MOD p EQUIVALENCE CLASSES OF LINEAR RECURRENCE SEQUENCES OF DEGREE 2

MIHO AOKI AND YUHO SAKAI

Abstract

Laxton introduced a group structure on the set of equivalence classes of linear recurrence sequences of degree 2. This result yields much information on the divisibilities of such sequences. In this paper, we introduce other equivalence relations for the set of linear recurrence sequences $\left(G_{n}\right)$, which are defined by $G_{0}, G_{1} \in \mathbb{Z}$ and $G_{n}=T G_{n-1}-N G_{n-2}$ for fixed integers T and $N= \pm 1$. The relations are given by certain congruences modulo p for a fixed prime number p, which are different from Laxton's without modulo p equivalence relations. We determine the initial terms G_{0} and G_{1} of all of the representatives of the equivalence classes $\overline{\left(G_{n}\right)}$ satisfying $p \nmid G_{n}$ for any integer n and give the number of equivalence classes. Furthermore, we determine the representatives of Laxton's without modulo p classes from our modulo p classes.

1. Introduction. Let $f(X)=X^{2}-T X+N \in \mathbb{Z}[X], N= \pm 1$, be a polynomial whose roots θ_{1} and θ_{2} are not roots of unity. Then, θ_{1} and θ_{2} are units of a certain real quadratic field. Let $d:=T^{2}-4 N$ be the discriminant of $f(X)$. We consider linear recurrence sequences $\mathcal{G}=\left(G_{n}\right)_{n \in \mathbb{Z}}$ defined by

$$
\begin{equation*}
G_{0}, G_{1} \in \mathbb{Z}, \quad G_{n}=T G_{n-1}-N G_{n-2} . \tag{1.1}
\end{equation*}
$$

If $G_{0}=a$ and $G_{1}=b$, then we denote by $\mathcal{G}=(G(a, b))$. We call $\mathcal{F}=\left(\mathcal{F}_{n}\right)=(G(0,1))$ and $\mathcal{L}=\left(\mathcal{L}_{n}\right)=(G(2, T))$ the Lucas sequence and the companion Lucas sequence, respectively. We fix a prime number p. It is well known that the sequence $\left(G_{n} \bmod p\right)$ is periodic for any $\mathcal{G}=\left(G_{n}\right)$ defined by (1.1). Let $r(p)$ be the rank of the Lucas sequence $\mathcal{F}=\left(\mathcal{F}_{n}\right)$, namely, it is the smallest positive integer n satisfying $p \mid \mathcal{F}_{n}$. We can easily check $r(2)=2$ if T is even and $r(2)=3$ if T is odd. If

[^0]Keywords and phrases. Linear recurrence sequences, the rank of appearance of Lucas sequences, the Laxton group.

Received by the editors on July 16, 2016, and in revised form on October 3, 2016.
$p \neq 2$, then it was shown (Lucas [7, Sections 24, 25]) or [5, Lemma 2, Theorem 12] that $r(p)$ divides $p-(d / p)$ where $(* / *)$ is the Legendre symbol.

We define two relations \sim_{p} and \sim_{p}^{*} for the set of linear recurrence sequences.

Definition 1.1. Let $\mathcal{G}=\left(G_{n}\right)$ and $\mathcal{G}^{\prime}=\left(G_{n}^{\prime}\right)$ be linear recurrence sequences defined by (1.1).
(1) If the congruence $G_{1} G_{0}^{\prime} \equiv G_{1}^{\prime} G_{0}(\bmod p)$ holds, then we write $\mathcal{G} \sim_{p} \mathcal{G}^{\prime}$.
(2) If there are some integers m and n satisfying

$$
G_{m+1} G_{n}^{\prime} \equiv G_{n+1}^{\prime} G_{m} \quad(\bmod p),
$$

then we write $\mathcal{G} \sim_{p}^{*} \mathcal{G}^{\prime}$.

Define a set $\mathscr{X}_{p}(f)$ of linear recurrence sequences by

$$
\begin{aligned}
& \mathscr{X}_{p}(f):=\{\mathcal{G} \mid \text { linear recurrence sequences defined by }(1.1) \\
&\text { with } \left.p \nmid G_{0} \text { or } p \nmid G_{1}\right\} .
\end{aligned}
$$

We can easily show that the first relation \sim_{p} is an equivalence relation for the set $\mathscr{X}_{p}(f)$. Furthermore, we can show that the second relation \sim_{p}^{*} is also an equivalence relation for the set $\mathscr{X}_{p}(f)$, cf., [2, Lemma 9], by using the following lemmata.

Lemma 1.2. Let $\mathcal{G}=\left(G_{n}\right)$ and $\mathcal{G}^{\prime}=\left(G_{n}^{\prime}\right)$ be linear recurrence sequences defined by (1.1). If $G_{m+1} G_{n}^{\prime} \equiv G_{n+1}^{\prime} G_{m}(\bmod p)$, then we have the following congruences.

$$
G_{m+2} G_{n+1}^{\prime} \equiv G_{n+2}^{\prime} G_{m+1}(\bmod p)
$$

and

$$
G_{m} G_{n-1}^{\prime} \equiv G_{n}^{\prime} G_{m-1}(\bmod p)
$$

Lemma 1.3. Assume that $\mathcal{G}=\left(G_{n}\right) \in \mathscr{X}_{p}(f)$. If $p \mid G_{n}$, then we have $p \nmid G_{n-1}$ and $p \nmid G_{n+1}$.

These two lemmata follow from the recurrence formula in (1.1). Now, we consider the quotient sets using these relations. We set

$$
\begin{aligned}
X_{p}(f) & :=\mathscr{X}_{p}(f) / \sim_{p} \\
Y_{p}(f) & :=\left\{\overline{\left(G_{n}\right)} \in X_{p}(f) \mid p \nmid G_{n} \text { for any } n \in \mathbb{Z}\right\}, \\
X_{p}^{*}(f) & :=\mathscr{X}_{p}(f) / \sim_{p}^{*} \\
Y_{p}^{*}(f) & :=\left\{\overline{\left(G_{n}\right)} \in X_{p}^{*}(f) \mid p \nmid G_{n} \text { for any } n \in \mathbb{Z}\right\},
\end{aligned}
$$

where $\overline{\left(G_{n}\right)}$ is the equivalence class which includes $\left(G_{n}\right)$. The sets Y_{p} and Y_{p}^{*} are well defined, that is, we will show in Section 2, Lemma 2.1, that, if $\left(G_{n}\right) \sim_{p}\left(G_{n}^{\prime}\right)$ (or $\left.\left(G_{n}\right) \sim_{p}^{*}\left(G_{n}^{\prime}\right)\right)$ and $p \nmid G_{n}$ for any $n \in \mathbb{Z}$, then we have $p \nmid G_{n}^{\prime}$ for any $n \in \mathbb{Z}$. For any $\mathcal{G}=\left(G_{n}\right) \in \mathscr{X}_{p}(f)$ satisfying $p \mid G_{\nu}$ for some $\nu \in \mathbb{Z}$, we have $\mathcal{F}_{1} G_{\nu} \equiv 0 \equiv G_{\nu+1} \mathcal{F}_{0}(\bmod p)$. Therefore, we have $\mathcal{G} \sim_{p}^{*} \mathcal{F}=(G(0,1))$ (the Lucas sequence) and obtain the following lemma.

Lemma 1.4. We have

$$
X_{p}(f)=\{\overline{(G(a, 1))} \mid a=0, \ldots, p-1\} \cup\{\overline{(G(1,0))}\}
$$

and

$$
X_{p}^{*}(f)=\overline{\mathcal{F}} \cup Y_{p}^{*}(f)
$$

For any integer G, not divisible by p, we denote an inverse element modulo p by $G^{-1}(\in \mathbb{Z})$, i.e., $G G^{-1} \equiv 1(\bmod p)$.

Definition 1.5. Assume that $\mathcal{G}=\left(G_{n}\right) \in \mathscr{X}_{p}(f)$. We define the sequence $\left(g_{n}\right)_{n \in \mathbb{Z}}, 0 \leq g_{n} \leq p-1$ or $g_{n}=\infty$, by

$$
g_{n} \begin{cases}\equiv G_{n} G_{n+1}^{-1}(\bmod p) & \text { if } p \nmid G_{n+1} \\ =\infty & \text { otherwise }\end{cases}
$$

We call the sequence $\left(g_{n}\right)$ the second sequence of \mathcal{G}. In particular, we denote the second sequence of the Lucas sequence \mathcal{F} by $\left(\mathfrak{f}_{n}\right)$.

We will show in Section 2 that the second sequences $\left(g_{n}\right)$ have the periods which divide $r(p)$, Proposition 2.6. In Section 3, we will show the following theorems by using Proposition 2.6. These theorems are
generalizations of our previous results in the case $T=1, N=-1$, [1, 2].

