
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 47, Number 6, 2017

A NOTE ON SKEW PRODUCT PRESERVING MAPS
ON FACTOR VON NEUMANN ALGEBRAS

ALI TAGHAVI AND HAMID ROHI

ABSTRACT. Let A be a factor von Neumann algebra,
with unit I, which contains a nontrivial projection P1, and
let ψ : A → A be a surjective map that satisfies one of the
two conditions: ψ(A)ψ(P ) + λψ(P )ψ(A) = AP + λPA and
ψ(A)ψ(P ) + λψ(P )ψ(A)∗ = AP + λPA∗ for all A ∈ A and
P ∈ {P1, I − P1} and λ ∈ {−1, 1}. Then, we determine the
concrete form of ψ.

1. Introduction. Let R be a ∗-ring. The Jordan product, Lie pro-
duct, ∗-Jordan product and ∗-Lie product of A,B ∈R are defined as
A ◦ B = AB + BA, [A,B] = AB − BA, A • B = AB + BA∗ and
[A,B]∗ = AB − BA∗, respectively. These products play an important
role in different fields of research. The additive map

ψ : R −→ R,

defined by ψ(A)=AB−BA∗ for all A,B ∈ R, is a Jordan ∗- derivation,
that is, it satisfies ψ(A2) = ψ(A)A∗ + Aψ(A). The notion of Jordan
∗-derivations arose naturally in Šemrls’ work [7, 8], where he investi-
gated the problem of representing quadratic functionals with sesquilin-
ear functionals. Let H be a complex Hilbert space and B(H) all of the
bounded linear operators on H. Motivated by the theory of rings (and
algebras) equipped with a Lie product or a Jordan product, Molnar [5]
studied the Lie product and gave a characterization of ideals of B(H)
in terms of the Lie product. It is shown [5] that, if N ⊆ B(H) is an
ideal, then

N = span{AB −BA∗ : A ∈ N , B ∈ B(H)}
= span{AB −BA∗ : A ∈ B(H), B ∈ N}.
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In particular, every operator in B(H) is a finite sum of AB − BA∗

type operators. Later, Beršar and Fsoňer [1] generalized the above
results [5] to rings using different methods of involution. Let A be a
factor von Neumann algebra and

ϕ : A −→ A

the ∗-Jordan derivation on A. Then, in [11], we showed that ϕ is an
additive ∗-derivation.

Recall that a map
ψ : R −→ R

is skew commutativity preserving if, for any A,B ∈ R, [A,B]∗ = 0
implies [ψ(A), ψ(B)]∗ = 0. The problem of characterizing linear
(or additive) bijective maps preserving skew commutativity has been
studied intensively in various algebras (see [2, 3] and the references
therein). More specifically, we say that a map

ψ : R −→ R

is strong skew commutativity preserving if [ψ(A), ψ(B)]∗ = [A,B]∗ for
all A,B ∈ R. These maps are also called strong skew Lie product pre-
serving maps in [4]. In [4], Cui and Park proved that, if A ⊆ B(H) is
a factor von Neumann algebra, then every strong skew commutativity
preserving map ψ on A has the form

ψ(A) = ϕ(A) + h(A)I for every A ∈ A,

where ϕ : A → A is a linear bijective map satisfying [ϕ(A), ϕ(B)]∗ =
[A,B]∗ for A,B ∈ A and h is a real functional on A with h(0) = 0. In
particular, if A is a type I factor, then ψ(A) = cA + h(A)I for every
A ∈ A, where c ∈ {−1, 1}. In addition, Qi and Hou [6] proved that,
if M is a von Neumann algebra with no central summands of type I1,
then a surjective map

Φ : M −→ M

satisfies
Φ(A)Φ(B)− Φ(B)Φ(A)∗ = AB −BA∗

for all A,B ∈ M if and only if there exists a self-adjoint element Z
in the center of M with Z2 = I such that Φ(A) =ZA for all A∈M.
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In [9], we investigated the ∗-additivity of

ψ : A −→ B,

where A and B are two prime C∗-algebras and A contains a nontrivial
projection P1. We showed that, if ψ is a unital and bijective map and
satisfies

ψ(AP + λPA∗) = ψ(A)ψ(P ) + λψ(P )ψ(A)∗

for all A ∈ A, P ∈ {P1, I −P1} and λ ∈ {−1, 1}, then ψ is a ∗-additive
map, where A and B are two C∗-algebras such that B is prime. In [10],
we investigated the additivity of map

Φ : A −→ B,

which is bijective, unital and satisfies

Φ(AP + ηPA∗) = Φ(A)Φ(P ) + ηΦ(P )Φ(A)∗

for all A ∈ A and P ∈ {P1, IA−P1}, where P1 is a nontrivial projection
in A and η is a non-zero complex number such that |η| ̸= 1.

