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AFFINE RINGED SPACES AND SERRE’S CRITERION
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ABSTRACT. We study the notion of affine ringed space,
see its meaning in topological, differentiable and algebro-
geometric contexts and show how to reduce the affineness
of a ringed space to that of a ringed finite space. Then,
we characterize schematic finite spaces and affine schematic
spaces in terms of combinatorial data. Finally, we prove
Serre’s criterion of affineness for schematic finite spaces.
This yields, in particular, Serre’s criterion of affineness on
schemes.

1. Introduction. Let (S,OS) be a ringed space and A = OS(S).
We say that (S,OS) is an affine ringed space if it satisfies:

(1) S is acyclic, i.e., Hi(S,OS) = 0 for any i > 0.
(2) The global sections functor

{Quasi-coherent OS-modules} −→ {A-modules}
M 7−→ Γ(S,M)

is an equivalence.

If (S,OS) is a quasi-compact and quasi-separated scheme, then S is
affine in the above sense if and only if S is affine in the usual sense, i.e.,
S = SpecA. In the topological case, i.e., OS is the constant sheaf Z, S
is affine if and only if S is homotopically trivial, see Proposition 2.8 for
details. In the differentiable case, i.e., S is a separated differentiable
manifold, or a differentiable space, and OS = C∞S is the sheaf of
differentiable functions, S is affine if and only if S is compact, see
Proposition 2.9 and Remark 2.10.
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The concept of an affine ringed space was introduced in [5]. Therein,
attention was focused on ringed finite spaces. Our first aim is to see how
to reduce the affineness of a ringed space to that of a ringed finite space.
We will be more precise. Let (S,OS) be a ringed space, and let U be
a finite covering. This covering produces a finite topological space X
and a continuous map π : S → X, see Example 3.3. Then, X has a
ringed space structure by taking OX = π∗OS . We say that (X,OX) is
the ringed finite space associated to the ringed space (S,OS) and the
covering U . Then, we prove the next theorem.

Theorem 1.1. Assume that U is locally affine, see Definition 3.8.
Then, (S,OS) is affine if and only if the associated ringed finite space
(X,OX) is affine.

This is a consequence of a deeper result (Theorem 3.9) which says
that S and X have equivalent categories of quasi-coherent sheaves.
The remainder of this paper deals with the study of affine ringed finite
spaces, which was initiated in [5]. A ringed finite space is merely a
ringed space (X,O) where X is a finite topological space. Thus, X
may be viewed as a preordered finite set, i.e., a finite set endowed with
a relation ≤ which is reflexive and transitive, and the sheaf of rings O
is equivalent to giving the following data: a ring Op for each p ∈ X,
and a morphism of rings

rpq : Op −→ Oq for each p ≤ q,

satisfying the obvious conditions:

rql ◦ rpq = rpl for any p ≤ q ≤ l,

and rpp = Id for any p. By a finite space we mean a ringed finite space
(X,O) such that the morphisms rpq are flat. We say that a finite space
is schematic if, for any open subset

j : U ↩→ X,

the sheaves Rij∗O|U are quasi-coherent. In Section 4, we characterize
schematic spaces and affine schematic spaces in terms of the combina-
torial data. The precise statements are given in Theorem 4.11, Theo-
rem 4.12 and Corollary 4.13. The last section of the paper deals with
Serre’s characterization of affine spaces. If (S,OS) is a quasi-compact
and quasi-separated scheme, Serre’s criterion of affineness states:
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Theorem 1.2. The following conditions are equivalent :

(1) S is an affine scheme.

(2) Any quasi-coherent module on S is acyclic.

(3) H1(S, p) = 0 for any quasi-coherent sheaf of ideals p.

We shall first see that Serre’s criterion does not hold in the topolog-
ical case. In particular, it does not hold for finite topological spaces.
Our main result is Theorem 5.11, which states that Serre’s criterion
holds for schematic finite spaces. This implies, in particular, the above
Serre’s theorem for schemes (essentially by the reduction Theorem 3.9).
Thus, Theorem 5.11 clarifies Serre’s criterion on schemes in the follow-
ing way: the validity of Serre’s theorem for schemes is founded upon
the following two properties of schemes:

(1) For any affine open subsets V ⊂ U of a scheme S, the restriction
morphism OS(U) → OS(V ) is flat.

