A NOTE ON SKEW PRODUCT PRESERVING MAPS ON FACTOR VON NEUMANN ALGEBRAS

ALI TAGHAVI AND HAMID ROHI

Abstract

Let \mathcal{A} be a factor von Neumann algebra, with unit I, which contains a nontrivial projection P_{1}, and let $\psi: \mathcal{A} \rightarrow \mathcal{A}$ be a surjective map that satisfies one of the two conditions: $\psi(A) \psi(P)+\lambda \psi(P) \psi(A)=A P+\lambda P A$ and $\psi(A) \psi(P)+\lambda \psi(P) \psi(A)^{*}=A P+\lambda P A^{*}$ for all $A \in \mathcal{A}$ and $P \in\left\{P_{1}, I-P_{1}\right\}$ and $\lambda \in\{-1,1\}$. Then, we determine the concrete form of ψ.

1. Introduction. Let \mathcal{R} be a *-ring. The Jordan product, Lie product, ${ }^{*}$-Jordan product and ${ }^{*}$-Lie product of $A, B \in \mathcal{R}$ are defined as $A \circ B=A B+B A,[A, B]=A B-B A, A \bullet B=A B+B A^{*}$ and $[A, B]_{*}=A B-B A^{*}$, respectively. These products play an important role in different fields of research. The additive map

$$
\psi: \mathcal{R} \longrightarrow \mathcal{R}
$$

defined by $\psi(A)=A B-B A^{*}$ for all $A, B \in \mathcal{R}$, is a Jordan *- derivation, that is, it satisfies $\psi\left(A^{2}\right)=\psi(A) A^{*}+A \psi(A)$. The notion of Jordan *-derivations arose naturally in Šemrls' work [7, 8], where he investigated the problem of representing quadratic functionals with sesquilinear functionals. Let \mathcal{H} be a complex Hilbert space and $\mathcal{B}(\mathcal{H})$ all of the bounded linear operators on \mathcal{H}. Motivated by the theory of rings (and algebras) equipped with a Lie product or a Jordan product, Molnar [5] studied the Lie product and gave a characterization of ideals of $\mathcal{B}(\mathcal{H})$ in terms of the Lie product. It is shown [5] that, if $\mathcal{N} \subseteq \mathcal{B}(\mathcal{H})$ is an ideal, then

$$
\begin{aligned}
\mathcal{N} & =\operatorname{span}\left\{A B-B A^{*}: A \in \mathcal{N}, B \in \mathcal{B}(\mathcal{H})\right\} \\
& =\operatorname{span}\left\{A B-B A^{*}: A \in \mathcal{B}(\mathcal{H}), B \in \mathcal{N}\right\}
\end{aligned}
$$

[^0]In particular, every operator in $\mathcal{B}(\mathcal{H})$ is a finite sum of $A B-B A^{*}$ type operators. Later, Beršar and Fsoňer [1] generalized the above results [5] to rings using different methods of involution. Let \mathcal{A} be a factor von Neumann algebra and

$$
\phi: \mathcal{A} \longrightarrow \mathcal{A}
$$

the *-Jordan derivation on A. Then, in [11], we showed that ϕ is an additive *-derivation.

Recall that a map

$$
\psi: \mathcal{R} \longrightarrow \mathcal{R}
$$

is skew commutativity preserving if, for any $A, B \in \mathcal{R},[A, B]_{*}=0$ implies $[\psi(A), \psi(B)]_{*}=0$. The problem of characterizing linear (or additive) bijective maps preserving skew commutativity has been studied intensively in various algebras (see [2, 3] and the references therein). More specifically, we say that a map

$$
\psi: \mathcal{R} \longrightarrow \mathcal{R}
$$

is strong skew commutativity preserving if $[\psi(A), \psi(B)]_{*}=[A, B]_{*}$ for all $A, B \in \mathcal{R}$. These maps are also called strong skew Lie product preserving maps in [4]. In [4], Cui and Park proved that, if $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ is a factor von Neumann algebra, then every strong skew commutativity preserving map ψ on \mathcal{A} has the form