In this paper, we distinguish the concrete form of two types of strong
skew-preserving maps on von Neumann algebras. Let A be a factor von
Neumann algebra (with identity I) that contains a nontrivial projection
P1, and let ψ : A → A be a map. First, if ψ is surjective and satisfies
the condition

ψ(A)ψ(P ) + λψ(P )ψ(A) = AP + λPA

for all A ∈ A, P ∈ {P1, I − P1} and λ ∈ {−1, 1}, then we will show
that ψ(T ) = αT for α ∈ {−1, 1} and for all T ∈ A. Also, if A is a von
Neumann algebra and ψ : A → A is not necessarily a surjective map
satisfying the condition

ψ(A)ψ(P ) + λψ(P )ψ(A)∗ = AP + λPA∗

for all A ∈ A, P ∈ {P1, I−P1} and λ ∈ {−1, 1}, then we will show that
there exists a Z ∈ A with Z2 = I such that ψ(A) = AZ for all A ∈ A.
Note that a subalgebra A from B(H) is called von Neumann algebra
when it is closed in the weak topology of operators. A von Neumann
algebra A is called a factor when its center is trivial, i.e., Z(A) = CI.
It is clear that, if A is a factor von Neumann algebra, then A is prime,
that is, if AAB = {0}, for A,B ∈ A, then A = 0 or B = 0.



2086 ALI TAGHAVI AND HAMID ROHI

2. Statement of the main theorem. The statement of our main
theorems follow.

Theorem 2.1. Let A be a factor von Neumann algebra, with identity I,
that contains a nontrivial projection P1, and let ψ : A → A be a sur-
jective map which satisfies

ψ(A)ψ(P ) + λψ(P )ψ(A) = AP + λPA

for all A ∈ A, P ∈ {P1, I − P1} and λ ∈ {−1, 1}. Then, ψ(T ) = αT
for all T ∈ A, where α ∈ {−1, 1}.

Theorem 2.2. Let A be a von Neumann algebra, with identity I, that
contains a nontrivial projection P1, and let

ψ : A −→ A

be a map which satisfies

ψ(A)ψ(P ) + λψ(P )ψ(A)∗ = AP + λPA∗

for all A ∈ A, P ∈ {P1, I − P1} and λ ∈ {−1, 1}. Then, there exists a
Z ∈ A with Z2 = I such that ψ(A) = AZ for all A ∈ A.

For the above-determined P1, let P2 = I − P1. By taking Aij =
PiAPj for i, j = 1, 2, we can write

A =
∑

i,j=1,2

Aij .

We also note that eachAij is nonempty, and their pairwise intersections
are the set of zero.

Note, in addition, that, by the assumptions

A ◦B = AB +BA and [A,B] = AB −BA,

for A,B ∈ A, we can show the condition of ψ in Theorem 2.1 as follows:

ψ(A) ◦ ψ(P ) = A ◦ P(2.1)

and

[ψ(A), ψ(P )] = [A,P ](2.2)
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for all A ∈ A and P ∈ {P1, P2}. Also, by the assumptions

A •B = AB +BA∗ and [A,B]∗ = AB −BA∗,

for A,B ∈ A, we show the condition of ψ in Theorem 2.2 as follows:

ψ(A) • ψ(P ) = A • P(2.3)

and

[ψ(A), ψ(P )]∗ = [A,P ]∗(2.4)

for all A ∈ A and P ∈ {P1, P2}.
We prove Theorem 2.1 in two steps.

Step 1. There exist αi, βi ∈ C with αi ̸= 0 such that ψ(Pi) =
αiPi + βiI for i = 1, 2.

Proof. With simple computation, we can obtain

[P1, [P1, [A,P1]]] = [A,P1]

for all A ∈ A. Thus, from equation (2.2), we have

[P1, [P1, [ψ(A), ψ(P1)]]] = [ψ(A), ψ(P1)].

Therefore,
[P1, [P1, [T, ψ(P1)]]] = [T, ψ(P1)]

for all T ∈ A, as ψ is surjective.

Let K = [T, ψ(P1)]. By simple calculation, from the above equation,
we can obtain

(2.5) P1K − 2P1KP1 +KP1 = K.

Multiplying by P1 from both sides of equation (2.5), it follows that
P1KP1 = 0. This yields

(2.6) P1(Tψ(P1)− ψ(P1)T )P1 = 0

for all T ∈ A.

Let T = X11 ∈ A11 in equation (2.6). We can write

X11ψ(P1)P1 − P1ψ(P1)X11 = 0,
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and thus,
X11P1ψ(P1)P1 = P1ψ(P1)P1X11

for all X11 ∈ A11. Hence, there exists a λ1 ∈ C such that

(2.7) P1ψ(P1)P1 = λ1P1

since A is a factor. Replacing T by X12 ∈ A12 in equation (2.6), we
have

P1X12ψ(P1)P1 = 0,

and thus,
P1XP2ψ(P1)P1 = 0

for all X ∈ A. The primeness of A shows that

(2.8) P2ψ(P1)P1 = 0.