Theorem 1.6. We have

$$
Y_{p}(f)=\left\{\overline{(G(a, 1))} \mid 1 \leq a \leq p-1, a \neq \mathfrak{f}_{1}, \ldots, \mathfrak{f}_{r(p)-2}\right\}
$$

and

$$
\left|Y_{p}(f)\right|=p+1-r(p)
$$

Theorem 1.7. Assume that $p \neq 2$, and set

$$
s(p):=\frac{p-(d / p)}{r(p)}
$$

There exist integers $\alpha_{i}\left(i=1, \ldots, s(p)+(d / p), 1 \leq \alpha_{i} \leq p-1\right)$ satisfying the following conditions.
(1) For the sequence $\left(G_{n}\right)=\left(G\left(\alpha_{i}, 1\right)\right)$, we have $p \nmid G_{n}$ for any $n \in \mathbb{Z}$.
(2) Let \mathcal{A}_{i} be the second sequence of $\left(G\left(\alpha_{i}, 1\right)\right)$. Then, we have

$$
\left\{a \in \mathbb{Z} \mid 1 \leq a \leq p-1, a \neq \mathfrak{f}_{1}, \ldots, \mathfrak{f}_{r(p)-2}\right\}=\coprod_{i=1}^{s(p)+(d / p)} \mathcal{A}_{i}(\text { disjoint union })
$$

Theorem 1.8. Assume that $p \neq 2$. Let $\alpha_{i}(i=1, \ldots, s(p)+(d / p))$ be the integers in Theorem 1.7. We have

$$
Y_{p}^{*}(f)=\left\{\overline{\left(G\left(\alpha_{i}, 1\right)\right)} \mid i=1, \ldots, s(p)+\left(\frac{d}{p}\right)\right\}
$$

and

$$
\left|Y_{p}^{*}(f)\right|=s(p)+\left(\frac{d}{p}\right)
$$

In the case $p=2$, we have

$$
\begin{aligned}
& X_{2}(f)=\{\overline{(G(0,1))}(=\overline{\mathcal{F}}), \overline{(G(1,1))}, \overline{(G(1,0))}\} \\
& Y_{2}(f)= \begin{cases}\emptyset & \text { if } T \text { is odd } \\
\overline{(G(1,1))} & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& X_{2}^{*}(f)= \begin{cases}\overline{(G(0,1))} & \text { if } T \text { is odd } \\
\overline{(G(0,1))}, & (G(1,1)) \\
\text { otherwise }\end{cases} \\
& Y_{2}^{*}(f)= \begin{cases}\emptyset & \text { if } T \text { is odd } \\
\overline{(G(1,1))} & \text { otherwise }\end{cases}
\end{aligned}
$$

In Section 4, we will explain the relation between our "modulo p " equivalence classes and Laxton's "without modulo p " equivalence classes [6]. He introduced a commutative group structure on certain sets of equivalence classes $G(f)$ and $G^{*}(f)$. We will show that the certain subsets of $X_{p}(f)$ and $X_{p}^{*}(f)$ have the same group structures and are isomorphic to finite quotient groups of $G(f)$ and $G^{*}(f)$ (Theorem 4.5). From these facts, by using our theorems, we can give the representatives of Laxton's quotient groups. In Section 5, we give some examples.

2. Mod p equivalence classes.

Lemma 2.1. Assume that $\mathcal{G}=\left(G_{n}\right), \mathcal{G}^{\prime}=\left(G_{n}^{\prime}\right) \in \mathscr{X}_{p}(f)$. If $\mathcal{G} \sim_{p} \mathcal{G}^{\prime}$ (or $\left.\mathcal{G} \sim_{p}^{*} \mathcal{G}^{\prime}\right)$ and $p \nmid G_{n}$ for any $n \in \mathbb{Z}$, then we have $p \nmid G_{n}^{\prime}$ for any $n \in \mathbb{Z}$.

Proof. If $\mathcal{G} \sim_{p} \mathcal{G}^{\prime}$, then we have $G_{1} G_{0}^{\prime} \equiv G_{1}^{\prime} G_{0}(\bmod p)$. Assume that there exists an integer ℓ such that $p \mid G_{\ell}^{\prime}$. Using Lemma 1.2, we have $G_{\ell+1} G_{\ell}^{\prime} \equiv G_{\ell+1}^{\prime} G_{\ell}(\bmod p)$. Since p divides G_{ℓ}^{\prime} and does not divide $G_{\ell+1}^{\prime}$, by Lemma 1.3 , we obtain $p \mid G_{\ell}$. This contradicts the assumption. We can similarly show the assertion for the case $\mathcal{G} \sim_{p}^{*} \mathcal{G}^{\prime}$.

From Lemma 2.1, we know that the sets Y_{p} and Y_{p}^{*} in Section 1 are well defined. Next, we will show that any second sequence has the period dividing $r(p)$. Let $\mathcal{G}=\left(G_{n}\right)$ be a linear recurrence sequence defined by (1.1). Then, we have

$$
\begin{equation*}
G_{n}=\frac{\left(G_{1}-G_{0} \theta_{1}\right) \theta_{2}^{n}-\left(G_{1}-G_{0} \theta_{2}\right) \theta_{1}^{n}}{\theta_{2}-\theta_{1}}, \quad n \in \mathbb{Z} \tag{2.1}
\end{equation*}
$$

Set

$$
\Lambda(\mathcal{G}):=\left(G_{1}-G_{0} \theta_{1}\right)\left(G_{1}-G_{0} \theta_{2}\right)=G_{1}^{2}-T G_{0} G_{1}+N G_{0}^{2}
$$

From (2.1), we can show the following lemma.

Lemma 2.2. Let $\mathcal{G}=\left(G_{n}\right)$ be a linear recurrence sequence defined by (1.1). For any $n, m \in \mathbb{Z}$, we have

$$
G_{n+m}=\mathcal{F}_{m} G_{n+1}-N \mathcal{F}_{m-1} G_{n}
$$

Proof. Set $B=G_{1}-G_{0} \theta_{1}$ and $A=G_{1}-G_{0} \theta_{2}$. Then, we have

$$
\begin{aligned}
\mathcal{F}_{m} & G_{n+1}-N \mathcal{F}_{m-1} G_{n} \\
= & \frac{\left(\theta_{2}^{m}-\theta_{1}^{m}\right)\left(B \theta_{2}^{n+1}-A \theta_{1}^{n+1}\right)-N\left(\theta_{2}^{m-1}-\theta_{1}^{m-1}\right)\left(B \theta_{2}^{n}-A \theta_{1}^{n}\right)}{\left(\theta_{2}-\theta_{1}\right)^{2}} \\
= & \frac{B\left(\theta_{2}^{m+n+1}-N \theta_{2}^{m+n+1}\right)+A\left(-\theta_{1}^{n+1} \theta_{2}^{m}+N \theta_{1}^{n} \theta_{2}^{m-1}\right)}{\left(\theta_{2}-\theta_{1}\right)^{2}} \\
& +\frac{B\left(-\theta_{1}^{m} \theta_{2}^{n+1}+N \theta_{1}^{m-1} \theta_{2}^{n}\right)+A\left(\theta_{1}^{m+n+1}-N \theta_{1}^{m+n+1}\right)}{\left(\theta_{2}-\theta_{1}\right)^{2}}
\end{aligned}
$$

Since $N=\theta_{1} \theta_{2}$, we have $A\left(-\theta_{1}^{n+1} \theta_{2}^{m}+N \theta_{1}^{n} \theta_{2}^{m-1}\right)=0$. In the same manner, we get $B\left(-\theta_{1}^{m} \theta_{2}^{n+1}+N \theta_{1}^{m-1} \theta_{2}^{n}\right)=0$. Furthermore, the equalities

$$
B\left(\theta_{2}^{m+n+1}-N \theta_{2}^{m+n-1}\right)=B \theta_{2}^{m+n}\left(\theta_{2}-N \theta_{2}^{-1}\right)=B \theta_{2}^{m+n}\left(\theta_{2}-\theta_{1}\right)
$$

and

$$
A\left(\theta_{1}^{m+n+1}-N \theta_{1}^{m+n-1}\right)=A \theta_{1}^{m+n}\left(\theta_{1}-N \theta_{1}^{-1}\right)=A \theta_{1}^{m+n}\left(\theta_{1}-\theta_{2}\right)
$$

hold. Therefore, we have

$$
\begin{aligned}
\mathcal{F}_{m} G_{n+1}-N \mathcal{F}_{m-1} G_{n} & =\frac{B \theta_{2}^{m+n}\left(\theta_{2}-\theta_{1}\right)+A \theta_{1}^{m+n}\left(\theta_{1}-\theta_{2}\right)}{\left(\theta_{2}-\theta_{1}\right)^{2}} \\
& =\frac{B \theta_{2}^{m+n}-A \theta_{1}^{m+n}}{\theta_{2}-\theta_{1}} \\
& =G_{m+n}
\end{aligned}
$$

We can show the following lemma by induction on n.

Lemma 2.3. Let $\mathcal{G}=\left(G_{n}\right)$ be a linear recurrence sequence defined by (1.1). For any $n \in \mathbb{Z}$, we have

$$
G_{n}^{2}-T G_{n-1} G_{n}+N G_{n-1}^{2}=N\left(G_{n+1}^{2}-T G_{n} G_{n+1}+N G_{n}^{2}\right)
$$

Assume that $\mathcal{G}=\left(G_{n}\right) \in \mathscr{X}_{p}(f)$ satisfies $p \mid G_{\nu}$ for some $\nu \in \mathbb{Z}$. Since the sequence $\left(G_{n} \bmod p\right)$ is periodic, there exists the integer $r(\mathcal{G}, p)$ such that $p \mid G_{n}$ if and only if $r(\mathcal{G}, p) \mid n-\nu$. The next lemma easily follows.