$$
\psi(A)=\phi(A)+h(A) I \quad \text { for every } A \in \mathcal{A}
$$

where $\phi: \mathcal{A} \rightarrow \mathcal{A}$ is a linear bijective map satisfying $[\phi(A), \phi(B)]_{*}=$ $[A, B]_{*}$ for $A, B \in \mathcal{A}$ and h is a real functional on \mathcal{A} with $h(0)=0$. In particular, if \mathcal{A} is a type I factor, then $\psi(A)=c A+h(A) I$ for every $A \in \mathcal{A}$, where $c \in\{-1,1\}$. In addition, Qi and Hou [6] proved that, if \mathcal{M} is a von Neumann algebra with no central summands of type I_{1}, then a surjective map

$$
\Phi: \mathcal{M} \longrightarrow \mathcal{M}
$$

satisfies

$$
\Phi(A) \Phi(B)-\Phi(B) \Phi(A)^{*}=A B-B A^{*}
$$

for all $A, B \in \mathcal{M}$ if and only if there exists a self-adjoint element Z in the center of \mathcal{M} with $Z^{2}=I$ such that $\Phi(A)=Z A$ for all $A \in \mathcal{M}$.

In [9], we investigated the *-additivity of

$$
\psi: \mathcal{A} \longrightarrow \mathcal{B}
$$

where \mathcal{A} and \mathcal{B} are two prime C^{*}-algebras and \mathcal{A} contains a nontrivial projection P_{1}. We showed that, if ψ is a unital and bijective map and satisfies

$$
\psi\left(A P+\lambda P A^{*}\right)=\psi(A) \psi(P)+\lambda \psi(P) \psi(A)^{*}
$$

for all $A \in \mathcal{A}, P \in\left\{P_{1}, I-P_{1}\right\}$ and $\lambda \in\{-1,1\}$, then ψ is a *-additive map, where \mathcal{A} and \mathcal{B} are two C^{*}-algebras such that \mathcal{B} is prime. In [10], we investigated the additivity of map

$$
\Phi: \mathcal{A} \longrightarrow \mathcal{B}
$$

which is bijective, unital and satisfies

$$
\Phi\left(A P+\eta P A^{*}\right)=\Phi(A) \Phi(P)+\eta \Phi(P) \Phi(A)^{*}
$$

for all $A \in \mathcal{A}$ and $P \in\left\{P_{1}, I_{\mathcal{A}}-P_{1}\right\}$, where P_{1} is a nontrivial projection in \mathcal{A} and η is a non-zero complex number such that $|\eta| \neq 1$.

In this paper, we distinguish the concrete form of two types of strong skew-preserving maps on von Neumann algebras. Let \mathcal{A} be a factor von Neumann algebra (with identity I) that contains a nontrivial projection P_{1}, and let $\psi: \mathcal{A} \rightarrow \mathcal{A}$ be a map. First, if ψ is surjective and satisfies the condition

$$
\psi(A) \psi(P)+\lambda \psi(P) \psi(A)=A P+\lambda P A
$$

for all $A \in \mathcal{A}, P \in\left\{P_{1}, I-P_{1}\right\}$ and $\lambda \in\{-1,1\}$, then we will show that $\psi(T)=\alpha T$ for $\alpha \in\{-1,1\}$ and for all $T \in \mathcal{A}$. Also, if \mathcal{A} is a von Neumann algebra and $\psi: \mathcal{A} \rightarrow \mathcal{A}$ is not necessarily a surjective map satisfying the condition