Similarly, by taking T = X21 in equation (2.6), we can obtain

(2.9) P1ψ(P1)P2 = 0.

Also, from P1K − 2P1KP1 + KP1 = K, we can obtain P2KP2 = 0.
Therefore,

P2(Tψ(P1)− ψ(P1)T )P2 = 0.

Let T = X22 ∈ A22 in the above equation. Similar to equation (2.7),
we can write

(2.10) P2ψ(P1)P2 = λ2P2

for some λ2 ∈ C.
On the other hand, from

ψ(P1) = P1ψ(P1)P1 + P1ψ(P1)P2 + P2ψ(P1)P1 + P2ψ(P1)P2,

and from equations (2.7)–(2.10), it follows that

ψ(P1) = λ1P1 + λ2P2,

which yields α1 = λ1−λ2 and β1 = λ2. The result ψ(P1) = α1P1+β1I
is derived.

Now, we show that α1 ̸= 0. On the contrary, suppose that α1 = 0.
Then, for all B ∈ A, we have

[ψ(B), ψ(P1)] = [ψ(B), β1I] = 0.
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Therefore,
[B,P1] = o =⇒ BP1 = P1B.

Multiplying this latter equation on the left and right sides, respectively,
by P2, we obtain

B21 = B12 = 0

for all B ∈ A, which is impossible. Thus, α1 ̸= 0. Similarly, in this
way, ψ(P2) = α2P2 + β2I and α2 ̸= 0 can be obtained. �

Step 2. ψ(T ) = αT for all T ∈ A, where α2 = 1.

Proof. From Step 1, for all T ∈ A, we have

TP1 − P1T = ψ(T )ψ(P1)− ψ(P1)ψ(T )

= ψ(T )(α1P1 + β1I)− (α1P1 + β1I)ψ(T ).

Thus,
TP1 − P1T = α1ψ(T )P1 − α1P1ψ(T ).

Multiplying this equation on the left and right sides, respectively, by
P2, we have

P2TP1 = α1P2ψ(T )P1

P1TP2 = α1P1ψ(T )P2.

Therefore,

ψ(T )21 = P2ψ(T )P1 = αT21(2.11)

and

ψ(T )12 = P1ψ(T )P2 = αT12,(2.12)

where α = 1/α1.

On the other hand,

TP1 + P1T = ψ(T )ψ(P1) + ψ(P1)ψ(T )

= ψ(T )(α1P1 + β1I) + (α1P1 + β1I)ψ(T )

= α1ψ(T )P1 + α1P1ψ(T ) + 2β1ψ(T ).
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Therefore, from this equation and equations (2.11) and (2.12), we have

2T11 + T21 + T12 = α1ψ(T )11 + α1ψ(T )21 + α1ψ(T )11

+ α1ψ(T )12 + 2β1ψ(T )

= 2α1ψ(T )11 + T21 + T12 + 2β1ψ(T ).

Hence,

T11 = α1ψ(T )11 + β1ψ(T )

= α1ψ(T )11 + β1(ψ(T )11 + ψ(T )12

+ ψ(T )21 + ψ(T )22).

If β1 ̸= 0, then, from the fact that the set of zero contains the
pairwise intersections of Aij , we can obtain

ψ(T )12 = ψ(T )21 = ψ(T )22 = 0

for all T ∈ A. This is a contraction from the surjectivity of ψ. Thus,
β1 = 0, and we have

(2.13) P1ψ(T )P1 = ψ(T )11 = αT11.

Similarly, in this way, we can obtain

P2ψ(T )P2 = δT22(2.14)

and also

P1ψ(T )P2 = δT12,

where δ = 1/α2. Hence, from the above equation and equation (2.12),
we have α = δ and so α1 = α2. Since

ψ(T ) = P1ψ(T )P1 + P1ψ(T )P2 + P2ψ(T )P1 + P2ψ(T )P2,

it follows from equations (2.11)–(2.14) that

ψ(T ) = αT

for all T ∈ A. Thus, ψ(P1) = αP1, and we also have ψ(P1) = α1P1 =
P1/α. Finally, this yields 1/α = α, and thus, α2 = 1, which completes
the proof of Theorem 2.1. �

Now, we will prove Theorem (2.2) by the following several steps.
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Step 1. Under the assumptions of Theorem 2.2, ψ is additive on A.

Proof. Letting A = P = P1 in equations (2.3) and (2.4), we have

ψ(P1) • ψ(P1) = P1 • P1

and

[ψ(P1), ψ(P1)]∗ = [P1, P1]∗.