Lemma 2.4. Let $\mathcal{G}=\left(G_{n}\right) \in \mathscr{X}_{p}(f)$ satisfy $p \mid G_{\nu}$ for some $\nu \in \mathbb{Z}$. Then, we have $r(\mathcal{G}, p)=r(p)$.

Lemma 2.5. Let $\mathcal{G}=\left(G_{n}\right) \in \mathscr{X}_{p}(f)$, and assume that

$$
\Lambda(\mathcal{G}) \equiv 0(\bmod p)
$$

Then, we have $p \nmid G_{n}$ for any $n \in \mathbb{Z}$.
Proof. The assertion follows from the fact that $p \nmid G_{0}$ or $p \nmid G_{1}$ and Lemmata 1.3 and 2.3.

The next proposition asserts that the second sequences $\left(g_{n}\right)$ have periods which divide $r(p)$.

Proposition 2.6. Let $\mathcal{G}=\left(G_{n}\right) \in \mathscr{X}_{p}(f)$ and $\left(g_{n}\right)$ be the second sequence of \mathcal{G}.
(1) If $\Lambda(\mathcal{G}) \not \equiv 0(\bmod p)$, then we have $g_{m}=g_{n}$ if and only if

$$
m \equiv n(\bmod r(p))
$$

(2) If $\Lambda(\mathcal{G}) \equiv 0(\bmod p)$, then we have $g_{n}=g_{0}$ for any $n \in \mathbb{Z}$.

Proof.
(1) We will show the assertion for two cases.

First, we assume that $p \nmid G_{n}$ for any $n \in \mathbb{Z}$. From the definition of the second sequence, we have $g_{n}=g_{m}$ if and only if $G_{m} G_{n+1} \equiv G_{m+1} G_{n}(\bmod p)$. Since

$$
G_{n+1}=\mathcal{F}_{n-m+1} G_{m+1}-N \mathcal{F}_{n-m} G_{m}
$$

and

$$
G_{n}=\mathcal{F}_{n-m} G_{m+1}-N \mathcal{F}_{n-m-1} G_{m}
$$

from Lemma 2.2, we have $g_{m}=g_{n}$ if and only if
$G_{m+1}^{2} \mathcal{F}_{n-m}-G_{m} G_{m+1}\left(\mathcal{F}_{n-m+1}+N \mathcal{F}_{n-m-1}\right)+N G_{m}^{2} \mathcal{F}_{n-m} \equiv 0(\bmod p)$.
From recurrence formula (1.1) and Lemma 2.3, we have

$$
\begin{aligned}
& G_{m+1}^{2} \mathcal{F}_{n-m}-G_{m} G_{m+1}\left(\mathcal{F}_{n-m+1}+N \mathcal{F}_{n-m-1}\right)+N G_{m}^{2} \mathcal{F}_{n-m} \\
& \quad \equiv \mathcal{F}_{n-m}\left(G_{m+1}^{2}-T G_{m} G_{m+1}+N G_{m}^{2}\right) \\
& \quad \equiv \mathcal{F}_{n-m} N^{m} \Lambda(\mathcal{G})(\bmod p)
\end{aligned}
$$

By the assumption $\Lambda(\mathcal{G}) \not \equiv 0(\bmod p)$, we conclude that $g_{m} \equiv g_{n}$ if and only if $m \equiv n(\bmod r(p))$. We have obtained the proof of the case.

Next, we consider the case where $p \mid G_{\nu}$ for some $\nu \in \mathbb{Z}$. We assume that $g_{m}=\infty$, that is, $p \mid G_{m+1}$. Then, we have $g_{n}=\infty$ if and only if $m \equiv n(\bmod r(\mathcal{G}, p))$.

Hereon, assume that $g_{m} \neq \infty$ (that is, $p \nmid G_{m+1}$). We consider two subsequences of $\left(G_{n} \bmod p\right)$:

$$
\begin{align*}
G_{m+1} & \tag{2.3}\\
G_{m} & \equiv g_{m} G_{m+1}, \\
G_{m-1} & \equiv\left(T g_{m}-1\right) N G_{m+1}, \\
G_{m-2} & \equiv\left(T^{2} g_{m}-T-g_{m}\right) N^{2} G_{m+1}, \\
\vdots & \\
G_{n+1} & \\
G_{n} & \equiv g_{n} G_{n+1}, \\
G_{n-1} & \equiv\left(T g_{n}-1\right) N G_{n+1}, \\
G_{n-2} & \equiv\left(T^{2} g_{n}-T-g_{n}\right) N^{2} G_{n+1}, \tag{2.4}\\
\vdots & \\
I_{1} G_{m+1} & \\
G_{m} & \equiv I_{0} G_{m+1}, \\
G_{m-1} & \equiv I_{-1} G_{m+1}, \\
G_{m-2} & \equiv I_{-2} G_{m+1},
\end{align*}
$$

$$
\begin{aligned}
J_{1} G_{n+1} & \\
G_{n} & \equiv J_{0} G_{n+1}, \\
G_{n-1} & \equiv J_{-1} G_{n+1} \\
G_{n-2} & \equiv J_{-2} G_{n+1},
\end{aligned}
$$

For an integer $k \geq 0$, by the assumption $m \equiv n(\bmod r(\mathcal{G}, p))$, we have $p \mid G_{m-k}$ if and only if $p \mid G_{n-k}$. Hence, the subsequences (2.4) imply $p \mid I_{-k}$ if and only if $p \mid J_{-k}$. From Lemma 2.2, we have

$$
I_{-k}=\mathcal{F}_{-k} I_{1}-N \mathcal{F}_{-k-1} I_{0} \equiv \mathcal{F}_{-k}-N \mathcal{F}_{-k-1} g_{m}(\bmod p)
$$

and

$$
J_{-k}=\mathcal{F}_{-k} J_{1}-N \mathcal{F}_{-k-1} J_{0} \equiv \mathcal{F}_{-k}-N \mathcal{F}_{-k-1} g_{n}(\bmod p)
$$

Hence, we get

$$
\begin{equation*}
\mathcal{F}_{-k-1} g_{m} \equiv \mathcal{F}_{-k-1} g_{n}(\bmod p) \tag{2.5}
\end{equation*}
$$

for any integer $k \geq 0$ such that $I_{-k} \equiv J_{-k} \equiv 0(\bmod p)$. Let ν be an integer satisfying $p \mid G_{\nu}$. Since $G_{m-k} \equiv I_{-k} G_{m+1} \equiv 0(\bmod p)$, we have $m-k \equiv \nu(\bmod r(\mathcal{G}, p))$. On the other hand, we know that $m+1 \not \equiv \nu(\bmod r(\mathcal{G}, p))$ since $p \nmid G_{m+1}$. Therefore, we obtain

$$
k \not \equiv-1(\bmod r(\mathcal{G}, p))
$$

and hence, $k \not \equiv-1(\bmod r(p))$ since $r(\mathcal{G}, p) \mid r(p)$. The congruence (2.5) implies $g_{m} \equiv g_{n}(\bmod p)$, and hence, $g_{m}=g_{n}$ since $0 \leq g_{m}$, $g_{n} \leq p-1$. By using Lemma 2.4, we can prove the case.
(2) In this case, we have $p \nmid G_{n}$ for any $n \in \mathbb{Z}$ from Lemma 2.5. Due to the periodicity of $\left(G_{n} \bmod p\right)$, it is sufficient to consider $n \geq 0$. First, we will show that $g_{1} \equiv g_{0}(\bmod p)$. We have

$$
\begin{aligned}
g_{1} & \equiv G_{1} G_{2}^{-1} \equiv G_{1}\left(T G_{1}-N G_{0}\right)^{-1} \\
& \equiv\left(T-N G_{0} G_{1}^{-1}\right)^{-1} \equiv\left(T-N g_{0}\right)^{-1}(\bmod p)
\end{aligned}
$$

On the other hand, since $\Lambda(\mathcal{G}) \equiv 0(\bmod p)$, we have

$$
\begin{aligned}
0 \equiv G_{1}^{2}-T G_{1} G_{0}+N G_{0}^{2} & \equiv G_{1}^{2}\left(1-T G_{0} G_{1}^{-1}+N G_{0}^{2} G_{1}^{-2}\right) \\
& \equiv G_{1}^{2}\left(1-T g_{0}+N g_{0}^{2}\right)(\bmod p)
\end{aligned}
$$

and hence, $g_{0} \equiv\left(T-N g_{0}\right)^{-1}(\bmod p)$. This yields $g_{1} \equiv g_{0}(\bmod p)$. Next, we assume that $g_{k}=g_{0}$ holds for any positive integers k less than $n+1$. Then, we have

$$
\begin{aligned}
g_{n+1} & \equiv G_{n+1} G_{n+2}^{-1} \equiv\left(T G_{n}-N G_{n-1}\right)\left(T G_{n+1}-N G_{n}\right)^{-1} \\
& \equiv\left(T-N G_{n-1} G_{n}^{-1}\right)\left(T G_{n+1} G_{n}^{-1}-N\right)^{-1} \equiv\left(T-N g_{n-1}\right)\left(T g_{n}^{-1}-N\right)^{-1} \\
& \equiv\left(T-N g_{0}\right)\left(T g_{0}^{-1}-N\right)^{-1} \equiv g_{0}(\bmod p)
\end{aligned}
$$

Since $1 \leq g_{0}, g_{n+1} \leq p-1$, we have $g_{n+1}=g_{0}$.
Definition 2.7. Let $\mathcal{G} \in \mathscr{X}_{p}(f)$ and $\left(g_{n}\right)$ be the second sequence of \mathcal{G}. We call the period $\bar{r}(\mathcal{G})$ of $\left(g_{n}\right)$ the second period of \mathcal{G}.