$$
\psi(A) \psi(P)+\lambda \psi(P) \psi(A)^{*}=A P+\lambda P A^{*}
$$

for all $A \in \mathcal{A}, P \in\left\{P_{1}, I-P_{1}\right\}$ and $\lambda \in\{-1,1\}$, then we will show that there exists a $Z \in \mathcal{A}$ with $Z^{2}=I$ such that $\psi(A)=A Z$ for all $A \in \mathcal{A}$. Note that a subalgebra \mathcal{A} from $\mathcal{B}(\mathcal{H})$ is called von Neumann algebra when it is closed in the weak topology of operators. A von Neumann algebra \mathcal{A} is called a factor when its center is trivial, i.e., $\mathcal{Z}(\mathcal{A})=\mathbb{C} I$. It is clear that, if \mathcal{A} is a factor von Neumann algebra, then \mathcal{A} is prime, that is, if $A \mathcal{A} B=\{0\}$, for $A, B \in \mathcal{A}$, then $A=0$ or $B=0$.
2. Statement of the main theorem. The statement of our main theorems follow.

Theorem 2.1. Let \mathcal{A} be a factor von Neumann algebra, with identity I, that contains a nontrivial projection P_{1}, and let $\psi: \mathcal{A} \rightarrow \mathcal{A}$ be a surjective map which satisfies

$$
\psi(A) \psi(P)+\lambda \psi(P) \psi(A)=A P+\lambda P A
$$

for all $A \in \mathcal{A}, P \in\left\{P_{1}, I-P_{1}\right\}$ and $\lambda \in\{-1,1\}$. Then, $\psi(T)=\alpha T$ for all $T \in \mathcal{A}$, where $\alpha \in\{-1,1\}$.

Theorem 2.2. Let \mathcal{A} be a von Neumann algebra, with identity I, that contains a nontrivial projection P_{1}, and let

$$
\psi: \mathcal{A} \longrightarrow \mathcal{A}
$$

be a map which satisfies

$$
\psi(A) \psi(P)+\lambda \psi(P) \psi(A)^{*}=A P+\lambda P A^{*}
$$

for all $A \in \mathcal{A}, P \in\left\{P_{1}, I-P_{1}\right\}$ and $\lambda \in\{-1,1\}$. Then, there exists a $Z \in \mathcal{A}$ with $Z^{2}=I$ such that $\psi(A)=A Z$ for all $A \in \mathcal{A}$.

For the above-determined P_{1}, let $P_{2}=I-P_{1}$. By taking $\mathcal{A}_{i j}=$ $P_{i} \mathcal{A} P_{j}$ for $i, j=1,2$, we can write

$$
\mathcal{A}=\sum_{i, j=1,2} \mathcal{A}_{i j}
$$

We also note that each $\mathcal{A}_{i j}$ is nonempty, and their pairwise intersections are the set of zero.

Note, in addition, that, by the assumptions

$$
A \circ B=A B+B A \quad \text { and } \quad[A, B]=A B-B A
$$

for $A, B \in \mathcal{A}$, we can show the condition of ψ in Theorem 2.1 as follows:

$$
\begin{equation*}
\psi(A) \circ \psi(P)=A \circ P \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
[\psi(A), \psi(P)]=[A, P] \tag{2.2}
\end{equation*}
$$

for all $A \in \mathcal{A}$ and $P \in\left\{P_{1}, P_{2}\right\}$. Also, by the assumptions

$$
A \bullet B=A B+B A^{*} \quad \text { and } \quad[A, B]_{*}=A B-B A^{*}
$$

for $A, B \in \mathcal{A}$, we show the condition of ψ in Theorem 2.2 as follows:

$$
\begin{equation*}
\psi(A) \bullet \psi(P)=A \bullet P \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
[\psi(A), \psi(P)]_{*}=[A, P]_{*} \tag{2.4}
\end{equation*}
$$

for all $A \in \mathcal{A}$ and $P \in\left\{P_{1}, P_{2}\right\}$.
We prove Theorem 2.1 in two steps.
Step 1. There exist $\alpha_{i}, \beta_{i} \in \mathbb{C}$ with $\alpha_{i} \neq 0$ such that $\psi\left(P_{i}\right)=$ $\alpha_{i} P_{i}+\beta_{i} I$ for $i=1,2$.

