p) andG(f, p) (respectively, I∗(f, p) andG∗(f, p)) are sub-
groups of G(f) (respectively, G∗(f)) [6, Lemma 2.3, Proposition 3.1].

For the exact sequence of groups

0 −→ I∗(f, p)/G∗(f, p) −→ G∗(f)/G∗(f, p) −→ G∗(f)/I∗(f, p) −→ 0,

if p ̸= 2, then Laxton [6, Theorem 3.7] showed the following.

I∗(f, p)/G∗(f, p) ≃

{
Z/s(p)Z if (d/p) = ±1,

0 if (d/p) = 0,

and

G∗(f)/I∗(f, p) ≃

{
Z(1+(d/p))/2 if (d/p) = ±1,

Z/2Z if (d/p) = 0,
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where s(p) = (p − (d/p))/r(p). On the other hand, let Xp(f) be the
set in Section 1. For any G = (Gn), H = (Hn) ∈ Xp(f), the product
W = G × H (4.1) is not always in Xp(f) (for example, in the case
1 +N − T ≡ 0 (mod p), if

G0 ≡ G1 ̸≡ 0 (mod p) and H1 ≡ NH0 ̸≡ 0 (mod p),

then G = (Gn),H = (Hn) ∈ Xp(f) but the product sequence W =
(Wn) /∈ Xp(f) since W0 ≡ W1 ≡ 0(mod p) (see [3, page 15, (2.6)])).
However, we will prove that certain subsets Zp(f) and Z

∗
p (f) of Xp(f)

and X∗
p (f), respectively, have group structures defined by (4.1).

Lemma 4.2. Let G = (Gn), G′ = (G′
n) ∈ Xp(f), and assume that

Λ(G) ̸≡ 0(mod p).

(1) If G ∼p G′, then we have Λ(G′) ̸≡ 0 (mod p).

(2) If G ∼∗
p G′, then we have Λ(G′) ̸≡ 0 (mod p).

Proof. We only give the proof for (2). Since G ∼∗
p G′, there exist

integers m and n satisfying Gm+1G
′
n ≡ G′

n+1Gm (mod p). If p | G′
n

or p | G′
n+1, then we have Λ(G′) ̸≡ 0 (mod p) from Lemma 2.5. If p

- G′
n, G

′
n+1, then we have p - Gm, Gm+1. From Lemma 2.3 and the

congruence Gm+1G
′
n ≡ G′

n+1Gm (mod p), we have

Λ(G′) ≡ ±G
′2
n+1G

−2
m+1Λ(G) ̸≡ 0 (mod p). �

From Lemma 4.2, the sets

Zp(f) := {G ∈ Xp(f) | Λ(G) ̸≡ 0 (mod p)},
Z∗
p (f) := {G ∈ X∗

p (f) | Λ(G) ̸≡ 0 (mod p)}

are well defined. The next lemmata show that product (4.1) on
Zp(f), Z

∗
p (f) is well defined.

Lemma 4.3. Let G = (Gn), H = (Hn) ∈ Xp(f). For the fixed inte-
ger ν, let Z = (Zn) ∈ Xp(f) be the sequence defined by Zn = Hn+ν ,
n ∈ Z. Then, we have G ×H∼∗

p G × Z.

Proof. Set

Gn =
Bθn2 −Aθn1
θ2 − θ1

, Hn =
Dθn2 − Cθn1
θ2 − θ1

, Zn =
Eθn2 − Fθn1
θ2 − θ1

.
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Then, we have E = Dθν2 , F = Cθν1 ; hence, the nth term of G ×Z is the
(n+ ν)th term of G ×H, and we obtain G ×H∼∗

p G × Z. �

Lemma 4.4. Let G = (Gn), G′ = (G′
n), H = (Hn) and H′ = (H ′

n) ∈
Xp(f).

(1) If G ∼p G′ and H∼pH′, then we have G ×H∼p G′ ×H′.

(2) If G ∼∗
p G′ and H∼∗

pH′, then we have G ×H∼∗
p G′ ×H′.

Proof. We only give the proof for (2). It is sufficient to show that
G ×H∼∗

p G′ ×H since the product (4.1) is commutative and ∼∗
p is an

equivalence relation. From the assumption G ∼∗
p G′, using Lemma 1.2,

there exists an integer ν satisfying G1G
′
ν ≡ G0G

′
ν+1 (mod p). Let

Z = (Zn) ∈ Xp(f) be the sequence defined by Zn = G′
n+ν , n ∈ Z.

