MOD *p* EQUIVALENCE CLASSES OF LINEAR RECURRENCE SEQUENCES OF DEGREE 2

MIHO AOKI AND YUHO SAKAI

ABSTRACT. Laxton introduced a group structure on the set of equivalence classes of linear recurrence sequences of degree 2. This result yields much information on the divisibilities of such sequences. In this paper, we introduce other equivalence relations for the set of linear recurrence sequences (G_n) , which are defined by $G_0, G_1 \in \mathbb{Z}$ and $G_n = TG_{n-1} - NG_{n-2}$ for fixed integers T and $N = \pm 1$. The relations are given by certain congruences modulo p for a fixed prime number p, which are different from Laxton's without modulo p equivalence relations. We determine the initial terms G_0 and G_1 of all of the representatives of the equivalence classes (G_n) satisfying $p \nmid G_n$ for any integer nand give the number of equivalence classes. Furthermore, we determine the representatives of Laxton's without modulo pclasses from our modulo p classes.

1. Introduction. Let $f(X) = X^2 - TX + N \in \mathbb{Z}[X]$, $N = \pm 1$, be a polynomial whose roots θ_1 and θ_2 are not roots of unity. Then, θ_1 and θ_2 are units of a certain real quadratic field. Let $d := T^2 - 4N$ be the discriminant of f(X). We consider linear recurrence sequences $\mathcal{G} = (G_n)_{n \in \mathbb{Z}}$ defined by

(1.1)
$$G_0, G_1 \in \mathbb{Z}, \quad G_n = TG_{n-1} - NG_{n-2}.$$

If $G_0 = a$ and $G_1 = b$, then we denote by $\mathcal{G} = (G(a, b))$. We call $\mathcal{F} = (\mathcal{F}_n) = (G(0, 1))$ and $\mathcal{L} = (\mathcal{L}_n) = (G(2, T))$ the Lucas sequence and the companion Lucas sequence, respectively. We fix a prime number p. It is well known that the sequence $(G_n \mod p)$ is periodic for any $\mathcal{G} = (G_n)$ defined by (1.1). Let r(p) be the rank of the Lucas sequence $\mathcal{F} = (\mathcal{F}_n)$, namely, it is the smallest positive integer n satisfying $p \mid \mathcal{F}_n$. We can easily check r(2) = 2 if T is even and r(2) = 3 if T is odd. If

²⁰¹⁰ AMS Mathematics subject classification. Primary 11B37, 11B39.

Keywords and phrases. Linear recurrence sequences, the rank of appearance of Lucas sequences, the Laxton group.

Received by the editors on July 16, 2016, and in revised form on October 3, 2016.

DOI:10.1216/RMJ-2017-47-8-2513 Copyright ©2017 Rocky Mountain Mathematics Consortium

 $p \neq 2$, then it was shown (Lucas [7, Sections 24, 25]) or [5, Lemma 2, Theorem 12] that r(p) divides p - (d/p) where (*/*) is the Legendre symbol.

We define two relations \sim_p and \sim_p^* for the set of linear recurrence sequences.

Definition 1.1. Let $\mathcal{G} = (G_n)$ and $\mathcal{G}' = (G'_n)$ be linear recurrence sequences defined by (1.1).

(1) If the congruence $G_1G'_0 \equiv G'_1G_0 \pmod{p}$ holds, then we write $\mathcal{G} \sim_p \mathcal{G}'$.

(2) If there are some integers m and n satisfying

$$G_{m+1}G'_n \equiv G'_{n+1}G_m \pmod{p},$$

then we write $\mathcal{G} \sim_p^* \mathcal{G}'$.

2514

Define a set $\mathscr{X}_p(f)$ of linear recurrence sequences by

 $\mathscr{X}_p(f) := \{ \mathcal{G} \mid \text{linear recurrence sequences defined by } (1.1)$

with $p \nmid G_0$ or $p \nmid G_1$.

We can easily show that the first relation \sim_p is an equivalence relation for the set $\mathscr{X}_p(f)$. Furthermore, we can show that the second relation \sim_p^* is also an equivalence relation for the set $\mathscr{X}_p(f)$, cf., [2, Lemma 9], by using the following lemmata.

Lemma 1.2. Let $\mathcal{G} = (G_n)$ and $\mathcal{G}' = (G'_n)$ be linear recurrence sequences defined by (1.1). If $G_{m+1}G'_n \equiv G'_{n+1}G_m \pmod{p}$, then we have the following congruences.

$$G_{m+2}G'_{n+1} \equiv G'_{n+2}G_{m+1} \pmod{p}$$

and

$$G_m G'_{n-1} \equiv G'_n G_{m-1} \pmod{p}.$$

Lemma 1.3. Assume that $\mathcal{G} = (G_n) \in \mathscr{X}_p(f)$. If $p \mid G_n$, then we have $p \nmid G_{n-1}$ and $p \nmid G_{n+1}$.

These two lemmata follow from the recurrence formula in (1.1). Now, we consider the quotient sets using these relations. We set

$$\begin{aligned} X_p(f) &:= \mathscr{X}_p(f) / \sim_p, \\ Y_p(f) &:= \{ \overline{(G_n)} \in X_p(f) \mid p \nmid G_n \text{ for any } n \in \mathbb{Z} \}, \\ X_p^*(f) &:= \mathscr{X}_p(f) / \sim_p^*, \\ Y_p^*(f) &:= \{ \overline{(G_n)} \in X_p^*(f) \mid p \nmid G_n \text{ for any } n \in \mathbb{Z} \}, \end{aligned}$$

where $\overline{(G_n)}$ is the equivalence class which includes (G_n) . The sets Y_p and Y_p^* are well defined, that is, we will show in Section 2, Lemma 2.1, that, if $(G_n) \sim_p (G'_n)$ (or $(G_n) \sim_p^* (G'_n)$) and $p \nmid G_n$ for any $n \in \mathbb{Z}$, then we have $p \nmid G'_n$ for any $n \in \mathbb{Z}$. For any $\mathcal{G} = (G_n) \in \mathscr{X}_p(f)$ satisfying $p \mid G_{\nu}$ for some $\nu \in \mathbb{Z}$, we have $\mathcal{F}_1 G_{\nu} \equiv 0 \equiv G_{\nu+1} \mathcal{F}_0 \pmod{p}$. Therefore, we have $\mathcal{G} \sim_p^* \mathcal{F} = (G(0, 1))$ (the Lucas sequence) and obtain the following lemma.

Lemma 1.4. We have

$$X_p(f) = \{\overline{(G(a,1))} \mid a = 0, \dots, p-1\} \cup \{\overline{(G(1,0))}\}$$

and

$$X_p^*(f) = \overline{\mathcal{F}} \cup Y_p^*(f).$$

For any integer G, not divisible by p, we denote an inverse element modulo p by $G^{-1} \in \mathbb{Z}$, i.e., $GG^{-1} \equiv 1 \pmod{p}$.

Definition 1.5. Assume that $\mathcal{G} = (G_n) \in \mathscr{X}_p(f)$. We define the sequence $(g_n)_{n \in \mathbb{Z}}, 0 \leq g_n \leq p-1$ or $g_n = \infty$, by

$$g_n \begin{cases} \equiv G_n G_{n+1}^{-1} \pmod{p} & \text{if } p \nmid G_{n+1}, \\ = \infty & \text{otherwise.} \end{cases}$$

We call the sequence (g_n) the second sequence of \mathcal{G} . In particular, we denote the second sequence of the Lucas sequence \mathcal{F} by (\mathfrak{f}_n) .

We will show in Section 2 that the second sequences (g_n) have the periods which divide r(p), Proposition 2.6. In Section 3, we will show the following theorems by using Proposition 2.6. These theorems are

generalizations of our previous results in the case T = 1, N = -1, [1, 2].

Theorem 1.6. We have

$$Y_p(f) = \{\overline{(G(a,1))} \mid 1 \le a \le p-1, \ a \ne \mathfrak{f}_1, \dots, \mathfrak{f}_{r(p)-2}\}$$

and

$$|Y_p(f)| = p + 1 - r(p).$$

Theorem 1.7. Assume that $p \neq 2$, and set

$$s(p) := \frac{p - (d/p)}{r(p)}$$

There exist integers α_i $(i = 1, ..., s(p) + (d/p), 1 \le \alpha_i \le p - 1)$ satisfying the following conditions.