Proof. With simple computation, we can obtain

$$
\left[P_{1},\left[P_{1},\left[A, P_{1}\right]\right]\right]=\left[A, P_{1}\right]
$$

for all $A \in \mathcal{A}$. Thus, from equation (2.2), we have

$$
\left[P_{1},\left[P_{1},\left[\psi(A), \psi\left(P_{1}\right)\right]\right]\right]=\left[\psi(A), \psi\left(P_{1}\right)\right]
$$

Therefore,

$$
\left[P_{1},\left[P_{1},\left[T, \psi\left(P_{1}\right)\right]\right]\right]=\left[T, \psi\left(P_{1}\right)\right]
$$

for all $T \in \mathcal{A}$, as ψ is surjective.
Let $K=\left[T, \psi\left(P_{1}\right)\right]$. By simple calculation, from the above equation, we can obtain

$$
\begin{equation*}
P_{1} K-2 P_{1} K P_{1}+K P_{1}=K \tag{2.5}
\end{equation*}
$$

Multiplying by P_{1} from both sides of equation (2.5), it follows that $P_{1} K P_{1}=0$. This yields

$$
\begin{equation*}
P_{1}\left(T \psi\left(P_{1}\right)-\psi\left(P_{1}\right) T\right) P_{1}=0 \tag{2.6}
\end{equation*}
$$

for all $T \in \mathcal{A}$.
Let $T=X_{11} \in \mathcal{A}_{11}$ in equation (2.6). We can write

$$
X_{11} \psi\left(P_{1}\right) P_{1}-P_{1} \psi\left(P_{1}\right) X_{11}=0
$$

and thus,

$$
X_{11} P_{1} \psi\left(P_{1}\right) P_{1}=P_{1} \psi\left(P_{1}\right) P_{1} X_{11}
$$

for all $X_{11} \in \mathcal{A}_{11}$. Hence, there exists a $\lambda_{1} \in \mathbb{C}$ such that

$$
\begin{equation*}
P_{1} \psi\left(P_{1}\right) P_{1}=\lambda_{1} P_{1} \tag{2.7}
\end{equation*}
$$

since \mathcal{A} is a factor. Replacing T by $X_{12} \in \mathcal{A}_{12}$ in equation (2.6), we have

$$
P_{1} X_{12} \psi\left(P_{1}\right) P_{1}=0
$$

and thus,

$$
P_{1} X P_{2} \psi\left(P_{1}\right) P_{1}=0
$$

for all $X \in \mathcal{A}$. The primeness of \mathcal{A} shows that

$$
\begin{equation*}
P_{2} \psi\left(P_{1}\right) P_{1}=0 \tag{2.8}
\end{equation*}
$$

Similarly, by taking $T=X_{21}$ in equation (2.6), we can obtain

$$
\begin{equation*}
P_{1} \psi\left(P_{1}\right) P_{2}=0 \tag{2.9}
\end{equation*}
$$

Also, from $P_{1} K-2 P_{1} K P_{1}+K P_{1}=K$, we can obtain $P_{2} K P_{2}=0$. Therefore,

$$
P_{2}\left(T \psi\left(P_{1}\right)-\psi\left(P_{1}\right) T\right) P_{2}=0
$$

Let $T=X_{22} \in \mathcal{A}_{22}$ in the above equation. Similar to equation (2.7), we can write

$$
\begin{equation*}
P_{2} \psi\left(P_{1}\right) P_{2}=\lambda_{2} P_{2} \tag{2.10}
\end{equation*}
$$

for some $\lambda_{2} \in \mathbb{C}$.
On the other hand, from

$$
\psi\left(P_{1}\right)=P_{1} \psi\left(P_{1}\right) P_{1}+P_{1} \psi\left(P_{1}\right) P_{2}+P_{2} \psi\left(P_{1}\right) P_{1}+P_{2} \psi\left(P_{1}\right) P_{2}
$$

and from equations (2.7)-(2.10), it follows that

$$
\psi\left(P_{1}\right)=\lambda_{1} P_{1}+\lambda_{2} P_{2}
$$

which yields $\alpha_{1}=\lambda_{1}-\lambda_{2}$ and $\beta_{1}=\lambda_{2}$. The result $\psi\left(P_{1}\right)=\alpha_{1} P_{1}+\beta_{1} I$ is derived.