The next corollary follows from Proposition 2.6.
Corollary 2.8. For $\mathcal{G} \in \mathscr{X}_{p}(f)$, let $\bar{r}(\mathcal{G})$ be the second period of \mathcal{G}. Then, we have

$$
\bar{r}(\mathcal{G})= \begin{cases}r(p) & \text { if } \Lambda(\mathcal{G}) \not \equiv 0(\bmod p) \\ 1 & \text { if } \Lambda(\mathcal{G}) \equiv 0(\bmod p)\end{cases}
$$

3. Proofs of theorems. In this section, we prove the theorems in Section 1. The next lemma follows from Lemma 2.2.

Lemma 3.1. Let $\mathcal{G}=\left(G_{n}\right) \in \mathscr{X}_{p}(f)$ with $p \nmid G_{0}, G_{1}$. We have $p \mid G_{n}$ for some $n \in \mathbb{Z}$ if and only if $N G_{1} G_{0}^{-1} \equiv \mathfrak{f}_{m}(\bmod p)$ for some $m \in \mathbb{Z}$ satisfying $1 \leq m \leq r(p)-2$.

We fix

$$
X_{p}^{\prime}(f):=\left\{\overline{\left(G_{n}\right)} \in X_{p}(f) \mid p \nmid G_{0}, G_{1}\right\} .
$$

This set is well defined, that is, if $\left(G_{n}\right) \sim_{p}\left(G_{n}^{\prime}\right)$ and $p \nmid G_{0}, G_{1}$, then we have $p \nmid G_{0}^{\prime}, G_{1}^{\prime}$. Clearly, $Y_{p}(f) \subset X_{p}^{\prime}(f) \subset X_{p}(f)$ and

$$
X_{p}^{\prime}(f)=\{\overline{(G(a, 1))} \mid a=1, \ldots, p-1\} .
$$

Proof of Theorem 1.6. From Lemma 2.2, we have

$$
0 \equiv \mathcal{F}_{r(p)}=\mathcal{F}_{n+(r(p)-n)}=\mathcal{F}_{r(p)-n} \mathcal{F}_{n+1}-N \mathcal{F}_{r(p)-n-1} \mathcal{F}_{n}(\bmod p)
$$

Therefore, we have $\mathfrak{f}_{n} \equiv N \mathfrak{f}_{r(p)-n-1}^{-1}(\bmod p)$. From this congruence and Lemma 3.1, we have

$$
\begin{aligned}
&\left\{\overline{\left(G_{n}\right)} \in X_{p}^{\prime}(f)|p| G_{n} \text { for some } n \in \mathbb{Z}\right\} \\
&=\{\overline{(G(a, 1))} \mid 1 \leq a \leq p-1, N a^{-1} \equiv \mathfrak{f}_{n}(\bmod p) \\
&\quad \text { for some } n(1 \leq n \leq r(p)-2)\} \\
&=\{\overline{(G(a, 1))} \mid 1 \leq a \leq p-1, a \equiv \mathfrak{f}_{r(p)-n-1}(\bmod p)
\end{aligned} \quad \begin{aligned}
& \quad \text { for some } n(1 \leq n \leq r(p)-2)\} \\
& =\left\{\overline{(G(a, 1))} \mid a=\mathfrak{f}_{1}, \ldots, \mathfrak{f}_{r(p)-2}\right\}
\end{aligned}
$$

Hence, we conclude that

$$
\begin{aligned}
Y_{p}(f) & =X_{p}^{\prime}(f)-\left\{\overline{(G(a, 1))} \mid a=\mathfrak{f}_{1}, \ldots, \mathfrak{f}_{r(p)-2}\right\} \\
& =\left\{\overline{(G(a, 1))} \mid 1 \leq a \leq p-1, a \neq \mathfrak{f}_{1}, \ldots, \mathfrak{f}_{r(p)-2}\right\}
\end{aligned}
$$

The equality $\left|Y_{p}(f)\right|=p+1-r(p)$ follows from the first assertion and Proposition 2.6.

Next, we give the proof of Theorem 1.7. We obtain the following lemma from the definition of the Legendre symbol.

Lemma 3.2. Let $f(X)=X^{2}-T X+N \in \mathbb{Z}[X]$ and $d=T^{2}-4 N$. For any prime number $p(\neq 2)$, we have

$$
\left|\left\{\beta \in \mathbb{Z} \mid 1 \leq \beta \leq p-1, f\left(\beta^{-1}\right) \equiv 0(\bmod p)\right\}\right|=\left(\frac{d}{p}\right)+1
$$

Lemma 3.3. Let $\mathcal{G}=\left(G_{n}\right), \mathcal{G}^{\prime}=\left(G_{n}^{\prime}\right) \in \mathscr{X}_{p}(f)$ and $\left(g_{n}\right),\left(g_{n}^{\prime}\right)$ be the second sequences, respectively. Assume that $p \nmid G_{n}, G_{n}^{\prime}$ for any $n \in \mathbb{Z}$, and let $\bar{r}(\mathcal{G})$ be the second period of \mathcal{G}. Then, we have $\mathcal{G} \sim_{p}^{*} \mathcal{G}^{\prime}$ if and only if $g_{0}^{\prime}=g_{n}$ for some $n \in \mathbb{Z}$ satisfying $1 \leq n \leq \bar{r}(\mathcal{G})$.

Proof. By the definition of the second sequence, the equality $g_{0}^{\prime}=g_{n}$ for some $n \in \mathbb{Z}$ implies $\mathcal{G} \sim_{p}^{*} \mathcal{G}^{\prime}$. Conversely, if $\mathcal{G} \sim_{p}^{*} \mathcal{G}^{\prime}$, then there exist integers m and n such that $G_{m+1} G_{n}^{\prime} \equiv G_{n+1}^{\prime} G_{m}(\bmod p)$. From Lemma 1.2, we have $G_{m-n+1} G_{0}^{\prime} \equiv G_{1}^{\prime} G_{m-n}(\bmod p)$. Therefore, we have $g_{0}^{\prime} \equiv g_{m-n}(\bmod p)$, and hence, $g_{0}^{\prime}=g_{m-n}$. Since the second period of \mathcal{G} is $\bar{r}(\mathcal{G})$, there exists an integer ℓ satisfying $g_{0}^{\prime}=g_{\ell}$ and $1 \leq \ell \leq \bar{r}(\mathcal{G})$.

Proof of Theorem 1.7. Let α be an integer such that $1 \leq \alpha \leq p-1$ and $\alpha \neq \mathfrak{f}_{1}, \ldots, \mathfrak{f}_{r(p)-2}$. We consider the linear recurrence sequence $\mathcal{G}=\left(G_{n}\right)=(G(\alpha, 1))$ and its second sequence $\mathcal{A}=\left(g_{n}\right)$. Assume that $\mathcal{G} \sim_{p}^{*} \mathcal{F}$. Then, from Lemma 1.2, there exists an integer n such that $\mathcal{F}_{n} \equiv G_{1} \mathcal{F}_{n} \equiv \mathcal{F}_{n+1} G_{0} \equiv \mathcal{F}_{n+1} \alpha(\bmod p)$. Since $p \nmid \alpha$, we have $n \not \equiv-1,0(\bmod r(p))$; hence, the congruence implies $\alpha=g_{0}=\mathfrak{f}_{m}$ for some $m \in \mathbb{Z}$ satisfying $1 \leq m \leq r(p)-2$. This is a contradiction. We conclude that $\mathcal{G} \nsim p_{*}^{\mathcal{F}}$, and hence, $p \nmid G_{n}$ for any $n \in \mathbb{Z}$ from Lemma 1.4.