(1) For the sequence $(G_n) = (G(\alpha_i, 1))$, we have $p \nmid G_n$ for any $n \in \mathbb{Z}$.

(2) Let \mathcal{A}_i be the second sequence of $(G(\alpha_i, 1))$. Then, we have

 $\{a \in \mathbb{Z} \mid 1 \le a \le p-1, \ a \ne \mathfrak{f}_1, \dots, \mathfrak{f}_{r(p)-2}\} = \prod_{i=1}^{s(p)+(d/p)} \mathcal{A}_i \ (disjoint \ union).$

Theorem 1.8. Assume that $p \neq 2$. Let α_i (i = 1, ..., s(p) + (d/p)) be the integers in Theorem 1.7. We have

$$Y_p^*(f) = \left\{ \overline{(G(\alpha_i, 1))} \ \middle| \ i = 1, \dots, s(p) + \left(\frac{d}{p}\right) \right\}$$

and

$$|Y_p^*(f)| = s(p) + \left(\frac{d}{p}\right).$$

In the case p = 2, we have

$$X_2(f) = \{\overline{(G(0,1))}(=\overline{\mathcal{F}}), \overline{(G(1,1))}, \overline{(G(1,0))}\}$$
$$Y_2(f) = \begin{cases} \emptyset & \text{if } T \text{ is odd,} \\ \overline{(G(1,1))} & \text{otherwise,} \end{cases}$$

$$\begin{split} X_2^*(f) &= \begin{cases} \overline{(G(0,1))} & \text{if } T \text{ is odd,} \\ \overline{(G(0,1))}, \overline{(G(1,1))} & \text{otherwise,} \end{cases} \\ Y_2^*(f) &= \begin{cases} \emptyset & \text{if } T \text{ is odd,} \\ \overline{(G(1,1))} & \text{otherwise.} \end{cases} \end{split}$$

In Section 4, we will explain the relation between our "modulo p" equivalence classes and Laxton's "without modulo p" equivalence classes [6]. He introduced a commutative group structure on certain sets of equivalence classes G(f) and $G^*(f)$. We will show that the certain subsets of $X_p(f)$ and $X_p^*(f)$ have the same group structures and are isomorphic to finite quotient groups of G(f) and $G^*(f)$ (Theorem 4.5). From these facts, by using our theorems, we can give the representatives of Laxton's quotient groups. In Section 5, we give some examples.

2. Mod *p* equivalence classes.

Lemma 2.1. Assume that $\mathcal{G} = (G_n)$, $\mathcal{G}' = (G'_n) \in \mathscr{X}_p(f)$. If $\mathcal{G} \sim_p \mathcal{G}'$ (or $\mathcal{G} \sim_p^* \mathcal{G}'$) and $p \nmid G_n$ for any $n \in \mathbb{Z}$, then we have $p \nmid G'_n$ for any $n \in \mathbb{Z}$.

Proof. If $\mathcal{G} \sim_p \mathcal{G}'$, then we have $G_1G_0 \equiv G'_1G_0 \pmod{p}$. Assume that there exists an integer ℓ such that $p \mid G'_{\ell}$. Using Lemma 1.2, we have $G_{\ell+1}G'_{\ell} \equiv G'_{\ell+1}G_{\ell} \pmod{p}$. Since p divides G'_{ℓ} and does not divide $G'_{\ell+1}$, by Lemma 1.3, we obtain $p \mid G_{\ell}$. This contradicts the assumption. We can similarly show the assertion for the case $\mathcal{G} \sim_p^* \mathcal{G}'$.

From Lemma 2.1, we know that the sets Y_p and Y_p^* in Section 1 are well defined. Next, we will show that any second sequence has the period dividing r(p). Let $\mathcal{G} = (G_n)$ be a linear recurrence sequence defined by (1.1). Then, we have

(2.1)
$$G_n = \frac{(G_1 - G_0 \theta_1) \theta_2^n - (G_1 - G_0 \theta_2) \theta_1^n}{\theta_2 - \theta_1}, \quad n \in \mathbb{Z}.$$

Set

$$\Lambda(\mathcal{G}) := (G_1 - G_0 \theta_1)(G_1 - G_0 \theta_2) = G_1^2 - TG_0 G_1 + NG_0^2.$$

From (2.1), we can show the following lemma.

Lemma 2.2. Let $\mathcal{G} = (G_n)$ be a linear recurrence sequence defined by (1.1). For any $n, m \in \mathbb{Z}$, we have

$$G_{n+m} = \mathcal{F}_m G_{n+1} - N \mathcal{F}_{m-1} G_n.$$

Proof. Set $B = G_1 - G_0 \theta_1$ and $A = G_1 - G_0 \theta_2$. Then, we have

$$\begin{split} \mathcal{F}_{m}G_{n+1} &- N\mathcal{F}_{m-1}G_{n} \\ &= \frac{(\theta_{2}^{m} - \theta_{1}^{m})(B\theta_{2}^{n+1} - A\theta_{1}^{n+1}) - N(\theta_{2}^{m-1} - \theta_{1}^{m-1})(B\theta_{2}^{n} - A\theta_{1}^{n})}{(\theta_{2} - \theta_{1})^{2}} \\ &= \frac{B(\theta_{2}^{m+n+1} - N\theta_{2}^{m+n+1}) + A(-\theta_{1}^{n+1}\theta_{2}^{m} + N\theta_{1}^{n}\theta_{2}^{m-1})}{(\theta_{2} - \theta_{1})^{2}} \\ &+ \frac{B(-\theta_{1}^{m}\theta_{2}^{n+1} + N\theta_{1}^{m-1}\theta_{2}^{n}) + A(\theta_{1}^{m+n+1} - N\theta_{1}^{m+n+1})}{(\theta_{2} - \theta_{1})^{2}}. \end{split}$$

Since $N = \theta_1 \theta_2$, we have $A(-\theta_1^{n+1}\theta_2^m + N\theta_1^n\theta_2^{m-1}) = 0$. In the same manner, we get $B(-\theta_1^m\theta_2^{n+1} + N\theta_1^{m-1}\theta_2^n) = 0$. Furthermore, the equalities

$$B(\theta_2^{m+n+1} - N\theta_2^{m+n-1}) = B\theta_2^{m+n}(\theta_2 - N\theta_2^{-1}) = B\theta_2^{m+n}(\theta_2 - \theta_1)$$

and

$$A(\theta_1^{m+n+1} - N\theta_1^{m+n-1}) = A\theta_1^{m+n}(\theta_1 - N\theta_1^{-1}) = A\theta_1^{m+n}(\theta_1 - \theta_2)$$

hold. Therefore, we have

$$\mathcal{F}_m G_{n+1} - N \mathcal{F}_{m-1} G_n = \frac{B \theta_2^{m+n} (\theta_2 - \theta_1) + A \theta_1^{m+n} (\theta_1 - \theta_2)}{(\theta_2 - \theta_1)^2}$$
$$= \frac{B \theta_2^{m+n} - A \theta_1^{m+n}}{\theta_2 - \theta_1}$$
$$= G_{m+n}.$$

We can show the following lemma by induction on n.

Lemma 2.3. Let $\mathcal{G} = (G_n)$ be a linear recurrence sequence defined by (1.1). For any $n \in \mathbb{Z}$, we have

$$G_n^2 - TG_{n-1}G_n + NG_{n-1}^2 = N(G_{n+1}^2 - TG_nG_{n+1} + NG_n^2).$$

Assume that $\mathcal{G} = (G_n) \in \mathscr{X}_p(f)$ satisfies $p \mid G_{\nu}$ for some $\nu \in \mathbb{Z}$. Since the sequence $(G_n \mod p)$ is periodic, there exists the integer $r(\mathcal{G}, p)$ such that $p \mid G_n$ if and only if $r(\mathcal{G}, p) \mid n - \nu$. The next lemma easily follows.