Now, we show that $\alpha_{1} \neq 0$. On the contrary, suppose that $\alpha_{1}=0$. Then, for all $B \in \mathcal{A}$, we have

$$
\left[\psi(B), \psi\left(P_{1}\right)\right]=\left[\psi(B), \beta_{1} I\right]=0
$$

Therefore,

$$
\left[B, P_{1}\right]=o \Longrightarrow B P_{1}=P_{1} B
$$

Multiplying this latter equation on the left and right sides, respectively, by P_{2}, we obtain

$$
B_{21}=B_{12}=0
$$

for all $B \in \mathcal{A}$, which is impossible. Thus, $\alpha_{1} \neq 0$. Similarly, in this way, $\psi\left(P_{2}\right)=\alpha_{2} P_{2}+\beta_{2} I$ and $\alpha_{2} \neq 0$ can be obtained.

Step 2. $\psi(T)=\alpha T$ for all $T \in \mathcal{A}$, where $\alpha^{2}=1$.

Proof. From Step 1, for all $T \in \mathcal{A}$, we have

$$
\begin{aligned}
T P_{1}-P_{1} T & =\psi(T) \psi\left(P_{1}\right)-\psi\left(P_{1}\right) \psi(T) \\
& =\psi(T)\left(\alpha_{1} P_{1}+\beta_{1} I\right)-\left(\alpha_{1} P_{1}+\beta_{1} I\right) \psi(T)
\end{aligned}
$$

Thus,

$$
T P_{1}-P_{1} T=\alpha_{1} \psi(T) P_{1}-\alpha_{1} P_{1} \psi(T)
$$

Multiplying this equation on the left and right sides, respectively, by P_{2}, we have

$$
\begin{aligned}
& P_{2} T P_{1}=\alpha_{1} P_{2} \psi(T) P_{1} \\
& P_{1} T P_{2}=\alpha_{1} P_{1} \psi(T) P_{2}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\psi(T)_{21}=P_{2} \psi(T) P_{1}=\alpha T_{21} \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(T)_{12}=P_{1} \psi(T) P_{2}=\alpha T_{12} \tag{2.12}
\end{equation*}
$$

where $\alpha=1 / \alpha_{1}$.
On the other hand,

$$
\begin{aligned}
T P_{1}+P_{1} T & =\psi(T) \psi\left(P_{1}\right)+\psi\left(P_{1}\right) \psi(T) \\
& =\psi(T)\left(\alpha_{1} P_{1}+\beta_{1} I\right)+\left(\alpha_{1} P_{1}+\beta_{1} I\right) \psi(T) \\
& =\alpha_{1} \psi(T) P_{1}+\alpha_{1} P_{1} \psi(T)+2 \beta_{1} \psi(T)
\end{aligned}
$$

Therefore, from this equation and equations (2.11) and (2.12), we have

$$
\begin{aligned}
2 T_{11}+T_{21}+T_{12}= & \alpha_{1} \psi(T)_{11}+\alpha_{1} \psi(T)_{21}+\alpha_{1} \psi(T)_{11} \\
& +\alpha_{1} \psi(T)_{12}+2 \beta_{1} \psi(T) \\
= & 2 \alpha_{1} \psi(T)_{11}+T_{21}+T_{12}+2 \beta_{1} \psi(T) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
T_{11}= & \alpha_{1} \psi(T)_{11}+\beta_{1} \psi(T) \\
= & \alpha_{1} \psi(T)_{11}+\beta_{1}\left(\psi(T)_{11}+\psi(T)_{12}\right. \\
& \left.+\psi(T)_{21}+\psi(T)_{22}\right)
\end{aligned}
$$