Then, we have G1Z0 ≡ G0Z1 (mod p). From Lemma 4.3, it is sufficient
to show that G×H∼∗

pZ×H. Setting G×H = (Wn) and Z×H = (Yn),
we have

(4.2)

{
W0 = G1H0 +G0H1 − TG0H0,

W1 = G1H1 −NG0H0,{
Y0 = Z1H0 + Z0H1 − TZ0H0,

Y1 = Z1H1 −NZ0H0,

see [3, page 15 (2.6)]. Assume that p | G0. Then, we have p | Z0 since
G1Z0 ≡ G0Z1 (mod p). From (4.2), we have

Y1W0 ≡ G1H0Z1H1 ≡W1Y0 (mod p),

and hence, we have G ×H∼∗
pZ ×H.

Next, assume that p - G0. Then, we have p - Z0. From (4.2) and the
congruence G1Z0 ≡ G0Z1 (mod p), we have W0 ≡ G0Z

−1
0 Y0 (mod p)

and W1 ≡ G0Z
−1
0 Y1 (mod p), from which we conclude that

W0Y1 ≡ Y0W1 (mod p),

and hence, G ×H∼∗
pZ ×H. �

From Lemma 4.4, we know that the products (4.1) on Zp(f) and
Z∗
p (f) are well defined. The sets Zp(f) and Z

∗
p are commutative groups

with identity F . For G ∈ Zp(f) (or Z∗
p (f)), G = (Gn) with Gn =
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(Bθn2 −Aθn1 )/(θ2 − θ1), the inverse element of G is given by G′ ∈ Zp(f),
G′ = (G′

n) with G
′
n = (Aθn2 −Bθn1 )/(θ2 − θ1).

Theorem 4.5. There exist natural group homomorphisms

I(f, p)/G(f, p) ≃ Zp(f) and I∗(f, p)/G∗(f, p) ≃ Z∗
p (f).

Proof. Consider the following maps

ψp : I(f, p) −→ Zp(f), ψp(G) = Gp,

ψ∗
p : I∗(f, p) −→ Z∗

p (f), ψ∗
p(G) = Gp,

where
Gp := {G = (Gn) ∈ G | p - G0 or p - G1}.

From the definitions of relations ∼, ∼∗, ∼p and ∼∗
p , these maps ψ and

ψ∗ are well-defined group homomorphisms. Furthermore, both ψp and
ψ∗
p are surjective with kernels

Ker(ψp) = G(f, p) and Ker(ψ∗
p) = G∗(f, p)

by Lemma 1.4. �

Set F = Q(θ1), and let OF be the ring of integers of F . For any
prime ideal p of F which is above p, let K1 := OF /p and K2 := Z/pZ
be the residue fields. Assume that p ̸= 2. From the isomorphisms
ψp and ψ∗

p and the group structures given by Laxton [6, Theorem 3.7
and proof], we obtain the following commutative diagrams. Note that
(G(f0, 1)) = (G(0, 1)) = F .

(I) Case (d/p) = 1.

0 −−−−−→ Ker(ι) −−−−−→ I(f, p)/G(f, p)
ι−−−−−→ I∗(f, p)/G∗(f, p) −−−−−→ 0y≀ ψp

y≀ ψ∗
p

y≀

0 −−−−−→ {(G(fi, 1)) | i = 0, . . . , −−−−−→ Zp(f) −−−−−→ Z∗
p (f) −−−−−→ 0

r(p)−2}∪{(G(1, 0))}y≀ φ+
p

y≀
y≀

0 −−−−−→ ⟨θ2/θ1⟩ −−−−−→ K∗
1 −−−−−→ K∗

1/⟨θ2/θ1⟩ −−−−−→ 0
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where ι is the natural surjection, the map φ+
p is given by φ+

p (G) =
(G1 − G0θ1)/(G1 − G0θ2), (G = (Gn)), and each row is an exact
sequence.

(II) Case (d/p) = −1.