Lemma 2.4. Let $\mathcal{G} = (G_n) \in \mathscr{X}_p(f)$ satisfy $p \mid G_{\nu}$ for some $\nu \in \mathbb{Z}$. Then, we have $r(\mathcal{G}, p) = r(p)$.

Lemma 2.5. Let $\mathcal{G} = (G_n) \in \mathscr{X}_p(f)$, and assume that

 $\Lambda(\mathcal{G}) \equiv 0 \pmod{p}.$

Then, we have $p \nmid G_n$ for any $n \in \mathbb{Z}$.

Proof. The assertion follows from the fact that $p \nmid G_0$ or $p \nmid G_1$ and Lemmata 1.3 and 2.3.

The next proposition asserts that the second sequences (g_n) have periods which divide r(p).

Proposition 2.6. Let $\mathcal{G} = (G_n) \in \mathscr{X}_p(f)$ and (g_n) be the second sequence of \mathcal{G} .

(1) If
$$\Lambda(\mathcal{G}) \not\equiv 0 \pmod{p}$$
, then we have $g_m = g_n$ if and only if $m \equiv n \pmod{r(p)}$.

(2) If $\Lambda(\mathcal{G}) \equiv 0 \pmod{p}$, then we have $g_n = g_0$ for any $n \in \mathbb{Z}$.

Proof.

(1) We will show the assertion for two cases.

First, we assume that $p \nmid G_n$ for any $n \in \mathbb{Z}$. From the definition of the second sequence, we have $g_n = g_m$ if and only if $G_m G_{n+1} \equiv G_{m+1} G_n \pmod{p}$. Since

$$G_{n+1} = \mathcal{F}_{n-m+1}G_{m+1} - N\mathcal{F}_{n-m}G_m$$

and

$$G_n = \mathcal{F}_{n-m}G_{m+1} - N\mathcal{F}_{n-m-1}G_m,$$

from Lemma 2.2, we have
$$g_m = g_n$$
 if and only if
(2.2)
 $G_{m+1}^2 \mathcal{F}_{n-m} - G_m G_{m+1}(\mathcal{F}_{n-m+1} + N\mathcal{F}_{n-m-1}) + NG_m^2 \mathcal{F}_{n-m} \equiv 0 \pmod{p}.$

From recurrence formula (1.1) and Lemma 2.3, we have

$$G_{m+1}^2 \mathcal{F}_{n-m} - G_m G_{m+1} (\mathcal{F}_{n-m+1} + N \mathcal{F}_{n-m-1}) + N G_m^2 \mathcal{F}_{n-m}$$

$$\equiv \mathcal{F}_{n-m} (G_{m+1}^2 - T G_m G_{m+1} + N G_m^2)$$

$$\equiv \mathcal{F}_{n-m} N^m \Lambda(\mathcal{G}) \pmod{p}.$$

By the assumption $\Lambda(\mathcal{G}) \not\equiv 0 \pmod{p}$, we conclude that $g_m \equiv g_n$ if and only if $m \equiv n \pmod{r(p)}$. We have obtained the proof of the case.

Next, we consider the case where $p \mid G_{\nu}$ for some $\nu \in \mathbb{Z}$. We assume that $g_m = \infty$, that is, $p \mid G_{m+1}$. Then, we have $g_n = \infty$ if and only if $m \equiv n \pmod{r(\mathcal{G}, p)}$.

Hereon, assume that $g_m \neq \infty$ (that is, $p \nmid G_{m+1}$). We consider two subsequences of $(G_n \mod p)$:

2520

$$J_1G_{n+1},$$

$$G_n \equiv J_0G_{n+1},$$

$$G_{n-1} \equiv J_{-1}G_{n+1},$$

$$G_{n-2} \equiv J_{-2}G_{n+1},$$

$$\vdots$$

For an integer $k \ge 0$, by the assumption $m \equiv n \pmod{r(\mathcal{G}, p)}$, we have $p \mid G_{m-k}$ if and only if $p \mid G_{n-k}$. Hence, the subsequences (2.4) imply $p \mid I_{-k}$ if and only if $p \mid J_{-k}$. From Lemma 2.2, we have

$$I_{-k} = \mathcal{F}_{-k}I_1 - N\mathcal{F}_{-k-1}I_0 \equiv \mathcal{F}_{-k} - N\mathcal{F}_{-k-1}g_m \pmod{p}$$

and

$$J_{-k} = \mathcal{F}_{-k}J_1 - N\mathcal{F}_{-k-1}J_0 \equiv \mathcal{F}_{-k} - N\mathcal{F}_{-k-1}g_n \pmod{p}.$$

Hence, we get

(2.5)
$$\mathcal{F}_{-k-1}g_m \equiv \mathcal{F}_{-k-1}g_n \pmod{p}$$

for any integer $k \geq 0$ such that $I_{-k} \equiv J_{-k} \equiv 0 \pmod{p}$. Let ν be an integer satisfying $p \mid G_{\nu}$. Since $G_{m-k} \equiv I_{-k}G_{m+1} \equiv 0 \pmod{p}$, we have $m - k \equiv \nu \pmod{r(\mathcal{G}, p)}$. On the other hand, we know that $m+1 \not\equiv \nu \pmod{r(\mathcal{G}, p)}$ since $p \nmid G_{m+1}$. Therefore, we obtain

$$k \not\equiv -1 \pmod{r(\mathcal{G}, p)},$$

and hence, $k \not\equiv -1 \pmod{r(p)}$ since $r(\mathcal{G}, p) \mid r(p)$. The congruence (2.5) implies $g_m \equiv g_n \pmod{p}$, and hence, $g_m \equiv g_n$ since $0 \leq g_m$, $g_n \leq p-1$. By using Lemma 2.4, we can prove the case.

(2) In this case, we have $p \nmid G_n$ for any $n \in \mathbb{Z}$ from Lemma 2.5. Due to the periodicity of $(G_n \mod p)$, it is sufficient to consider $n \ge 0$. First, we will show that $g_1 \equiv g_0 \pmod{p}$. We have

$$g_1 \equiv G_1 G_2^{-1} \equiv G_1 (TG_1 - NG_0)^{-1}$$
$$\equiv (T - NG_0 G_1^{-1})^{-1} \equiv (T - Ng_0)^{-1} \pmod{p}.$$

On the other hand, since $\Lambda(\mathcal{G}) \equiv 0 \pmod{p}$, we have

$$\begin{split} 0 &\equiv G_1^2 - TG_1G_0 + NG_0^2 \equiv G_1^2(1 - TG_0G_1^{-1} + NG_0^2G_1^{-2}) \\ &\equiv G_1^2(1 - Tg_0 + Ng_0^2) \,(\text{mod }p), \end{split}$$

and hence, $g_0 \equiv (T - Ng_0)^{-1} \pmod{p}$. This yields $g_1 \equiv g_0 \pmod{p}$. Next, we assume that $g_k = g_0$ holds for any positive integers k less than n + 1. Then, we have

$$g_{n+1} \equiv G_{n+1}G_{n+2}^{-1} \equiv (TG_n - NG_{n-1})(TG_{n+1} - NG_n)^{-1}$$

$$\equiv (T - NG_{n-1}G_n^{-1})(TG_{n+1}G_n^{-1} - N)^{-1} \equiv (T - Ng_{n-1})(Tg_n^{-1} - N)^{-1}$$

$$\equiv (T - Ng_0)(Tg_0^{-1} - N)^{-1} \equiv g_0 \pmod{p}.$$

Since $1 \le g_0, g_{n+1} \le p - 1$, we have $g_{n+1} = g_0$.

Definition 2.7. Let $\mathcal{G} \in \mathscr{X}_p(f)$ and (g_n) be the second sequence of \mathcal{G} . We call the period $\overline{r}(\mathcal{G})$ of (g_n) the second period of \mathcal{G} .

The next corollary follows from Proposition 2.6.