Now, we choose another integer α^{\prime} satisfying $1 \leq \alpha^{\prime} \leq p-1$, $\alpha^{\prime} \neq \mathfrak{f}_{1}, \ldots, \mathfrak{f}_{r(p)-2}$ and $\alpha^{\prime} \notin \mathcal{A}=\left(g_{n}\right)$. For $\mathcal{G}^{\prime}=\left(G_{n}^{\prime}\right)=\left(G\left(\alpha^{\prime}, 1\right)\right)$, and its second sequence $\mathcal{A}^{\prime}=\left(g_{n}^{\prime}\right)$, if $g_{n}=g_{m}^{\prime}$ for some $n, m \in \mathbb{Z}$, then we have $\alpha^{\prime}=g_{0}^{\prime}=g_{n-m}$ from Lemma 1.2. This contradicts the assumption $\alpha^{\prime} \notin \mathcal{A}=\left(g_{n}\right)$. Hence, we have $\mathcal{A} \cap \mathcal{A}^{\prime}=\emptyset$. By continuing this procedure, we can choose integers $\alpha_{i}, i=1, \ldots, s$, satisfying

$$
\begin{equation*}
\left\{a \in \mathbb{Z} \mid 1 \leq a \leq p-1, a \neq \mathfrak{f}_{1}, \ldots, \mathfrak{f}_{r(p)-2}\right\}=\coprod_{i=1}^{s} \mathcal{A}_{i} \text { (disjoint union) } \tag{3.1}
\end{equation*}
$$

where \mathcal{A}_{i} is the second sequence of $\left(G\left(\alpha_{i}, 1\right)\right)$. Finally, we will prove that

$$
s=s(p)+\left(\frac{d}{p}\right)=\frac{p-(d / p)}{r(p)}+\left(\frac{d}{p}\right)
$$

If $\beta^{-1}, 1 \leq \beta \leq p-1$, is a solution of

$$
f(X)=X^{2}-T X+N \equiv 0(\bmod p)
$$

then the sequence $\mathcal{G}=\left(g_{n}\right)=(G(\beta, 1))$ satisfies $\Lambda(\mathcal{G}) \equiv 0(\bmod p)$. On the other hand, for the sequence $\mathcal{G}^{\prime}=\left(g_{n}^{\prime}\right)=\left(G\left(f_{i}, 1\right)\right), i=$ $1, \ldots, r(p)-2$, we have $\Lambda\left(\mathcal{G}^{\prime}\right)= \pm F_{i+1}^{-2} \Lambda(\mathcal{F}) \not \equiv 0(\bmod p)$ from Lemma 2.3. Hence, we conclude that $\beta \neq \mathfrak{f}_{1}, \ldots, \mathfrak{f}_{r(p)-2}$. The cardinality of the second sequence of $(G(\beta, 1))$ is 1 from Proposition 2.6. On the other hand, for any integer α such that $1 \leq \alpha \leq p-1, \alpha \neq \mathfrak{f}_{1}, \ldots, \mathfrak{f}_{r(p)-2}$ and $f\left(\alpha^{-1}\right) \not \equiv 0(\bmod p)$, the cardinality of the second sequence of $(G(\alpha, 1))$ is $r(p)$. Then, the equality (3.1) and Lemma 3.2 yield

$$
(p-1)-(r(p)-2)=\left(\frac{d}{p}\right)+1+\left\{s-\left(\left(\frac{d}{p}\right)+1\right)\right\} r(p)
$$

From this equality, we obtain

$$
s=\frac{p-(d / p)}{r(p)}+\left(\frac{d}{p}\right) \quad\left(=s(p)+\left(\frac{d}{p}\right)\right)
$$

In conclusion, we will give the proof of Theorem 1.8.

Proof of Theorem 1.8. Let

$$
\begin{gathered}
\overline{\mathcal{G}}=\overline{(G(a, 1))}, \quad \overline{\mathcal{G}^{\prime}}=\overline{\left(G\left(a^{\prime}, 1\right)\right)} \in Y_{p}(f), \\
1 \leq a \leq p-1, \quad a \neq \mathfrak{f}_{1}, \ldots, \mathfrak{f}_{r(p)-2}, \\
1 \leq a^{\prime} \leq p-1, \quad a^{\prime} \neq \mathfrak{f}_{1}, \ldots, \mathfrak{f}_{r(p)-2},
\end{gathered}
$$

and \mathcal{A} be the second sequence of \mathcal{G}. From Lemma 3.3, we have $\mathcal{G} \sim_{p}^{*} \mathcal{G}^{\prime}$ if and only if $a^{\prime} \in \mathcal{A}$. By Theorem 1.7 and its proof, since the set $\left\{\alpha_{i} \mid i=1, \ldots, s(p)+(d / p)\right\}$ contains the representatives of \mathcal{A}_{i} $(i=1, \ldots, s(p)+(d / p))$, we obtain the first assertion of the theorem. The equality $\left|Y_{p}^{*}(f)\right|=s(p)+(d / p)$ follows from the first assertion.
4. Relation to Laxton's equivalence classes. In this section, we will explain the relation between our modulo p equivalence classes and Laxton's [6]. We also recommend the book [3] by Ballot. We consider the two relations \sim and \sim^{*} (without modulo p). Let $\mathcal{G}=\left(G_{n}\right)$ and $\mathcal{G}^{\prime}=\left(G_{n}^{\prime}\right)$ be linear recurrence sequences defined by (1.1).

Definition 4.1.

(1) If there are some non-zero integers λ and μ satisfying $\lambda G_{n}=\mu G_{n}^{\prime}$ for any $n \in \mathbb{Z}$, then we write $\mathcal{G} \sim \mathcal{G}^{\prime}$.
(2) If there are some non-zero integers λ, μ and an integer ν satisfying $\lambda G_{n+\nu}=\mu G_{n}^{\prime}$ for any $n \in \mathbb{Z}$, then we write $\mathcal{G} \sim^{*} \mathcal{G}^{\prime}$.

These two relations are equivalence relations for the set

$$
\begin{aligned}
& F(f):=\{\mathcal{G} \mid \text { linear recurrence sequences defined by }(1.1) \\
& \left.\qquad \text { with } G_{0} \neq 0 \text { or } G_{1} \neq 0\right\}
\end{aligned}
$$

Note that either assumption $G_{0} \neq 0$ or $G_{1} \neq 0$ is equivalent to $\Lambda(\mathcal{G}) \neq 0$ by our assumption of $f(X)$. Consider the quotient sets using the
relations:

$$
G(f):=F(f) / \sim, \quad G^{*}(f):=F(f) / \sim^{*}
$$

Laxton introduced a commutative group structure on $G^{*}(f)$. For any $\mathcal{G}=\left(G_{n}\right), \mathcal{H}=\left(H_{n}\right) \in F(f)$, with

$$
G_{n}:=\frac{B \theta_{2}^{n}-A \theta_{1}^{n}}{\theta_{2}-\theta_{1}}, \quad H_{n}:=\frac{D \theta_{2}^{n}-C \theta_{1}^{n}}{\theta_{2}-\theta_{1}}
$$

where $B=G_{1}-G_{0} \theta_{1}, A=G_{1}-G_{0} \theta_{2}, D=H_{1}-H_{0} \theta_{1}$ and $C=H_{1}-H_{0} \theta_{2}$. He defined the product $\mathcal{G} \times \mathcal{H}=\mathcal{W}=\left(W_{n}\right) \in F(f)$ by

$$
\begin{equation*}
W_{n}=\frac{B D \theta_{2}^{n}-A C \theta_{1}^{n}}{\theta_{2}-\theta_{1}}, \quad n \in \mathbb{Z} \tag{4.1}
\end{equation*}
$$

He showed that this product yields commutative group structures on $G^{*}(f)$ with the identity $\overline{\mathcal{F}}$ (the class of Lucas sequence), namely, for $\overline{\mathcal{G}}, \overline{\mathcal{H}} \in G^{*}(f)$, their product is given by $\overline{\mathcal{W}}$. We consider not only $G^{*}(f)$ but also $G(f)$ to correspond to our set $X_{p}(f)$. Denote

$$
\begin{aligned}
I(f, p) & :=\{\mathfrak{G} \in G(f) \mid \Lambda(\mathcal{G}) \not \equiv 0(\bmod p) \text { for some } \mathcal{G} \in \mathfrak{G}\} \\
I^{*}(f, p) & :=\left\{\mathfrak{G} \in G^{*}(f) \mid \Lambda(\mathcal{G}) \not \equiv 0(\bmod p) \text { for some } \mathcal{G} \in \mathfrak{G}\right\} \\
G(f, p) & :=\left\{\mathfrak{G} \in G(f)|p| G_{0} \text { for all } \mathcal{G}=\left(G_{n}\right) \in \mathfrak{G}\right\} \\
G^{*}(f, p) & :=\left\{\mathfrak{G} \in G^{*}(f)|p| G_{n} \text { for all } \mathcal{G}=\left(G_{n}\right) \in \mathfrak{G} \text { and some } n \in \mathbb{Z}\right\}
\end{aligned}
$$

The sets $I(f, p)$ and $G(f, p)$ (respectively, $I^{*}(f, p)$ and $\left.G^{*}(f, p)\right)$ are subgroups of $G(f)$ (respectively, $G^{*}(f)$) [6, Lemma 2.3, Proposition 3.1].