0 −−−−−→ Ker(ι)) −−−−−→ I(f, p)/G(f, p)
ι−−−−−→ I∗(f, p)/G∗(f, p) −−−−−→ 0y≀ ψp

y≀ ψ∗
p

y≀

0 −−−−−→ {(G(fi, 1)) | i = 0, . . . , −−−−−→ Zp(f) −−−−−→ Z∗
p (f) −−−−−→ 0

r(p)−2}∪{(G(1, 0))}y≀ φ−
p

y≀
y≀

0 −−−−−→ K∗
2 ⟨θ1⟩/K∗

2 −−−−−→ K∗
1/K

∗
2 −−−−−→ K∗

1/K
∗
2 ⟨θ1⟩ −−−−−→ 0

where ι is the natural surjection, the map φ−
p is given by φ−

p (G) =
G1 −G0θ2, (G = (Gn)), and each row is an exact sequence.

(III) Case (d/p) = 0.

I∗(f, p)/G∗(f, p)
ψ∗

p≃ Z∗
p (f) ≃ 0

and

Zp(f) = {(G(fi, 1)) | i = 0, . . . , r(p)− 2} ∪ {(G(1, 0))}

= {(G(Fi,Fi+1)) | i = 0, . . . , r(p)− 1} ∼−→
φ0

p

Z/pZ

where the map φ0
p is given by φ0

p((G(Fi,Fi+1))) = i. We know that the

map φ0
p is a group homomorphism since for Gi = (G(Fi,Fi+1)), Gj =

(G(Fj ,Fj+1)); the product

Gi × Gj = W = (Wn)

is given by

W0 = Fi+1Fj + Fi(Fj+1 − TFj) = Fi+1Fj −NFiFj−1 = Fi+j ,
W1 = Fi+1Fj+1 −NFiFj = Fi+j+1,

from Lemma 2.2 and explicit formulae forW0 andW1 [3, page 15, (2.6)].

From the diagrams, Lemma 1.4, Theorem 1.6 and Theorem 1.8, we
obtain the next corollary.
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Corollary 4.6.

(1) All of the classes of Zp(f) and I(f, p)/G(f, p) are given by

{(G(a, 1)) | 0 ≤ a ≤ p− 1, f(a−1) ̸≡ 0 (mod p)} ∪ {(G(1, 0))}.

(2) Let αi, i = 1, . . . , s(p) + (d/p), be the integers in Theorem 1.7.
Then, all of the classes of Z∗

p (f) and I
∗(f, p)/G∗(f, p) are given by

{(G(αi, 1)) | i = 1, . . . , s(p) + (d/p), f(α−1
i ) ̸≡ 0 (mod p)} ∪ {F}.

5. Examples. Examples are given in Tables 1 and 2 for the cases
T = 1, N=−1 and T = 6, N= 1. If T = 1 and N=−1, then (G(0, 1))

Table 1. T = 1, N = −1.

p r(p) s(p) (d/p) Ai Y ∗
p (f) Z∗

p (f)
(i = 1, . . . , s(p) + (d/p)) (I∗(f, p)/G∗(f, p))

3 4 1 −1 ∅ ∅ F
5 5 1 0 {2∗} (G(2, 1)) F
7 8 1 −1 ∅ ∅ F

(G(3, 1)),

11 10 1 1 {3∗}, {7∗} (G(7, 1)) F
13 7 2 −1 {2, 3, 4, 6, 8, 9, 10} (G(2, 1)) F , (G(2, 1))
17 9 2 −1 {2, 3, 5, 6, 8, 10, 11, 13, 14} (G(2, 1)) F , (G(2, 1))

(G(4, 1)),

19 18 1 1 {4∗}, {14∗} (G(14, 1)) F
23 24 1 −1 ∅ ∅ F

(G(3, 1)),

{5∗}, {23∗}, {3, 4, 6, 7, 9, 11, (G(5, 1)),

29 14 2 1 12, 16, 17, 19, 21, 22, 24, 25} (G(23, 1)) F , (G(3, 1))
(G(12, 1)),

31 30 1 1 {12∗}, {18∗} (G(18, 1)) F
{2, 4, 5, 7, 9, 10, 11, 14, 15,
18, 21, 22, 25, 26, 27, 29, 31,

37 19 2 −1 32, 34} (G(2, 1)) F , (G(2, 1))
{6∗}, {34∗}, {3, 4, 5, 7, 8, 9, (G(3, 1)),

10, 13, 15, 18, 22, 25, 27, 30, (G(6, 1)),

41 20 2 1 31, 32, 33, 35, 36, 37} (G(34, 1)) F , (G(3, 1))
43 44 1 −1 ∅ ∅ F

{3, 4, 5, 8, 9, 11, 12, 15, 18,
19, 20, 21, 29, 33, 39, 40},
{6, 7, 13, 17, 25, 26, 27, 28, (G(3, 1)), F , (G(3, 1)),

47 16 3 −1 31, 34, 35, 37, 38, 41, 42, 43} (G(6, 1)) (G(6, 1))
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Table 2. T = 6, N = 1.