Corollary 2.8. For $\mathcal{G} \in \mathscr{X}_p(f)$, let $\overline{r}(\mathcal{G})$ be the second period of \mathcal{G} . Then, we have

$$\overline{r}(\mathcal{G}) = \begin{cases} r(p) & \text{if } \Lambda(\mathcal{G}) \not\equiv 0 \pmod{p}, \\ 1 & \text{if } \Lambda(\mathcal{G}) \equiv 0 \pmod{p}. \end{cases}$$

3. Proofs of theorems. In this section, we prove the theorems in Section 1. The next lemma follows from Lemma 2.2.

Lemma 3.1. Let $\mathcal{G} = (G_n) \in \mathscr{X}_p(f)$ with $p \nmid G_0, G_1$. We have $p \mid G_n$ for some $n \in \mathbb{Z}$ if and only if $NG_1G_0^{-1} \equiv \mathfrak{f}_m \pmod{p}$ for some $m \in \mathbb{Z}$ satisfying $1 \leq m \leq r(p) - 2$.

We fix

$$X'_p(f) := \{ \overline{(G_n)} \in X_p(f) \mid p \nmid G_0, G_1 \}.$$

This set is well defined, that is, if $(G_n) \sim_p (G'_n)$ and $p \nmid G_0, G_1$, then we have $p \nmid G'_0, G'_1$. Clearly, $Y_p(f) \subset X'_p(f) \subset X_p(f)$ and

$$X'_p(f) = \{\overline{(G(a,1))} \mid a = 1, \dots, p-1\}.$$

Proof of Theorem 1.6. From Lemma 2.2, we have

$$0 \equiv \mathcal{F}_{r(p)} = \mathcal{F}_{n+(r(p)-n)} = \mathcal{F}_{r(p)-n}\mathcal{F}_{n+1} - N\mathcal{F}_{r(p)-n-1}\mathcal{F}_n \pmod{p}.$$

Therefore, we have $\mathfrak{f}_n \equiv N\mathfrak{f}_{r(p)-n-1}^{-1} \pmod{p}$. From this congruence and Lemma 3.1, we have

$$\{\overline{(G_n)} \in X'_p(f)|p|G_n \text{ for some } n \in \mathbb{Z}\}\$$

$$= \{\overline{(G(a,1))} \mid 1 \le a \le p-1, Na^{-1} \equiv \mathfrak{f}_n \pmod{p}$$
for some $n \ (1 \le n \le r(p)-2)\}\$

$$= \{\overline{(G(a,1))} \mid 1 \le a \le p-1, a \equiv \mathfrak{f}_{r(p)-n-1} \pmod{p}$$
for some $n \ (1 \le n \le r(p)-2)\}\$

$$= \{\overline{(G(a,1))} \mid a = \mathfrak{f}_1, \dots, \mathfrak{f}_{r(p)-2}\}.$$

Hence, we conclude that

$$Y_p(f) = X'_p(f) - \{ \overline{(G(a,1))} \mid a = \mathfrak{f}_1, \dots, \mathfrak{f}_{r(p)-2} \} \\ = \{ \overline{(G(a,1))} \mid 1 \le a \le p-1, \ a \ne \mathfrak{f}_1, \dots, \mathfrak{f}_{r(p)-2} \}.$$

The equality $|Y_p(f)| = p + 1 - r(p)$ follows from the first assertion and Proposition 2.6.

Next, we give the proof of Theorem 1.7. We obtain the following lemma from the definition of the Legendre symbol.

Lemma 3.2. Let $f(X) = X^2 - TX + N \in \mathbb{Z}[X]$ and $d = T^2 - 4N$. For any prime number $p \neq 2$, we have

$$|\{\beta \in \mathbb{Z} \mid 1 \le \beta \le p-1, f(\beta^{-1}) \equiv 0 \pmod{p}\}| = \left(\frac{d}{p}\right) + 1.$$

Lemma 3.3. Let $\mathcal{G} = (G_n)$, $\mathcal{G}' = (G'_n) \in \mathscr{X}_p(f)$ and $(g_n), (g'_n)$ be the second sequences, respectively. Assume that $p \nmid G_n, G'_n$ for any $n \in \mathbb{Z}$, and let $\overline{r}(\mathcal{G})$ be the second period of \mathcal{G} . Then, we have $\mathcal{G} \sim_p^* \mathcal{G}'$ if and only if $g'_0 = g_n$ for some $n \in \mathbb{Z}$ satisfying $1 \leq n \leq \overline{r}(\mathcal{G})$.

Proof. By the definition of the second sequence, the equality $g'_0 = g_n$ for some $n \in \mathbb{Z}$ implies $\mathcal{G} \sim_p^* \mathcal{G}'$. Conversely, if $\mathcal{G} \sim_p^* \mathcal{G}'$, then there exist integers m and n such that $G_{m+1}G'_n \equiv G'_{n+1}G_m \pmod{p}$. From Lemma 1.2, we have $G_{m-n+1}G'_0 \equiv G'_1G_{m-n} \pmod{p}$. Therefore, we have $g'_0 \equiv g_{m-n} \pmod{p}$, and hence, $g'_0 = g_{m-n}$. Since the second period of \mathcal{G} is $\overline{r}(\mathcal{G})$, there exists an integer ℓ satisfying $g'_0 = g_\ell$ and $1 \leq \ell \leq \overline{r}(\mathcal{G})$. Proof of Theorem 1.7. Let α be an integer such that $1 \leq \alpha \leq p-1$ and $\alpha \neq \mathfrak{f}_1, \ldots, \mathfrak{f}_{r(p)-2}$. We consider the linear recurrence sequence $\mathcal{G} = (G_n) = (G(\alpha, 1))$ and its second sequence $\mathcal{A} = (g_n)$. Assume that $\mathcal{G} \sim_p^* \mathcal{F}$. Then, from Lemma 1.2, there exists an integer n such that $\mathcal{F}_n \equiv G_1 \mathcal{F}_n \equiv \mathcal{F}_{n+1} G_0 \equiv \mathcal{F}_{n+1} \alpha \pmod{p}$. Since $p \nmid \alpha$, we have $n \not\equiv -1, 0 \pmod{r(p)}$; hence, the congruence implies $\alpha = g_0 = \mathfrak{f}_m$ for some $m \in \mathbb{Z}$ satisfying $1 \leq m \leq r(p) - 2$. This is a contradiction. We conclude that $\mathcal{G} \not\sim_p^* \mathcal{F}$, and hence, $p \nmid G_n$ for any $n \in \mathbb{Z}$ from Lemma 1.4.

Now, we choose another integer α' satisfying $1 \leq \alpha' \leq p-1$, $\alpha' \neq \mathfrak{f}_1, \ldots, \mathfrak{f}_{r(p)-2}$ and $\alpha' \notin \mathcal{A} = (g_n)$. For $\mathcal{G}' = (\mathcal{G}'_n) = (\mathcal{G}(\alpha', 1))$, and its second sequence $\mathcal{A}' = (g'_n)$, if $g_n = g'_m$ for some $n, m \in \mathbb{Z}$, then we have $\alpha' = g'_0 = g_{n-m}$ from Lemma 1.2. This contradicts the assumption $\alpha' \notin \mathcal{A} = (g_n)$. Hence, we have $\mathcal{A} \cap \mathcal{A}' = \emptyset$. By continuing this procedure, we can choose integers $\alpha_i, i = 1, \ldots, s$, satisfying (3.1)

$$\{a \in \mathbb{Z} \mid 1 \le a \le p-1, \ a \ne \mathfrak{f}_1, \dots, \mathfrak{f}_{r(p)-2}\} = \prod_{i=1}^{s} \mathcal{A}_i$$
 (disjoint union),

where \mathcal{A}_i is the second sequence of $(G(\alpha_i, 1))$. Finally, we will prove that

$$s = s(p) + \left(\frac{d}{p}\right) = \frac{p - (d/p)}{r(p)} + \left(\frac{d}{p}\right).$$

If β^{-1} , $1 \le \beta \le p - 1$, is a solution of

$$f(X) = X^2 - TX + N \equiv 0 \pmod{p},$$

then the sequence $\mathcal{G} = (g_n) = (G(\beta, 1))$ satisfies $\Lambda(\mathcal{G}) \equiv 0 \pmod{p}$. On the other hand, for the sequence $\mathcal{G}' = (g'_n) = (G(f_i, 1)), i = 1, \ldots, r(p) - 2$, we have $\Lambda(\mathcal{G}') = \pm F_{i+1}^{-2}\Lambda(\mathcal{F}) \not\equiv 0 \pmod{p}$ from Lemma 2.3. Hence, we conclude that $\beta \neq f_1, \ldots, f_{r(p)-2}$. The cardinality of the second sequence of $(G(\beta, 1))$ is 1 from Proposition 2.6. On the other hand, for any integer α such that $1 \leq \alpha \leq p-1, \alpha \neq f_1, \ldots, f_{r(p)-2}$ and $f(\alpha^{-1}) \not\equiv 0 \pmod{p}$, the cardinality of the second sequence of $(G(\alpha, 1))$ is r(p). Then, the equality (3.1) and Lemma 3.2 yield

$$(p-1) - (r(p)-2) = \left(\frac{d}{p}\right) + 1 + \left\{s - \left(\left(\frac{d}{p}\right) + 1\right)\right\}r(p).$$

From this equality, we obtain

$$s = \frac{p - (d/p)}{r(p)} + \left(\frac{d}{p}\right) \quad \left(=s(p) + \left(\frac{d}{p}\right)\right).$$

In conclusion, we will give the proof of Theorem 1.8.