For the exact sequence of groups

$$
0 \longrightarrow I^{*}(f, p) / G^{*}(f, p) \longrightarrow G^{*}(f) / G^{*}(f, p) \longrightarrow G^{*}(f) / I^{*}(f, p) \longrightarrow 0
$$

if $p \neq 2$, then Laxton [$\mathbf{6}$, Theorem 3.7] showed the following.

$$
I^{*}(f, p) / G^{*}(f, p) \simeq \begin{cases}\mathbb{Z} / s(p) \mathbb{Z} & \text { if }(d / p)= \pm 1 \\ 0 & \text { if }(d / p)=0\end{cases}
$$

and

$$
G^{*}(f) / I^{*}(f, p) \simeq \begin{cases}\mathbb{Z}^{(1+(d / p)) / 2} & \text { if }(d / p)= \pm 1 \\ \mathbb{Z} / 2 \mathbb{Z} & \text { if }(d / p)=0\end{cases}
$$

where $s(p)=(p-(d / p)) / r(p)$. On the other hand, let $\mathscr{X}_{p}(f)$ be the set in Section 1. For any $\mathcal{G}=\left(G_{n}\right), \mathcal{H}=\left(H_{n}\right) \in \mathscr{X}_{p}(f)$, the product $\mathcal{W}=\mathcal{G} \times \mathcal{H}$ (4.1) is not always in $\mathscr{X}_{p}(f)$ (for example, in the case $1+N-T \equiv 0(\bmod p)$, if

$$
G_{0} \equiv G_{1} \not \equiv 0(\bmod p) \quad \text { and } \quad H_{1} \equiv N H_{0} \not \equiv 0(\bmod p),
$$

then $\mathcal{G}=\left(G_{n}\right), \mathcal{H}=\left(H_{n}\right) \in \mathscr{X}_{p}(f)$ but the product sequence $\mathcal{W}=$ $\left(W_{n}\right) \notin \mathscr{X}_{p}(f)$ since $W_{0} \equiv W_{1} \equiv 0(\bmod p)($ see $[3$, page $\left.15,(2.6)])\right)$. However, we will prove that certain subsets $Z_{p}(f)$ and $Z_{p}^{*}(f)$ of $X_{p}(f)$ and $X_{p}^{*}(f)$, respectively, have group structures defined by (4.1).

Lemma 4.2. Let $\mathcal{G}=\left(G_{n}\right), \mathcal{G}^{\prime}=\left(G_{n}^{\prime}\right) \in \mathscr{X}_{p}(f)$, and assume that $\Lambda(\mathcal{G}) \not \equiv 0(\bmod p)$.
(1) If $\mathcal{G} \sim_{p} \mathcal{G}^{\prime}$, then we have $\Lambda\left(\mathcal{G}^{\prime}\right) \not \equiv 0(\bmod p)$.
(2) If $\mathcal{G} \sim_{p}^{*} \mathcal{G}^{\prime}$, then we have $\Lambda\left(\mathcal{G}^{\prime}\right) \not \equiv 0(\bmod p)$.

Proof. We only give the proof for (2). Since $\mathcal{G} \sim_{p}^{*} \mathcal{G}^{\prime}$, there exist integers m and n satisfying $G_{m+1} G_{n}^{\prime} \equiv G_{n+1}^{\prime} G_{m}(\bmod p)$. If $p \mid G_{n}^{\prime}$ or $p \mid G_{n+1}^{\prime}$, then we have $\Lambda\left(\mathcal{G}^{\prime}\right) \not \equiv 0(\bmod p)$ from Lemma 2.5. If p $\nmid G_{n}^{\prime}, G_{n+1}^{\prime}$, then we have $p \nmid G_{m}, G_{m+1}$. From Lemma 2.3 and the congruence $G_{m+1} G_{n}^{\prime} \equiv G_{n+1}^{\prime} G_{m}(\bmod p)$, we have

$$
\Lambda\left(\mathcal{G}^{\prime}\right) \equiv \pm G_{n+1}^{\prime 2} G_{m+1}^{-2} \Lambda(\mathcal{G}) \not \equiv 0(\bmod p)
$$

From Lemma 4.2, the sets

$$
\begin{aligned}
& Z_{p}(f):=\left\{\overline{\mathcal{G}} \in X_{p}(f) \mid \Lambda(\mathcal{G}) \not \equiv 0(\bmod p)\right\} \\
& Z_{p}^{*}(f):=\left\{\overline{\mathcal{G}} \in X_{p}^{*}(f) \mid \Lambda(\mathcal{G}) \not \equiv 0(\bmod p)\right\}
\end{aligned}
$$

are well defined. The next lemmata show that product (4.1) on $Z_{p}(f), Z_{p}^{*}(f)$ is well defined.

Lemma 4.3. Let $\mathcal{G}=\left(G_{n}\right), \mathcal{H}=\left(H_{n}\right) \in \mathscr{X}_{p}(f)$. For the fixed integer ν, let $\mathcal{Z}=\left(Z_{n}\right) \in \mathscr{X}_{p}(f)$ be the sequence defined by $Z_{n}=H_{n+\nu}$, $n \in \mathbb{Z}$. Then, we have $\mathcal{G} \times \mathcal{H} \sim_{p}^{*} \mathcal{G} \times \mathcal{Z}$.

Proof. Set

$$
G_{n}=\frac{B \theta_{2}^{n}-A \theta_{1}^{n}}{\theta_{2}-\theta_{1}}, \quad H_{n}=\frac{D \theta_{2}^{n}-C \theta_{1}^{n}}{\theta_{2}-\theta_{1}}, \quad Z_{n}=\frac{E \theta_{2}^{n}-F \theta_{1}^{n}}{\theta_{2}-\theta_{1}}
$$

Then, we have $E=D \theta_{2}^{\nu}, F=C \theta_{1}^{\nu}$; hence, the nth term of $\mathcal{G} \times \mathcal{Z}$ is the $(n+\nu)$ th term of $\mathcal{G} \times \mathcal{H}$, and we obtain $\mathcal{G} \times \mathcal{H} \sim_{p}^{*} \mathcal{G} \times \mathcal{Z}$.

Lemma 4.4. Let $\mathcal{G}=\left(G_{n}\right), \mathcal{G}^{\prime}=\left(G_{n}^{\prime}\right), \mathcal{H}=\left(H_{n}\right)$ and $\mathcal{H}^{\prime}=\left(H_{n}^{\prime}\right) \in$ $\mathscr{X}_{p}(f)$.
(1) If $\mathcal{G} \sim_{p} \mathcal{G}^{\prime}$ and $\mathcal{H} \sim_{p} \mathcal{H}^{\prime}$, then we have $\mathcal{G} \times \mathcal{H} \sim_{p} \mathcal{G}^{\prime} \times \mathcal{H}^{\prime}$.
(2) If $\mathcal{G} \sim_{p}^{*} \mathcal{G}^{\prime}$ and $\mathcal{H} \sim_{p}^{*} \mathcal{H}^{\prime}$, then we have $\mathcal{G} \times \mathcal{H} \sim_{p}^{*} \mathcal{G}^{\prime} \times \mathcal{H}^{\prime}$.

Proof. We only give the proof for (2). It is sufficient to show that $\mathcal{G} \times \mathcal{H} \sim_{p}^{*} \mathcal{G}^{\prime} \times \mathcal{H}$ since the product (4.1) is commutative and \sim_{p}^{*} is an equivalence relation. From the assumption $\mathcal{G} \sim_{p}^{*} \mathcal{G}^{\prime}$, using Lemma 1.2, there exists an integer ν satisfying $G_{1} G_{\nu}^{\prime} \equiv G_{0} G_{\nu+1}^{\prime}(\bmod p)$. Let $\mathcal{Z}=\left(Z_{n}\right) \in \mathscr{X}_{p}(f)$ be the sequence defined by $Z_{n}=G_{n+\nu}^{\prime}, n \in \mathbb{Z}$. Then, we have $G_{1} Z_{0} \equiv G_{0} Z_{1}(\bmod p)$. From Lemma 4.3, it is sufficient to show that $\mathcal{G} \times \mathcal{H} \sim_{p}^{*} \mathcal{Z} \times \mathcal{H}$. Setting $\mathcal{G} \times \mathcal{H}=\left(W_{n}\right)$ and $\mathcal{Z} \times \mathcal{H}=\left(Y_{n}\right)$, we have

$$
\begin{align*}
& \left\{\begin{array}{l}
W_{0}=G_{1} H_{0}+G_{0} H_{1}-T G_{0} H_{0} \\
W_{1}=G_{1} H_{1}-N G_{0} H_{0}
\end{array}\right. \tag{4.2}\\
& \left\{\begin{array}{l}
Y_{0}=Z_{1} H_{0}+Z_{0} H_{1}-T Z_{0} H_{0} \\
Y_{1}=Z_{1} H_{1}-N Z_{0} H_{0}
\end{array}\right.
\end{align*}
$$

see [3, page 15 (2.6)]. Assume that $p \mid G_{0}$. Then, we have $p \mid Z_{0}$ since $G_{1} Z_{0} \equiv G_{0} Z_{1}(\bmod p)$. From (4.2), we have

$$
Y_{1} W_{0} \equiv G_{1} H_{0} Z_{1} H_{1} \equiv W_{1} Y_{0}(\bmod p)
$$

and hence, we have $\mathcal{G} \times \mathcal{H} \sim_{p}^{*} \mathcal{Z} \times \mathcal{H}$.
Next, assume that $p \nmid G_{0}$. Then, we have $p \nmid Z_{0}$. From (4.2) and the congruence $G_{1} Z_{0} \equiv G_{0} Z_{1}(\bmod p)$, we have $W_{0} \equiv G_{0} Z_{0}^{-1} Y_{0}(\bmod p)$ and $W_{1} \equiv G_{0} Z_{0}^{-1} Y_{1}(\bmod p)$, from which we conclude that

$$
W_{0} Y_{1} \equiv Y_{0} W_{1}(\bmod p)
$$

and hence, $\mathcal{G} \times \mathcal{H} \sim_{p}^{*} \mathcal{Z} \times \mathcal{H}$.
From Lemma 4.4, we know that the products (4.1) on $Z_{p}(f)$ and $Z_{p}^{*}(f)$ are well defined. The sets $Z_{p}(f)$ and Z_{p}^{*} are commutative groups with identity $\overline{\mathcal{F}}$. For $\overline{\mathcal{G}} \in Z_{p}(f)\left(\right.$ or $\left.Z_{p}^{*}(f)\right), \mathcal{G}=\left(G_{n}\right)$ with $G_{n}=$
$\left(B \theta_{2}^{n}-A \theta_{1}^{n}\right) /\left(\theta_{2}-\theta_{1}\right)$, the inverse element of $\overline{\mathcal{G}}$ is given by $\overline{\mathcal{G}^{\prime}} \in Z_{p}(f)$, $\mathcal{G}^{\prime}=\left(G_{n}^{\prime}\right)$ with $G_{n}^{\prime}=\left(A \theta_{2}^{n}-B \theta_{1}^{n}\right) /\left(\theta_{2}-\theta_{1}\right)$.