If $\beta_{1} \neq 0$, then, from the fact that the set of zero contains the pairwise intersections of $\mathcal{A}_{i j}$, we can obtain

$$
\psi(T)_{12}=\psi(T)_{21}=\psi(T)_{22}=0
$$

for all $T \in \mathcal{A}$. This is a contraction from the surjectivity of ψ. Thus, $\beta_{1}=0$, and we have

$$
\begin{equation*}
P_{1} \psi(T) P_{1}=\psi(T)_{11}=\alpha T_{11} \tag{2.13}
\end{equation*}
$$

Similarly, in this way, we can obtain

$$
\begin{equation*}
P_{2} \psi(T) P_{2}=\delta T_{22} \tag{2.14}
\end{equation*}
$$

and also

$$
P_{1} \psi(T) P_{2}=\delta T_{12}
$$

where $\delta=1 / \alpha_{2}$. Hence, from the above equation and equation (2.12), we have $\alpha=\delta$ and so $\alpha_{1}=\alpha_{2}$. Since

$$
\psi(T)=P_{1} \psi(T) P_{1}+P_{1} \psi(T) P_{2}+P_{2} \psi(T) P_{1}+P_{2} \psi(T) P_{2}
$$

it follows from equations (2.11)-(2.14) that

$$
\psi(T)=\alpha T
$$

for all $T \in \mathcal{A}$. Thus, $\psi\left(P_{1}\right)=\alpha P_{1}$, and we also have $\psi\left(P_{1}\right)=\alpha_{1} P_{1}=$ P_{1} / α. Finally, this yields $1 / \alpha=\alpha$, and thus, $\alpha^{2}=1$, which completes the proof of Theorem 2.1.

Now, we will prove Theorem (2.2) by the following several steps.

Step 1. Under the assumptions of Theorem $2.2, \psi$ is additive on \mathcal{A}.
Proof. Letting $A=P=P_{1}$ in equations (2.3) and (2.4), we have

$$
\psi\left(P_{1}\right) \bullet \psi\left(P_{1}\right)=P_{1} \bullet P_{1}
$$

and

$$
\left[\psi\left(P_{1}\right), \psi\left(P_{1}\right)\right]_{*}=\left[P_{1}, P_{1}\right]_{*}
$$

Thus,

$$
\begin{aligned}
& \psi\left(P_{1}\right)^{2}+\psi\left(P_{1}\right) \psi\left(P_{1}\right)^{*}=2 P_{1} \\
& \psi\left(P_{1}\right)^{2}-\psi\left(P_{1}\right) \psi\left(P_{1}\right)^{*}=0
\end{aligned}
$$

Adding these equations, we have

$$
\begin{equation*}
\psi\left(P_{1}\right)^{2}=P_{1} \tag{2.15}
\end{equation*}
$$

On the other hand, for all $A, B \in \mathcal{A}$, we have

$$
\begin{aligned}
& (\psi(A+B)-\psi(A)-\psi(B)) \bullet \psi\left(P_{1}\right) \\
& \quad=\psi(A+B) \bullet \psi\left(P_{1}\right)-\psi(A) \bullet \psi\left(P_{1}\right)-\psi(B) \bullet \psi\left(P_{1}\right) \\
& \quad=(A+B) \bullet P_{1}-A \bullet P_{1}-B \bullet P_{1} \\
& \quad=0
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[\psi(A+B)-\psi(A)-\psi(B), \psi\left(P_{1}\right)\right]_{*}} \\
& \quad=\left[\psi(A+B), \psi\left(P_{1}\right)\right]_{*}-\left[\psi(A), \psi\left(P_{1}\right)\right]_{*}-\left[\psi(B), \psi\left(P_{1}\right)\right]_{*} \\
& \quad=\left[A+B, P_{1}\right]_{*}-\left[A, P_{1}\right]_{*}-\left[B, P_{1}\right]_{*} \\
& \quad=0
\end{aligned}
$$