Proof of Theorem 1.8. Let

$$\overline{\mathcal{G}} = \overline{(G(a,1))}, \qquad \overline{\mathcal{G}'} = \overline{(G(a',1))} \in Y_p(f),$$

$$1 \le a \le p - 1, \quad a \ne \mathfrak{f}_1, \dots, \mathfrak{f}_{r(p)-2},$$

$$1 \le a' \le p - 1, \quad a' \ne \mathfrak{f}_1, \dots, \mathfrak{f}_{r(p)-2},$$

and \mathcal{A} be the second sequence of \mathcal{G} . From Lemma 3.3, we have $\mathcal{G} \sim_p^* \mathcal{G}'$ if and only if $a' \in \mathcal{A}$. By Theorem 1.7 and its proof, since the set $\{\alpha_i \mid i = 1, \ldots, s(p) + (d/p)\}$ contains the representatives of \mathcal{A}_i $(i = 1, \ldots, s(p) + (d/p))$, we obtain the first assertion of the theorem. The equality $|Y_p^*(f)| = s(p) + (d/p)$ follows from the first assertion. \Box

4. Relation to Laxton's equivalence classes. In this section, we will explain the relation between our modulo p equivalence classes and Laxton's [6]. We also recommend the book [3] by Ballot. We consider the two relations \sim and \sim^* (without modulo p). Let $\mathcal{G} = (G_n)$ and $\mathcal{G}' = (G'_n)$ be linear recurrence sequences defined by (1.1).

Definition 4.1.

(1) If there are some non-zero integers λ and μ satisfying $\lambda G_n = \mu G'_n$ for any $n \in \mathbb{Z}$, then we write $\mathcal{G} \sim \mathcal{G}'$.

(2) If there are some non-zero integers λ, μ and an integer ν satisfying $\lambda G_{n+\nu} = \mu G'_n$ for any $n \in \mathbb{Z}$, then we write $\mathcal{G} \sim^* \mathcal{G}'$.

These two relations are equivalence relations for the set

 $F(f) := \{ \mathcal{G} \mid \text{linear recurrence sequences defined by (1.1)}$ with $G_0 \neq 0$ or $G_1 \neq 0 \}.$

Note that either assumption $G_0 \neq 0$ or $G_1 \neq 0$ is equivalent to $\Lambda(\mathcal{G}) \neq 0$ by our assumption of f(X). Consider the quotient sets using the relations:

$$G(f):=F(f)/\sim,\qquad G^*(f):=F(f)/\sim^*.$$

Laxton introduced a commutative group structure on $G^*(f)$. For any $\mathcal{G} = (G_n), \mathcal{H} = (H_n) \in F(f)$, with

$$G_n := \frac{B\theta_2^n - A\theta_1^n}{\theta_2 - \theta_1}, \qquad H_n := \frac{D\theta_2^n - C\theta_1^n}{\theta_2 - \theta_1},$$

where $B = G_1 - G_0\theta_1$, $A = G_1 - G_0\theta_2$, $D = H_1 - H_0\theta_1$ and $C = H_1 - H_0\theta_2$. He defined the product $\mathcal{G} \times \mathcal{H} = \mathcal{W} = (W_n) \in F(f)$ by

(4.1)
$$W_n = \frac{BD\theta_2^n - AC\theta_1^n}{\theta_2 - \theta_1}, \quad n \in \mathbb{Z}.$$

He showed that this product yields commutative group structures on $G^*(f)$ with the identity $\overline{\mathcal{F}}$ (the class of Lucas sequence), namely, for $\overline{\mathcal{G}}, \overline{\mathcal{H}} \in G^*(f)$, their product is given by $\overline{\mathcal{W}}$. We consider not only $G^*(f)$ but also G(f) to correspond to our set $X_p(f)$. Denote

$$\begin{split} I(f,p) &:= \{ \mathfrak{G} \in G(f) \mid \Lambda(\mathcal{G}) \not\equiv 0 \pmod{p} \text{ for some } \mathcal{G} \in \mathfrak{G} \},\\ I^*(f,p) &:= \{ \mathfrak{G} \in G^*(f) \mid \Lambda(\mathcal{G}) \not\equiv 0 \pmod{p} \text{ for some } \mathcal{G} \in \mathfrak{G} \},\\ G(f,p) &:= \{ \mathfrak{G} \in G(f) | p | G_0 \text{ for all } \mathcal{G} = (G_n) \in \mathfrak{G} \},\\ G^*(f,p) &:= \{ \mathfrak{G} \in G^*(f) | p | G_n \text{ for all } \mathcal{G} = (G_n) \in \mathfrak{G} \text{ and some } n \in \mathbb{Z} \} \end{split}$$

The sets I(f, p) and G(f, p) (respectively, $I^*(f, p)$ and $G^*(f, p)$) are subgroups of G(f) (respectively, $G^*(f)$) [6, Lemma 2.3, Proposition 3.1].

For the exact sequence of groups

$$0 \longrightarrow I^*(f,p)/G^*(f,p) \longrightarrow G^*(f)/G^*(f,p) \longrightarrow G^*(f)/I^*(f,p) \longrightarrow 0,$$

if $p \neq 2$, then Laxton [6, Theorem 3.7] showed the following.

$$I^*(f,p)/G^*(f,p) \simeq \begin{cases} \mathbb{Z}/s(p)\mathbb{Z} & \text{if } (d/p) = \pm 1, \\ 0 & \text{if } (d/p) = 0, \end{cases}$$

and

$$G^{*}(f)/I^{*}(f,p) \simeq \begin{cases} \mathbb{Z}^{(1+(d/p))/2} & \text{if } (d/p) = \pm 1, \\ \mathbb{Z}/2\mathbb{Z} & \text{if } (d/p) = 0, \end{cases}$$

2526

where s(p) = (p - (d/p))/r(p). On the other hand, let $\mathscr{X}_p(f)$ be the set in Section 1. For any $\mathcal{G} = (G_n)$, $\mathcal{H} = (H_n) \in \mathscr{X}_p(f)$, the product $\mathcal{W} = \mathcal{G} \times \mathcal{H}$ (4.1) is not always in $\mathscr{X}_p(f)$ (for example, in the case $1 + N - T \equiv 0 \pmod{p}$, if

$$G_0 \equiv G_1 \not\equiv 0 \pmod{p}$$
 and $H_1 \equiv NH_0 \not\equiv 0 \pmod{p}$,

then $\mathcal{G} = (G_n), \mathcal{H} = (H_n) \in \mathscr{X}_p(f)$ but the product sequence $\mathcal{W} = (W_n) \notin \mathscr{X}_p(f)$ since $W_0 \equiv W_1 \equiv 0 \pmod{p}$ (see [3, page 15, (2.6)])). However, we will prove that certain subsets $Z_p(f)$ and $Z_p^*(f)$ of $X_p(f)$ and $X_p^*(f)$, respectively, have group structures defined by (4.1).

Lemma 4.2. Let $\mathcal{G} = (G_n)$, $\mathcal{G}' = (G'_n) \in \mathscr{X}_p(f)$, and assume that $\Lambda(\mathcal{G}) \not\equiv 0 \pmod{p}$.