Theorem 4.5. There exist natural group homomorphisms

$$
I(f, p) / G(f, p) \simeq Z_{p}(f) \quad \text { and } \quad I^{*}(f, p) / G^{*}(f, p) \simeq Z_{p}^{*}(f)
$$

Proof. Consider the following maps

$$
\begin{aligned}
\psi_{p}: I(f, p) \longrightarrow Z_{p}(f), & \psi_{p}(\mathfrak{G})=\mathfrak{G}_{p} \\
\psi_{p}^{*}: I^{*}(f, p) \longrightarrow Z_{p}^{*}(f), & \psi_{p}^{*}(\mathfrak{G})=\mathfrak{G}_{p}
\end{aligned}
$$

where

$$
\mathfrak{G}_{p}:=\left\{\mathcal{G}=\left(G_{n}\right) \in \mathfrak{G} \mid p \nmid G_{0} \text { or } p \nmid G_{1}\right\} .
$$

From the definitions of relations \sim, \sim^{*}, \sim_{p} and \sim_{p}^{*}, these maps ψ and ψ^{*} are well-defined group homomorphisms. Furthermore, both ψ_{p} and ψ_{p}^{*} are surjective with kernels

$$
\operatorname{Ker}\left(\psi_{p}\right)=G(f, p) \quad \text { and } \quad \operatorname{Ker}\left(\psi_{p}^{*}\right)=G^{*}(f, p)
$$

by Lemma 1.4.
Set $F=\mathbb{Q}\left(\theta_{1}\right)$, and let \mathcal{O}_{F} be the ring of integers of F. For any prime ideal \mathfrak{p} of F which is above p, let $K_{1}:=\mathcal{O}_{F} / \mathfrak{p}$ and $K_{2}:=\mathbb{Z} / p \mathbb{Z}$ be the residue fields. Assume that $p \neq 2$. From the isomorphisms ψ_{p} and ψ_{p}^{*} and the group structures given by Laxton [6, Theorem 3.7 and proof], we obtain the following commutative diagrams. Note that $\left(G\left(\mathfrak{f}_{0}, 1\right)\right)=(G(0,1))=\mathcal{F}$.
(I) Case $(d / p)=1$.

where ι is the natural surjection, the $\operatorname{map} \varphi_{p}^{+}$is given by $\varphi_{p}^{+}(\overline{\mathcal{G}})=$ $\left(G_{1}-G_{0} \theta_{1}\right) /\left(G_{1}-G_{0} \theta_{2}\right),\left(\mathcal{G}=\left(G_{n}\right)\right)$, and each row is an exact sequence.
(II) Case $(d / p)=-1$.

where ι is the natural surjection, the map φ_{p}^{-}is given by $\varphi_{p}^{-}(\overline{\mathcal{G}})=$ $G_{1}-G_{0} \theta_{2},\left(\mathcal{G}=\left(G_{n}\right)\right)$, and each row is an exact sequence.
(III) Case $(d / p)=0$.

$$
I^{*}(f, p) / G^{*}(f, p) \stackrel{\psi_{p}^{*}}{\simeq} Z_{p}^{*}(f) \simeq 0
$$

and

$$
\begin{aligned}
Z_{p}(f) & =\left\{\overline{\left(G\left(\mathfrak{f}_{i}, 1\right)\right)} \mid i=0, \ldots, r(p)-2\right\} \cup\{\overline{(G(1,0))}\} \\
& =\left\{\overline{\left(G\left(\mathcal{F}_{i}, \mathcal{F}_{i+1}\right)\right)} \mid i=0, \ldots, r(p)-1\right\} \underset{\underset{\varphi_{p}^{0}}{\sim}}{Z} / p \mathbb{Z}
\end{aligned}
$$

where the map φ_{p}^{0} is given by $\varphi_{p}^{0}\left(\overline{\left(G\left(\mathcal{F}_{i}, \mathcal{F}_{i+1}\right)\right)}\right)=i$. We know that the $\operatorname{map} \varphi_{p}^{0}$ is a group homomorphism since for $\mathcal{G}_{i}=\left(G\left(\mathcal{F}_{i}, \mathcal{F}_{i+1}\right)\right), \mathcal{G}_{j}=$ $\left(G\left(\mathcal{F}_{j}, \mathcal{F}_{j+1}\right)\right)$; the product

$$
\mathcal{G}_{i} \times \mathcal{G}_{j}=\mathcal{W}=\left(W_{n}\right)
$$

is given by

$$
\begin{aligned}
& W_{0}=\mathcal{F}_{i+1} \mathcal{F}_{j}+\mathcal{F}_{i}\left(\mathcal{F}_{j+1}-T \mathcal{F}_{j}\right)=\mathcal{F}_{i+1} \mathcal{F}_{j}-N \mathcal{F}_{i} \mathcal{F}_{j-1}=\mathcal{F}_{i+j} \\
& W_{1}=\mathcal{F}_{i+1} \mathcal{F}_{j+1}-N \mathcal{F}_{i} \mathcal{F}_{j}=\mathcal{F}_{i+j+1}
\end{aligned}
$$

from Lemma 2.2 and explicit formulae for W_{0} and $W_{1}[3$, page 15, (2.6)].
From the diagrams, Lemma 1.4, Theorem 1.6 and Theorem 1.8, we obtain the next corollary.

Corollary 4.6.

(1) All of the classes of $Z_{p}(f)$ and $I(f, p) / G(f, p)$ are given by

$$
\left\{\overline{(G(a, 1))} \mid 0 \leq a \leq p-1, \quad f\left(a^{-1}\right) \not \equiv 0(\bmod p)\right\} \cup\{\overline{(G(1,0))}\}
$$

(2) Let $\alpha_{i}, i=1, \ldots, s(p)+(d / p)$, be the integers in Theorem 1.7. Then, all of the classes of $Z_{p}^{*}(f)$ and $I^{*}(f, p) / G^{*}(f, p)$ are given by

$$
\left\{\overline{\left(G\left(\alpha_{i}, 1\right)\right)} \mid i=1, \ldots, s(p)+(d / p), f\left(\alpha_{i}^{-1}\right) \not \equiv 0(\bmod p)\right\} \cup\{\overline{\mathcal{F}}\}
$$

5. Examples. Examples are given in Tables 1 and 2 for the cases $T=1, N=-1$ and $T=6, N=1$. If $T=1$ and $N=-1$, then $(G(0,1))$

TABLE 1. $T=1, N=-1$.