Therefore,

$$
(\psi(A+B)-\psi(A)-\psi(B)) \psi\left(P_{1}\right)+\psi\left(P_{1}\right)(\psi(A+B)-\psi(A)-\psi(B))^{*}=0
$$

and

$$
(\psi(A+B)-\psi(A)-\psi(B)) \psi\left(P_{1}\right)-\psi\left(P_{1}\right)(\psi(A+B)-\psi(A)-\psi(B))^{*}=0
$$

Adding these equations, we have

$$
(\psi(A+B)-\psi(A)-\psi(B)) \psi\left(P_{1}\right)=0
$$

Multiplying the above equation by $\psi\left(P_{1}\right)$ from the right side and using equation (2.15), we have

$$
\begin{equation*}
(\psi(A+B)-\psi(A)-\psi(B)) P_{1}=0 \tag{2.16}
\end{equation*}
$$

Similarly, we can show that $\psi\left(P_{2}\right)^{2}=P_{2}$ and

$$
\begin{equation*}
(\psi(A+B)-\psi(A)-\psi(B)) P_{2}=0 \tag{2.17}
\end{equation*}
$$

Adding equations (2.16) and (2.17), we have

$$
\psi(A+B)=\psi(A)+\psi(B)
$$

Step 2. $\psi(I)^{2}=\psi(I) \psi(I)^{*}=I$ and $\psi\left(P_{i}\right)=\psi(I) P_{i}=P_{i} \psi(I)$ for $i=1,2$.

Proof. First, we show that equations (2.3) and (2.4) hold for $P=I$. Letting $P=P_{1}$ and $P=P_{2}$ in equation (2.3), respectively, we have

$$
\psi(A) \bullet \psi\left(P_{1}\right)=A \bullet P_{1}
$$

and

$$
\psi(A) \bullet \psi\left(P_{2}\right)=A \bullet P_{2}
$$

for all $A \in \mathcal{A}$. Adding these two equations, the equation

$$
\psi(A) \bullet\left(\psi\left(P_{1}\right)+\psi\left(P_{2}\right)\right)=A \bullet\left(P_{1}+P_{2}\right)
$$

is inferred, and, from the additivity of ψ, we have

$$
\begin{equation*}
\psi(A) \bullet \psi(I)=A \bullet I \tag{2.18}
\end{equation*}
$$

In a similar way, we have

$$
\begin{equation*}
[\psi(A), \psi(I)]_{*}=[A, I]_{*} \tag{2.19}
\end{equation*}
$$

Let $A=I$ in equations (2.18) and (2.19). With their aid, we can write

$$
\begin{aligned}
& \psi(I)^{2}+\psi(I) \psi(I)^{*}=2 I \\
& \psi(I)^{2}-\psi(I) \psi(I)^{*}=0
\end{aligned}
$$

Hence,

$$
\psi(I)^{2}=\psi(I) \psi(I)^{*}=I
$$

Letting $A=I$ and $P=P_{i}$ for $i=1,2$ in equations (2.3) and (2.4) we have

$$
\psi(I) \psi\left(P_{i}\right)+\psi\left(P_{i}\right) \psi(I)^{*}=2 P_{i}
$$

and

$$
\psi(I) \psi\left(P_{i}\right)-\psi\left(P_{i}\right) \psi(I)^{*}=0
$$

These equations yield

$$
\psi(I) \psi\left(P_{i}\right)=P_{i}
$$

Multiplying this equation with $\psi(I)$ from the left side, and from $\psi(I)^{2}$ $=I$, we have

$$
\psi\left(P_{i}\right)=\psi(I) P_{i}
$$

Similarly to obtaining $A=P_{i}$ for $i=1,2$ in equations (2.18) and (2.19), we can obtain

$$
\psi\left(P_{i}\right)=P_{i} \psi(I)
$$

Step 3. There exists a $Z \in \mathcal{A}$ with $Z^{2}=I$ such that $\psi(T)=T Z$ for all $T \in \mathcal{A}$.