- (1) If $\mathcal{G} \sim_p \mathcal{G}'$, then we have $\Lambda(\mathcal{G}') \not\equiv 0 \pmod{p}$.
- (2) If $\mathcal{G} \sim_p^* \mathcal{G}'$, then we have $\Lambda(\mathcal{G}') \not\equiv 0 \pmod{p}$.

Proof. We only give the proof for (2). Since $\mathcal{G} \sim_p^* \mathcal{G}'$, there exist integers m and n satisfying $G_{m+1}G'_n \equiv G'_{n+1}G_m \pmod{p}$. If $p \mid G'_n$ or $p \mid G'_{n+1}$, then we have $\Lambda(\mathcal{G}') \neq 0 \pmod{p}$ from Lemma 2.5. If $p \nmid G'_n, G'_{n+1}$, then we have $p \nmid G_m, G_{m+1}$. From Lemma 2.3 and the congruence $G_{m+1}G'_n \equiv G'_{n+1}G_m \pmod{p}$, we have

$$\Lambda(\mathcal{G}') \equiv \pm G_{n+1}^{'2} G_{m+1}^{-2} \Lambda(\mathcal{G}) \not\equiv 0 \pmod{p}.$$

From Lemma 4.2, the sets

$$Z_p(f) := \{ \overline{\mathcal{G}} \in X_p(f) \mid \Lambda(\mathcal{G}) \not\equiv 0 \pmod{p} \}, \\ Z_p^*(f) := \{ \overline{\mathcal{G}} \in X_p^*(f) \mid \Lambda(\mathcal{G}) \not\equiv 0 \pmod{p} \}$$

are well defined. The next lemmata show that product (4.1) on $Z_p(f)$, $Z_p^*(f)$ is well defined.

Lemma 4.3. Let $\mathcal{G} = (G_n)$, $\mathcal{H} = (H_n) \in \mathscr{X}_p(f)$. For the fixed integer ν , let $\mathcal{Z} = (Z_n) \in \mathscr{X}_p(f)$ be the sequence defined by $Z_n = H_{n+\nu}$, $n \in \mathbb{Z}$. Then, we have $\mathcal{G} \times \mathcal{H} \sim_p^* \mathcal{G} \times \mathcal{Z}$.

Proof. Set

$$G_n = \frac{B\theta_2^n - A\theta_1^n}{\theta_2 - \theta_1}, \qquad H_n = \frac{D\theta_2^n - C\theta_1^n}{\theta_2 - \theta_1}, \qquad Z_n = \frac{E\theta_2^n - F\theta_1^n}{\theta_2 - \theta_1}$$

Then, we have $E = D\theta_2^{\nu}$, $F = C\theta_1^{\nu}$; hence, the *n*th term of $\mathcal{G} \times \mathcal{Z}$ is the $(n + \nu)$ th term of $\mathcal{G} \times \mathcal{H}$, and we obtain $\mathcal{G} \times \mathcal{H} \sim_p^* \mathcal{G} \times \mathcal{Z}$. \Box

Lemma 4.4. Let $\mathcal{G} = (G_n)$, $\mathcal{G}' = (G'_n)$, $\mathcal{H} = (H_n)$ and $\mathcal{H}' = (H'_n) \in \mathscr{X}_p(f)$.

- (1) If $\mathcal{G} \sim_p \mathcal{G}'$ and $\mathcal{H} \sim_p \mathcal{H}'$, then we have $\mathcal{G} \times \mathcal{H} \sim_p \mathcal{G}' \times \mathcal{H}'$.
- (2) If $\mathcal{G} \sim_p^* \mathcal{G}'$ and $\mathcal{H} \sim_p^* \mathcal{H}'$, then we have $\mathcal{G} \times \mathcal{H} \sim_p^* \mathcal{G}' \times \mathcal{H}'$.

Proof. We only give the proof for (2). It is sufficient to show that $\mathcal{G} \times \mathcal{H} \sim_p^* \mathcal{G}' \times \mathcal{H}$ since the product (4.1) is commutative and \sim_p^* is an equivalence relation. From the assumption $\mathcal{G} \sim_p^* \mathcal{G}'$, using Lemma 1.2, there exists an integer ν satisfying $G_1 G'_{\nu} \equiv G_0 G'_{\nu+1} \pmod{p}$. Let $\mathcal{Z} = (Z_n) \in \mathscr{X}_p(f)$ be the sequence defined by $Z_n = G'_{n+\nu}, n \in \mathbb{Z}$. Then, we have $G_1 Z_0 \equiv G_0 Z_1 \pmod{p}$. From Lemma 4.3, it is sufficient to show that $\mathcal{G} \times \mathcal{H} \sim_p^* \mathcal{Z} \times \mathcal{H}$. Setting $\mathcal{G} \times \mathcal{H} = (W_n)$ and $\mathcal{Z} \times \mathcal{H} = (Y_n)$, we have

(4.2)
$$\begin{cases} W_0 = G_1 H_0 + G_0 H_1 - T G_0 H_0, \\ W_1 = G_1 H_1 - N G_0 H_0, \\ Y_0 = Z_1 H_0 + Z_0 H_1 - T Z_0 H_0, \\ Y_1 = Z_1 H_1 - N Z_0 H_0, \end{cases}$$

see [3, page 15 (2.6)]. Assume that $p \mid G_0$. Then, we have $p \mid Z_0$ since $G_1Z_0 \equiv G_0Z_1 \pmod{p}$. From (4.2), we have

$$Y_1W_0 \equiv G_1H_0Z_1H_1 \equiv W_1Y_0 \pmod{p},$$

and hence, we have $\mathcal{G} \times \mathcal{H} \sim_n^* \mathcal{Z} \times \mathcal{H}$.

Next, assume that $p \nmid G_0$. Then, we have $p \nmid Z_0$. From (4.2) and the congruence $G_1Z_0 \equiv G_0Z_1 \pmod{p}$, we have $W_0 \equiv G_0Z_0^{-1}Y_0 \pmod{p}$ and $W_1 \equiv G_0Z_0^{-1}Y_1 \pmod{p}$, from which we conclude that

$$W_0 Y_1 \equiv Y_0 W_1 \pmod{p},$$

and hence, $\mathcal{G} \times \mathcal{H} \sim_p^* \mathcal{Z} \times \mathcal{H}$.

From Lemma 4.4, we know that the products (4.1) on $Z_p(f)$ and $Z_p^*(f)$ are well defined. The sets $Z_p(f)$ and Z_p^* are commutative groups with identity $\overline{\mathcal{F}}$. For $\overline{\mathcal{G}} \in Z_p(f)$ (or $Z_p^*(f)$), $\mathcal{G} = (G_n)$ with $G_n =$

 $(B\theta_2^n - A\theta_1^n)/(\theta_2 - \theta_1)$, the inverse element of $\overline{\mathcal{G}}$ is given by $\overline{\mathcal{G}'} \in Z_p(f)$, $\mathcal{G}' = (G'_n)$ with $G'_n = (A\theta_2^n - B\theta_1^n)/(\theta_2 - \theta_1)$.

Theorem 4.5. There exist natural group homomorphisms

 $I(f,p)/G(f,p) \simeq Z_p(f) \quad and \quad I^*(f,p)/G^*(f,p) \simeq Z_p^*(f).$

Proof. Consider the following maps

$$\psi_p: I(f,p) \longrightarrow Z_p(f), \quad \psi_p(\mathfrak{G}) = \mathfrak{G}_p, \\ \psi_p^*: I^*(f,p) \longrightarrow Z_p^*(f), \quad \psi_p^*(\mathfrak{G}) = \mathfrak{G}_p,$$

where

$$\mathfrak{G}_p := \{ \mathcal{G} = (G_n) \in \mathfrak{G} \mid p \nmid G_0 \text{ or } p \nmid G_1 \}.$$

From the definitions of relations \sim, \sim^*, \sim_p and \sim_p^* , these maps ψ and ψ^* are well-defined group homomorphisms. Furthermore, both ψ_p and ψ_p^* are surjective with kernels

$$\operatorname{Ker}(\psi_p) = G(f, p) \quad \text{and} \quad \operatorname{Ker}(\psi_p^*) = G^*(f, p)$$

by Lemma 1.4.