p	$r(p)$	$s(p)$	(d / p)	$\begin{gathered} \mathcal{A}_{i} \\ (i=1, \ldots, s(p)+(d / p)) \end{gathered}$	$Y_{p}^{*}(f)$	$\begin{gathered} Z_{p}^{*}(f) \\ \left(I^{*}(f, p) / G^{*}(f, p)\right) \\ \hline \end{gathered}$
3	4	1	-1	\emptyset	\emptyset	$\overline{\mathcal{F}}$
5	5	1	0	\{2* $\}$	$\overline{(G(2,1))}$	$\overline{\mathcal{F}}$
7	8	1	-1	\emptyset	\emptyset	$\overline{\mathcal{F}}$
11	10	1	1	$\left\{3^{*}\right\},\left\{7^{*}\right\}$	$\frac{\overline{(G(3,1))}}{\overline{(G(7,1))}}$,	$\overline{\mathcal{F}}$
13	7	2	-1	\{2, 3, 4, 6, 8, 9, 10\}	$\overline{\overline{(G(2,1))}}$	$\overline{\mathcal{F}}, \overline{(G(2,1))}$
17	9	2	-1	$\{2,3,5,6,8,10,11,13,14\}$	$\overline{(G(2,1))}$	$\overline{\mathcal{F}}, \overline{(G(2,1))}$
19	18	1	1	\{4* ${ }^{*},\left\{14^{*}\right\}$	$\frac{\overline{(G(4,1))}}{(G(14,1))}$	$\overline{\mathcal{F}}$
23	24	1	-1	\emptyset	\emptyset	$\overline{\mathcal{F}}$
29	14	2	1	$\begin{aligned} & \left\{5^{*}\right\},\left\{23^{*}\right\},\{3,4,6,7,9,11, \\ & 12,16,17,19,21,22,24,25\} \end{aligned}$	$\begin{aligned} & \frac{\overline{(G(3,1))},}{\frac{(G(5,1))}{(G)}} \overline{(G(23,1))} \end{aligned}$	$\overline{\mathcal{F}}, \overline{(G(3,1))}$
31	30	1	1	\{12* $\},\left\{18^{*}\right\}$	$\frac{\overline{(G(12,1))}}{(G(18,1))}$	$\overline{\mathcal{F}}$
37	19	2	-1	$\begin{aligned} & \{2,4,5,7,9,10,11,14,15, \\ & 18,21,22,25,26,27,29,31, \\ & 32,34\} \end{aligned}$	$\overline{(G(2,1))}$	$\overline{\mathcal{F}}, \overline{(G(2,1))}$
41	20	2	1	$\begin{aligned} & \left\{6^{*}\right\},\left\{34^{*}\right\},\{3,4,5,7,8,9, \\ & 10,13,15,18,22,25,27,30, \\ & 31,32,33,35,36,37\} \end{aligned}$	$\begin{aligned} & \frac{\overline{(G(3,1))},}{\frac{(G(6,1))}{(G(34,1))}} \end{aligned}$	$\overline{\mathcal{F}}, \overline{(G(3,1))}$
43	44	1	-1	\emptyset	\emptyset	$\overline{\mathcal{F}}$
47	16	3	-1	$\{3,4,5,8,9,11,12,15,18$, $19,20,21,29,33,39,40\}$, $\{6,7,13,17,25,26,27,28$, $31,34,35,37,38,41,42,43\}$	$\frac{\overline{(G(3,1))}}{\overline{(G(6,1))}}$	$\frac{\overline{\mathcal{F}}, \overline{(G(3,1))}}{(G(6,1))},$

Table 2. $T=6, N=1$.

p	$r(p)$	$s(p)$	(d/p)	$\begin{gathered} \mathcal{A}_{i} \\ (i=1, \ldots, s(p)+(d / p)) \end{gathered}$	$Y_{p}^{*}(f)$	$\begin{gathered} Z_{p}^{*}(f) \\ \left(I^{*}(f, p) / G^{*}(f, p)\right) \\ \hline \end{gathered}$
3	2	2	-1	\{1,2\}	($G(1,1)$)	$\overline{\mathcal{F},(G(1,1))}$
5	3	2	-1	\{2,3,4\}	(G(2, 1)	$\overline{\mathcal{F}},(G(2,1))$
					$\frac{(G(1,1)),}{(G(2,1)),}$	
7	3	2	1	$\left\{2^{*}\right\},\left\{4^{*}\right\},\{1,3,5\}$	(G(4,) $)$	$\overline{\mathcal{F}}, \overline{(G(1,1))}$
11	6	2	-1	$\{1,5,7,8,9,10\}$	(G(1,1))	$\mathcal{F},(G(1,1))$
13	7	2	-1	$\{2,3,4,7,9,10,12\}$	(G(2,))	$\overline{\mathcal{F}},(G(2,1))$
17	4	4	1	$\begin{aligned} & \left\{8^{*}\right\},\left\{15^{*}\right\},\{1,5,7,16\} \\ & \{2,12,13,14\},\{4,9,10,11\} \end{aligned}$	$\frac{(G(1,1)),}{\frac{(G(2,1))}{(G(4,1))},}$ $\frac{\overline{(G(8,1)),}}{(G(15,1))}$	$\frac{\overline{\mathcal{F}}, \overline{(G(1,1))}}{(G(2,1))}, \frac{(G(4,1))}{,}$
19	10	2	-1	$\{1,2,4,5,7,10,11,14,15,18\}$	($G(1,1)$)	$\overline{\mathcal{F}},(G(1,1))$
23	11	2	1	$\begin{aligned} & \left\{13^{*}\right\},\left\{16^{*}\right\},\{1,3,5,8,9, \\ & 11,14,15,18,20,21\} \end{aligned}$	$\begin{aligned} & \frac{(G(1,1)),}{(G(13,1)),} \\ & \frac{(G(16,1))}{(G(1,1)} \end{aligned}$	$\overline{\mathcal{F}}, \overline{(G(1,1))}$
29	5	6	-1	$\begin{aligned} & \{2,9,19,20,22\},\{3,7,10, \\ & 25,28\},\{4,13,15,16,26\}, \\ & \{8,12,14,18,24\},\{11,17, \\ & 21,23,27\} \end{aligned}$	$\frac{(G(2,1)),}{(G(3,1))}$, $\frac{\overline{(G(4,1))},}{\frac{(G(8,1))}{(G(11,1))}}$,	$\frac{\overline{\mathcal{F}}, \frac{\overline{(G(2,1))},}{\frac{(G(3,1))}{(G(8,1))},}, \frac{(G(4,1))}{(G(11,1))}}{\left(\frac{1}{2}\right)}$
31	15	2	1	$\begin{aligned} & \left\{18^{*}\right\},\left\{19^{*}\right\},\{1,2,3,4,5, \\ & 8,12,13,15,16,21,22,24, \\ & 25,29\} \end{aligned}$	$\frac{\frac{(G(1,1)),}{(G(18,1)),}}{\frac{(G(19,1))}{(G)}}$	$\overline{\mathcal{F}}, \overline{(G(1,1))}$
37	19	2	-1	$\{3,7,8,11,13,14,16,18$, $20,21,22,23,25,27,29$, $30,32,35,36\}$	$\overline{(G(3,1))}$	$\overline{\mathcal{F}}, \overline{(G(3,1))}$
41	5	8		$\left\{10^{*}\right\},\left\{37^{*}\right\},\{1,3,5,14,33\}$, $\{2,17,18,26,31\},\{4,16,21$, $29,30\},\{8,11,20,32,38\}$, $\{12,19,22,23,34\},\{9,15,27$, $36,39\},\{13,24,25,28,35\}$	$\frac{(G(1,1)),}{\frac{(G(2,1))}{},}$ $\frac{(G(4,1))}{(G(8,))}$, $\frac{(G(9,1))}{(G)}$, $\frac{(G(10,1)),}{(G(12,1)),}$ $\frac{(G(13,1)),}{(G(37,1))}$	$\frac{\overline{\mathcal{F}}, \overline{(G(1,1))},}{\overline{(G(2,1))},}$, $\frac{(G(4,1))}{(G(8,1))}$, $\frac{(G(12,1))}{(G(9,1))}$, $\frac{(G(13,1)}{(G)}$
43	22	2	-1	$\{1,5,7,9,12,14,15,16,18$, $19,23,24,25,26,30,31,33$, $34,35,37,40,42\}$	$\overline{(G(1,1))}$	$\overline{\mathcal{F}}, \overline{(G(1,1))}$
47	23	2	1	$\left\{17^{*}\right\},\left\{36^{*}\right\},\{1,2,3,4,5,10$, $12,13,14,16,18,19,20,24,29$, $33,34,35,37,39,40,41,43\}$	$\frac{\frac{(G(1,1)),}{(G(17,1))}}{\frac{(G(36,1))}{}}$	$\overline{\mathcal{F}}, \overline{(G(1,1))}$

is the original Fibonacci number and $(G(2,1))$ is the original Lucas number. If $T=6$ and $N=1$, then $(G(0,1))$ is the balancing number and $(G(1,3))$ is the Lucas balancing number [4]. Numbers a^{*} with an asterisk in the tables mean that a satisfies $f\left(a^{-1}\right) \equiv 0(\bmod p)$.

Acknowledgments. We would like to express our gratitude to Christian Ballot for valuable suggestions.

REFERENCES

1. M. Aoki and Y. Sakai, On divisibility of generalized Fibonacci numbers, Integers 15 (2015).
2. , On equivalence classes of generalized Fibonacci sequences, J. Integer Seq. 19, article 16.2.6 (2016).
3. C. Ballot, Density of prime divisors of linear recurrences, Mem. Amer. Math. Soc. 115 (1995), 12-23.
4. A. Behera and G.K. Panda, On the square roots of triangular numbers, Fibonacci Quart. 37 (1999), 98-105.
5. R.D. Carmichael, On the numerical factors of the arithmetic forms $\alpha^{n} \pm \beta^{n}$, Ann. Math. 15 (1913, 1914), 30-70.
6. R.R. Laxton, On groups of linear recurrences, I, Duke Math. J. 36 (1969), 721-736.
7. E. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1 (1878), 184-240, 289-321.
8. T. Koshy, Fibonacci and Lucas numbers with applications, Pure Appl. Math. 2001, 109-115, 211-221.

Shimane University, Department of Mathematics, Interdisciplinary Faculty of Science and Engineering, Matsue, Shimane, 690-8504, Japan
Email address: aoki@riko.shimane-u.ac.jp
Shimane University, Department of Mathematics, Interdisciplinary Faculty of Science and Engineering, Matsue, Shimane, 690-8504, Japan
Email address: s169823@matsu.shimane-u.ac.jp

[^0]: 2010 AMS Mathematics subject classification. Primary 11B37, 11B39.