Proof. From equation (2.3) and the fact that $\psi\left(P_{i}\right)=\psi(I) P_{i}$ for $i=1,2$, we have

$$
\begin{aligned}
T P_{1}+P_{1} T^{*} & =\psi(T) \psi\left(P_{1}\right)+\psi\left(P_{1}\right) \psi(T)^{*} \\
& =\psi(T) \psi(I) P_{1}+\psi(I) P_{1} \psi(T)^{*}
\end{aligned}
$$

and

$$
\begin{aligned}
T P_{2}+P_{2} T^{*} & =\psi(T) \psi\left(P_{2}\right)+\psi\left(P_{2}\right) \psi(T)^{*} \\
& =\psi(T) \psi(I) P_{2}+\psi(I) P_{2} \psi(T)^{*}
\end{aligned}
$$

for every $T \in \mathcal{A}$. Adding these two equations, we have

$$
T+T^{*}=\psi(T) \psi(I)+\psi(I) \psi(T)^{*}
$$

In addition, from equation (2.4), we can similarly obtain

$$
T-T^{*}=\psi(T) \psi(I)-\psi(I) \psi(T)^{*}
$$

Adding these two latter equations, we can write

$$
T=\psi(T) \psi(I)
$$

Multiplying this equation with $\psi(I)$ from the right side and the fact that $\psi(I)^{2}=I$, we have

$$
\psi(T)=T \psi(I)
$$

Therefore, by obtaining $Z=\psi(I)$, we have $Z^{2}=I$ and $\psi(T)=T Z$ for all $T \in \mathcal{A}$.

This completes the proof of Theorem 2.2.

REFERENCES

1. M. Brešar and M. Fsoňer, On rings with involution equipped with some new product, Publ. Math. Debrecen 57 (2000), 121-134.
2. M.A. Chebotar, Y. Fong and P.-H. Lee, On maps preserving zeros of the polynomial $x y-y x^{*}$, Linear Alg. Appl. 408 (2005), 230-243.
3. J. Cui and J. Hou, Linear maps preserving elements annihilated by a polynomial $X Y-Y X^{\dagger}$, Stud. Math. 174 (2006), 183-199.
4. J. Cui and C. Park, Maps preserving strong skew Lie product on factor von Neumann algebras, Acta Math. Sci. 32 (2012), 531-538.
5. L. Molnar, A condition for a subspace of $B(H)$ to be an ideal, Linear Alg. Appl. 235 (1996), 229-234.
6. X. Qi and J. Hou, Strong skew commutativity preserving maps on von Neumann algebras, Math. Anal. Appl. 397 (2013), 362-370.
7. P. Šemrl, On Jordan ${ }^{*}$-derivations and an application, Colloq. Math. 59 (1990), 241-251.
8. \qquad , Quadratic functionals and Jordan *-derivations, Stud. Math. 97 (1990), 157-165.
9. A. Taghavi, V. Darvish and H. Rohi, Additivity of maps preserving products $A P \pm P A^{*}$ on C^{*}-algebras, Math. Slov. 67 (2017), 213-220.
10. A. Taghavi, H. Rohi and V. Darvish, Additivity of maps preserving Jordan η_{*}-products on C^{*}-algebras, Bull. Iranian Math. Soc. 41 (2015), 107-116.
11. \qquad , Nonlinear *-Jordan derivations on von Neumann algebras, Lin. Multilin. Alg. 64 (2016), 426-439.

University of Mazandaran, Department of Mathematics, P.O. Box 474161468, Babolsar, Iran
Email address: taghavi@umz.ac.ir
University of Mazandaran, Department of Mathematics, P.O. Box 474161468, Babolsar, Iran
Email address: h.rohi@stu.umz.ac.ir

[^0]: 2010 AMS Mathematics subject classification. Primary 47B48, 46J10.
 Keywords and phrases. Preserving problems, skew products, von Neumann algebras.

 Received by the editors on February 10, 2016.