Set $F = \mathbb{Q}(\theta_1)$, and let \mathcal{O}_F be the ring of integers of F. For any prime ideal \mathfrak{p} of F which is above p, let $K_1 := \mathcal{O}_F/\mathfrak{p}$ and $K_2 := \mathbb{Z}/p\mathbb{Z}$ be the residue fields. Assume that $p \neq 2$. From the isomorphisms ψ_p and ψ_p^* and the group structures given by Laxton [6, Theorem 3.7 and proof], we obtain the following commutative diagrams. Note that $(G(\mathfrak{f}_0, 1)) = (G(0, 1)) = \mathcal{F}.$

(I) Case
$$(d/p) = 1$$
.

 \Box

where ι is the natural surjection, the map φ_p^+ is given by $\varphi_p^+(\overline{\mathcal{G}}) = (G_1 - G_0\theta_1)/(G_1 - G_0\theta_2)$, $(\mathcal{G} = (G_n))$, and each row is an exact sequence.

(II) Case (d/p) = -1.

where ι is the natural surjection, the map φ_p^- is given by $\varphi_p^-(\overline{\mathcal{G}}) = G_1 - G_0 \theta_2$, $(\mathcal{G} = (G_n))$, and each row is an exact sequence.

(III) Case (d/p) = 0.

$$I^*(f,p)/G^*(f,p) \stackrel{\psi_p^*}{\simeq} Z_p^*(f) \simeq 0$$

and

$$Z_p(f) = \{\overline{(G(\mathfrak{f}_i, 1))} \mid i = 0, \dots, r(p) - 2\} \cup \{\overline{(G(1, 0))}\} \\ = \{\overline{(G(\mathcal{F}_i, \mathcal{F}_{i+1}))} \mid i = 0, \dots, r(p) - 1\} \xrightarrow{\sim} \varphi_p^0 \mathbb{Z}/p\mathbb{Z}$$

where the map φ_p^0 is given by $\varphi_p^0(\overline{(G(\mathcal{F}_i, \mathcal{F}_{i+1}))}) = i$. We know that the map φ_p^0 is a group homomorphism since for $\mathcal{G}_i = (G(\mathcal{F}_i, \mathcal{F}_{i+1})), \ \mathcal{G}_j = (G(\mathcal{F}_j, \mathcal{F}_{j+1}))$; the product

$$\mathcal{G}_i \times \mathcal{G}_j = \mathcal{W} = (W_n)$$

is given by

$$W_0 = \mathcal{F}_{i+1}\mathcal{F}_j + \mathcal{F}_i(\mathcal{F}_{j+1} - T\mathcal{F}_j) = \mathcal{F}_{i+1}\mathcal{F}_j - N\mathcal{F}_i\mathcal{F}_{j-1} = \mathcal{F}_{i+j},$$

$$W_1 = \mathcal{F}_{i+1}\mathcal{F}_{j+1} - N\mathcal{F}_i\mathcal{F}_j = \mathcal{F}_{i+j+1},$$

from Lemma 2.2 and explicit formulae for W_0 and W_1 [3, page 15, (2.6)].

From the diagrams, Lemma 1.4, Theorem 1.6 and Theorem 1.8, we obtain the next corollary.

Corollary 4.6.

(1) All of the classes of $Z_p(f)$ and I(f,p)/G(f,p) are given by $\{\overline{(G(a,1))} \mid 0 \le a \le p-1, \ f(a^{-1}) \not\equiv 0 \pmod{p}\} \cup \{\overline{(G(1,0))}\}.$

(2) Let α_i , i = 1, ..., s(p) + (d/p), be the integers in Theorem 1.7. Then, all of the classes of $Z_p^*(f)$ and $I^*(f, p)/G^*(f, p)$ are given by

 $\{\overline{(G(\alpha_i,1))} \mid i=1,\ldots,s(p)+(d/p), \ f(\alpha_i^{-1}) \not\equiv 0 \pmod{p}\} \cup \{\overline{\mathcal{F}}\}.$

5. Examples. Examples are given in Tables 1 and 2 for the cases T=1, N=-1 and T=6, N=1. If T=1 and N=-1, then (G(0,1))

	<i>m</i> (<i>m</i>)	a(m)	(d/m)	\mathcal{A}_i	$V^*(f)$	7*(f)
p	r(p)	s(p)	(d/p)	$(i = 1, \dots, s(p) + (d/p))$	$Y_p^*(f)$	$\frac{Z_p^*(f)}{(I^*(f,p)/G^*(f,p))}$
3	4	1	-1	Ø	Ø	
5	5	1	0	{2*}	$\overline{(G(2,1))}$	$\frac{\overline{\mathcal{F}}}{\overline{\mathcal{F}}}$
7	8	1	-1	Ø	Ø	$\overline{\mathcal{F}}$
					$\overline{(G(3,1))},$	
11	10	1	1	$\{3^*\}, \{7^*\}$	$\overline{(G(7,1))}$	$\overline{\mathcal{F}}$
13	7	2	-1	$\{2, 3, 4, 6, 8, 9, 10\}$	$\overline{(G(2,1))}$	$\overline{\mathcal{F}}, \overline{(G(2,1))}$
17	9	2	-1	$\{2,3,5,6,8,10,11,13,14\}$	$\overline{(G(2,1))}$	$\overline{\mathcal{F}}, \overline{(G(2,1))}$
					$\overline{(G(4,1))},$	
19	18	1	1	$\{4^*\}, \{14^*\}$	$\overline{(G(14,1))}$	<u> </u>
23	24	1	-1	Ø	Ø	$\overline{\mathcal{F}}$
					$\overline{(G(3,1))},$	
				$\{5^*\}, \{23^*\}, \{3, 4, 6, 7, 9, 11,$	(G(5,1)),	
29	14	2	1	12, 16, 17, 19, 21, 22, 24, 25	(G(23,1))	$\overline{\mathcal{F}}, \overline{(G(3,1))}$
					$\underline{(G(12,1))},$	_
31	30	1	1	$\{12^*\},\{18^*\}$	$\overline{(G(18,1))}$	$\overline{\mathcal{F}}$
				$\{2, 4, 5, 7, 9, 10, 11, 14, 15, 10, 21, 22, 25, 26, 27, 20, 21, 22, 25, 26, 27, 20, 21, 20, 20, 21, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20$		
37	19	2	-1	18, 21, 22, 25, 26, 27, 29, 31,	$\overline{(C(2,1))}$	\overline{T} $\overline{(C(0,1))}$
31	19	2	-1	32,34	$\overline{(G(2,1))}$	$\overline{\mathcal{F}}, \overline{(G(2,1))}$
				$\{6^*\}, \{34^*\}, \{3, 4, 5, 7, 8, 9, 10, 13, 15, 18, 22, 25, 27, 30,$	$\frac{\overline{(G(3,1))}}{\overline{(G(6,1))}},$	
41	20	2	1	10, 15, 15, 16, 22, 25, 27, 50, 31, 32, 33, 35, 36, 37	$\frac{(G(6,1))}{(G(34,1))}$	\overline{T} $\overline{(C(2,1))}$
41 43	44	1	-1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(G(34, 1)) Ø	$\frac{\overline{\mathcal{F}}, \overline{(G(3,1))}}{\overline{\mathcal{F}}}$
40	-1-1	1	-1	$\{3, 4, 5, 8, 9, 11, 12, 15, 18, \}$	Ŵ	J
				$\{9, 4, 0, 0, 5, 11, 12, 10, 10, 10, 19, 20, 21, 29, 33, 39, 40\},\$		
				$\{6, 7, 13, 17, 25, 26, 27, 28,$	$\overline{(G(3,1))},$	$\overline{\mathcal{F}}, \overline{(G(3,1))},$
47	16	3	-1	$31, 34, 35, 37, 38, 41, 42, 43\}$	$\overline{(G(6,1))}$	$\frac{\overline{(G(6,1))}}{(G(6,1))}$

TABLE 1. T = 1, N = -1.