Thus,

ψ(P1)
2 + ψ(P1)ψ(P1)

∗ = 2P1

ψ(P1)
2 − ψ(P1)ψ(P1)

∗ = 0.

Adding these equations, we have

(2.15) ψ(P1)
2 = P1.

On the other hand, for all A,B ∈ A, we have

(ψ(A+B)− ψ(A)− ψ(B)) • ψ(P1)

= ψ(A+B) • ψ(P1)− ψ(A) • ψ(P1)− ψ(B) • ψ(P1)

= (A+B) • P1 −A • P1 −B • P1

= 0

and

[ψ(A+B)− ψ(A)− ψ(B), ψ(P1)]∗

= [ψ(A+B), ψ(P1)]∗ − [ψ(A), ψ(P1)]∗ − [ψ(B), ψ(P1)]∗

= [A+B,P1]∗ − [A,P1]∗ − [B,P1]∗

= 0.

Therefore,

(ψ(A+B)−ψ(A)−ψ(B))ψ(P1)+ψ(P1)(ψ(A+B)−ψ(A)−ψ(B))∗=0

and

(ψ(A+B)−ψ(A)−ψ(B))ψ(P1)−ψ(P1)(ψ(A+B)−ψ(A)−ψ(B))∗=0.

Adding these equations, we have

(ψ(A+B)− ψ(A)− ψ(B))ψ(P1) = 0.
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Multiplying the above equation by ψ(P1) from the right side and using
equation (2.15), we have

(2.16) (ψ(A+B)− ψ(A)− ψ(B))P1 = 0.

Similarly, we can show that ψ(P2)
2 = P2 and

(2.17) (ψ(A+B)− ψ(A)− ψ(B))P2 = 0.

Adding equations (2.16) and (2.17), we have

ψ(A+B) = ψ(A) + ψ(B). �

Step 2. ψ(I)2 = ψ(I)ψ(I)∗ = I and ψ(Pi) = ψ(I)Pi = Piψ(I) for
i = 1, 2.

Proof. First, we show that equations (2.3) and (2.4) hold for P = I.
Letting P = P1 and P = P2 in equation (2.3), respectively, we have

ψ(A) • ψ(P1) = A • P1

and

ψ(A) • ψ(P2) = A • P2

for all A ∈ A. Adding these two equations, the equation

ψ(A) • (ψ(P1) + ψ(P2)) = A • (P1 + P2)

is inferred, and, from the additivity of ψ, we have

(2.18) ψ(A) • ψ(I) = A • I.

In a similar way, we have

(2.19) [ψ(A), ψ(I)]∗ = [A, I]∗.

Let A = I in equations (2.18) and (2.19). With their aid, we can write

ψ(I)2 + ψ(I)ψ(I)∗ = 2I

ψ(I)2 − ψ(I)ψ(I)∗ = 0.

Hence,
ψ(I)2 = ψ(I)ψ(I)∗ = I.
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Letting A = I and P = Pi for i = 1, 2 in equations (2.3) and (2.4) we
have

ψ(I)ψ(Pi) + ψ(Pi)ψ(I)
∗ = 2Pi

and

ψ(I)ψ(Pi)− ψ(Pi)ψ(I)
∗ = 0.

These equations yield
ψ(I)ψ(Pi) = Pi.

Multiplying this equation with ψ(I) from the left side, and from ψ(I)2

= I, we have
ψ(Pi) = ψ(I)Pi.

Similarly to obtaining A = Pi for i = 1, 2 in equations (2.18) and (2.19),
we can obtain

ψ(Pi) = Piψ(I). �

Step 3. There exists a Z ∈ A with Z2 = I such that ψ(T ) = TZ for
all T ∈ A.

Proof. From equation (2.3) and the fact that ψ(Pi) = ψ(I)Pi for
i = 1, 2, we have

TP1 + P1T
∗ = ψ(T )ψ(P1) + ψ(P1)ψ(T )

∗

= ψ(T )ψ(I)P1 + ψ(I)P1ψ(T )
∗

and

TP2 + P2T
∗ = ψ(T )ψ(P2) + ψ(P2)ψ(T )

∗

= ψ(T )ψ(I)P2 + ψ(I)P2ψ(T )
∗

for every T ∈ A. Adding these two equations, we have

T + T ∗ = ψ(T )ψ(I) + ψ(I)ψ(T )∗.

In addition, from equation (2.4), we can similarly obtain

T − T ∗ = ψ(T )ψ(I)− ψ(I)ψ(T )∗.
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Adding these two latter equations, we can write

T = ψ(T )ψ(I).

Multiplying this equation with ψ(I) from the right side and the fact
that ψ(I)2 = I, we have

ψ(T ) = Tψ(I).

Therefore, by obtaining Z = ψ(I), we have Z2 = I and ψ(T ) = TZ for
all T ∈ A.

This completes the proof of Theorem 2.2. �
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