p r(p) s(p) (d/p) Ai Y ∗
p (f) Z∗

p (f)
(i = 1, . . . , s(p) + (d/p)) (I∗(f, p)/G∗(f, p))

3 2 2 −1 {1, 2} (G(1, 1)) F , (G(1, 1))
5 3 2 −1 {2, 3, 4} (G(2, 1)) F , (G(2, 1))

(G(1, 1)),

(G(2, 1)),

7 3 2 1 {2∗}, {4∗}, {1, 3, 5} (G(4, 1)) F , (G(1, 1))
11 6 2 −1 {1, 5, 7, 8, 9, 10} (G(1, 1)) F , (G(1, 1))
13 7 2 −1 {2, 3, 4, 7, 9, 10, 12} (G(2, 1)) F , (G(2, 1))

(G(1, 1)),

(G(2, 1))

(G(4, 1)),

{8∗}, {15∗}, {1, 5, 7, 16} (G(8, 1)), F , (G(1, 1))
17 4 4 1 {2, 12, 13, 14}, {4, 9, 10, 11} (G(15, 1)) (G(2, 1)), (G(4, 1))
19 10 2 −1 {1, 2, 4, 5, 7, 10, 11, 14, 15, 18} (G(1, 1)) F , (G(1, 1))

(G(1, 1)),

{13∗}, {16∗}, {1, 3, 5, 8, 9, (G(13, 1)),

23 11 2 1 11, 14, 15, 18, 20, 21} (G(16, 1)) F , (G(1, 1))
(G(2, 1)),

{2, 9, 19, 20, 22}, {3, 7, 10, (G(3, 1)),

25, 28}, {4, 13, 15, 16, 26}, (G(4, 1)), F , (G(2, 1)),
{8, 12, 14, 18, 24}, {11, 17, (G(8, 1)), (G(3, 1)), (G(4, 1)),

29 5 6 −1 21, 23, 27} (G(11, 1)) (G(8, 1)), (G(11, 1))
{18∗}, {19∗}, {1, 2, 3, 4, 5, (G(1, 1)),

8, 12, 13, 15, 16, 21, 22, 24, (G(18, 1)),

31 15 2 1 25, 29} (G(19, 1)) F , (G(1, 1))
{3, 7, 8, 11, 13, 14, 16, 18,
20, 21, 22, 23, 25, 27, 29,

37 19 2 −1 30, 32, 35, 36} (G(3, 1)) F , (G(3, 1))
(G(1, 1)),

(G(2, 1)),

(G(4, 1)),

(G(8, 1)),

{10∗}, {37∗}, {1, 3, 5, 14, 33}, (G(9, 1)),

{2, 17, 18, 26, 31}, {4, 16, 21, (G(10, 1)), F , (G(1, 1)),
29, 30}, {8, 11, 20, 32, 38}, (G(12, 1)), (G(2, 1)), (G(4, 1)),

{12, 19, 22, 23, 34}, {9, 15, 27, (G(13, 1)), (G(8, 1)), (G(9, 1)),

41 5 8 1 36, 39}, {13, 24, 25, 28, 35} (G(37, 1)) (G(12, 1)), (G(13, 1))
{1, 5, 7, 9, 12, 14, 15, 16, 18,
19, 23, 24, 25, 26, 30, 31, 33,

43 22 2 −1 34, 35, 37, 40, 42} (G(1, 1)) F , (G(1, 1))
{17∗}, {36∗}, {1, 2, 3, 4, 5, 10, (G(1, 1)),

12, 13, 14, 16, 18, 19, 20, 24, 29, (G(17, 1)),

47 23 2 1 33, 34, 35, 37, 39, 40, 41, 43} (G(36, 1)) F , (G(1, 1))
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is the original Fibonacci number and (G(2, 1)) is the original Lucas
number. If T = 6 and N = 1, then (G(0, 1)) is the balancing number
and (G(1, 3)) is the Lucas balancing number [4]. Numbers a∗ with an
asterisk in the tables mean that a satisfies f(a−1) ≡ 0(mod p).
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