p	r(p)	s(p)	(d/p)	\mathcal{A}_i	$Y_p^*(f)$	$Z_p^*(f)$
1	(1)	- (r)	(.,1)	$(i = 1, \dots, s(p) + (d/p))$	p (3)	$(I^*(f,p)/G^*(f,p))$
3	2	2	-1	{1,2}	$\overline{(G(1,1))}$	$\overline{\mathcal{F}}, \overline{(G(1,1))}$
5	3	2	-1	{2,3,4}	(G(2,1))	$\overline{\mathcal{F}}, \overline{(G(2,1))}$
					(G(1,1)),	
					$\overline{(G(2,1))},$	
7	3	2	1	$\{2^*\}, \{4^*\}, \{1, 3, 5\}$	$\overline{(G(4,1))}$	$\overline{\mathcal{F}}, \overline{(G(1,1))}$
11	6	2	-1	$\{1, 5, 7, 8, 9, 10\}$	(G(1,1))	$\overline{\mathcal{F}}, \overline{(G(1,1))}$
13	7	2	-1	$\{2, 3, 4, 7, 9, 10, 12\}$	(G(2,1))	$\overline{\mathcal{F}}, \overline{(G(2,1))}$
					$(\underline{G(1,1)}),$	
					(G(2,1))	
					$\overline{(G(4,1))},$	
				$\{8^*\}, \{15^*\}, \{1, 5, 7, 16\}$	(G(8,1)),	$\overline{\mathcal{F}}, \overline{(G(1,1))}$
17	4	4	1	$\{2, 12, 13, 14\}, \{4, 9, 10, 11\}$	$\overline{(G(15,1))}$	$\overline{(G(2,1))}, \overline{(G(4,1))}$
19	10	2	-1	$\{1, 2, 4, 5, 7, 10, 11, 14, 15, 18\}$	(G(1,1))	$\overline{\mathcal{F}}, \overline{(G(1,1))}$
					(G(1,1)),	
				$\{13^*\}, \{16^*\}, \{1, 3, 5, 8, 9,$	$\overline{(G(13,1))},$	
23	11	2	1	$11, 14, 15, 18, 20, 21$ }	$\overline{(G(16,1))}$	$\overline{\mathcal{F}}, \overline{(G(1,1))}$
					(G(2,1)),	
				$\{2, 9, 19, 20, 22\}, \{3, 7, 10,$	$\underline{(G(3,1))},$	
				$25,28\},\{4,13,15,16,26\},$	$\overline{(G(4,1))},$	$\overline{\mathcal{F}}, \overline{(G(2,1))},$
				$\{8, 12, 14, 18, 24\}, \{11, 17,$	$\underline{(G(8,1))},$	$\overline{(G(3,1))}, \overline{(G(4,1))},$
29	5	6	-1	21,23,27}	$\overline{(G(11,1))}$	$\overline{(G(8,1))}, \overline{(G(11,1))}$
				$\{18^*\}, \{19^*\}, \{1, 2, 3, 4, 5,$	(G(1,1)),	
				8, 12, 13, 15, 16, 21, 22, 24,	$(\underline{G(18,1))},$	
31	15	2	1	25,29}	$\overline{(G(19,1))}$	$\overline{\mathcal{F}}, \overline{(G(1,1))}$
				$\{3, 7, 8, 11, 13, 14, 16, 18, 20, 21, 22, 23, 25, 27, 29, \}$		
37	19	2	-1	$\{20, 21, 22, 25, 25, 27, 29, 30, 32, 35, 36\}$	$\overline{(G(3,1))}$	$\overline{\mathcal{F}}, \overline{(G(3,1))}$
51	19	2	-1	30, 32, 35, 30}	(G(3,1)) (G(1,1)),	$\mathcal{F}, (G(3,1))$
					$\frac{(G(1,1))}{(G(2,1))},$	
					$\frac{(G(2,1))}{(G(4,1))},$	
					$\frac{(G(4,1))}{(G(8,1))},$	
				$\{10^*\}, \{37^*\}, \{1, 3, 5, 14, 33\},\$	$\frac{(G(0,1))}{(G(9,1))},$	
				$\{2, 17, 18, 26, 31\}, \{4, 16, 21, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1$	$\frac{(G(9,1))}{(G(10,1))},$	$\overline{\mathcal{F}}, \overline{(G(1,1))},$
				$\{2, 17, 10, 20, 31\}, \{4, 10, 21, 29, 30\}, \{8, 11, 20, 32, 38\},$	$\frac{(G(10,1))}{(G(12,1))},$	$\frac{G(G(2,1))}{(G(2,1))}, \frac{G(G(4,1))}{(G(4,1))},$
				$\{12, 19, 22, 23, 34\}, \{9, 15, 27, 12, 13, 22, 23, 34\}, \{9, 15, 27, 12, 23, 34\}, \{9, 15, 27, 12, 23, 24\}, \{9, 15, 27, 12, 24\}, \{12, 12$	$\frac{(G(12,1))}{(G(13,1))},$	$\left \frac{(G(2,1))}{(G(8,1))}, \frac{(G(4,1))}{(G(9,1))}, \right $
41	5	8	1	$\{12, 19, 22, 23, 54\}, \{9, 15, 27, 36, 39\}, \{13, 24, 25, 28, 35\}$	$\frac{(G(13,1))}{(G(37,1))}$	$\left \frac{(G(3,1))}{(G(12,1))}, \frac{(G(3,1))}{(G(13,1))}\right $
-11	0	0	1	$\{1, 5, 7, 9, 12, 14, 15, 16, 18, \dots\}$		
				19, 23, 24, 25, 26, 30, 31, 33,		
43	22	2	-1	$34, 35, 37, 40, 42\}$	$\overline{(G(1,1))}$	$\overline{\mathcal{F}}, \overline{(G(1,1))}$
				$\{17^*\}, \{36^*\}, \{1, 2, 3, 4, 5, 10,$	(G(1,1)),	/ //
				12, 13, 14, 16, 18, 19, 20, 24, 29,	$\overline{(G(17,1))},$	
47	23	2	1	$33, 34, 35, 37, 39, 40, 41, 43\}$	$\overline{(G(36,1))}$	$\overline{\mathcal{F}}, \overline{(G(1,1))}$

TABLE 2. T = 6, N = 1.

is the original Fibonacci number and (G(2, 1)) is the original Lucas number. If T = 6 and N = 1, then (G(0, 1)) is the balancing number and (G(1, 3)) is the Lucas balancing number [4]. Numbers a^* with an asterisk in the tables mean that a satisfies $f(a^{-1}) \equiv 0 \pmod{p}$.

Acknowledgments. We would like to express our gratitude to Christian Ballot for valuable suggestions.

REFERENCES

1. M. Aoki and Y. Sakai, On divisibility of generalized Fibonacci numbers, Integers 15 (2015).

2. _____, On equivalence classes of generalized Fibonacci sequences, J. Integer Seq. 19, article 16.2.6 (2016).

3. C. Ballot, *Density of prime divisors of linear recurrences*, Mem. Amer. Math. Soc. **115** (1995), 12–23.

4. A. Behera and G.K. Panda, On the square roots of triangular numbers, Fibonacci Quart. **37** (1999), 98–105.

5. R.D. Carmichael, On the numerical factors of the arithmetic forms $\alpha^n \pm \beta^n$, Ann. Math. **15** (1913, 1914), 30–70.

6. R.R. Laxton, On groups of linear recurrences, I, Duke Math. J. **36** (1969), 721–736.

E. Lucas, Théorie des fonctions numériques simplement périodiques, Amer.
 J. Math. 1 (1878), 184–240, 289–321.

8. T. Koshy, Fibonacci and Lucas numbers with applications, Pure Appl. Math. **2001**, 109–115, 211–221.

Shimane University, Department of Mathematics, Interdisciplinary Faculty of Science and Engineering, Matsue, Shimane, 690-8504, Japan Email address: aoki@riko.shimane-u.ac.jp

SHIMANE UNIVERSITY, DEPARTMENT OF MATHEMATICS, INTERDISCIPLINARY FAC-ULTY OF SCIENCE AND ENGINEERING, MATSUE, SHIMANE, 690-8504, JAPAN Email address: s169823@matsu.shimane-u.ac.jp