(2) For any open subset

j : U ↩→ S,

the higher direct images Rij∗OU are quasi-coherent.

In the context of ringed finite spaces, conditions (1) and (2) exactly
comprise what we have called a schematic finite space.

2. Generalities.

Definition 2.1. A ringed space is a pair (S,OS), where S is a topo-
logical space, and OS is a sheaf of (commutative with unit) rings on S.
A morphism of ringed spaces

(S,OS) −→ (S′,OS′)

is a pair (f, f#), where
f : S −→ S′

is a continuous map, and

f# : OS′ −→ f∗OS

is a morphism of sheaves of rings, equivalently, a morphism of sheaves
of rings

f−1OS′ −→ OS .
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For brevity, a morphism of ringed spaces shall be denoted by

f : S −→ S′.

We shall denote by (∗, A) the ring space whose underlying topological
space is a point {∗} and whose sheaf of rings is a ring A. For any ringed
space (S,OS), there is a natural morphism

πS : S −→ (∗, A),

with A = OS(S), which is functorial on S: a morphism of ringed spaces

f : S −→ S′

gives a morphism
OS′ −→ f∗OS ,

and, taking global sections, a morphism of rings

A′ = OS′(S′) −→ A = OS(S),

is obtained, i.e., a morphism of ringed spaces

(∗, A) −→ (∗, A′),

and we have the commutative diagram

S
f //

πS

��

S′

πS′

��
(∗, A) // (∗, A′).

Definition 2.2. Let (S,OS) be a ringed space, and let M be an OS-
module (a sheaf of OS-modules). We say that M is quasi-coherent if,
for each s ∈ S, there exist an open neighborhood U of s and an exact
sequence

OI
U −→ OJ

U −→ M|U −→ 0

with I and J arbitrary sets of indices. Briefly, M is quasi-coherent if
it is locally a cokernel of free modules.

The importance of quasi-coherent modules in algebraic geometry is
clear; we shall see its meaning in other contexts.
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2.1. The topological case. Every topological space S may be viewed
as a ringed space, taking the constant sheaf Z as the sheaf of rings. We
then have a functor

{Topological spaces} −→ {Ringed spaces}
S 7−→ (S,Z),

which is fully faithful and has a left inverse:

(S,OS) 7−→ S.

A sheaf of Z-modules on S is merely a sheaf of abelian groups. If F
is a locally constant sheaf of abelian groups, then it is a quasi-coherent
Z-module. The converse also holds under a local simple connectedness
hypothesis:

Proposition 2.3. Let S be a locally simply connected topological space,
for example, any finite topological space, and let F be a sheaf of abelian
groups on S. Then, F is a quasi-coherent Z-module if and only if F is
a locally constant sheaf.

Proof. Given an abelian groupG, we shall denote byGS the constant
sheaf G on S, that is,

GS(U) = Homcont(U,G),

where G is endowed with the discrete topology.

Assuming that F is locally constant, we shall prove that it is quasi-
coherent. Since it is a local question, we may assume that F is a
constant sheaf GS . Let

ZI −→ ZJ −→ G −→ 0

be a resolution of G by free Z-modules. It induces an exact sequence
of sheaves

ZI
S −→ ZJ

S −→ GS = F −→ 0.

Hence, F is quasi-coherent.

Now, assume that F is a quasi-coherent Z-module. We now prove
that F is locally constant. For each s ∈ S, there exist a simply connect-



2056 F. SANCHO DE SALAS AND P. SANCHO DE SALAS

ed neighborhood U and an exact sequence (of sheaves on U)

ZI
U

ϕ−→ ZJ
U −→ F|U −→ 0.

Let K = Kerϕ, I = Imϕ. It is clear that the kernel of ϕ is a constant
sheaf K = GU , where G is the kernel of ϕ(U) : ZI → ZJ . Moreover, for
any simply connected open subset V of U , the sequence

0 −→ G −→ ZI −→ I(V ) −→ 0

is exact due to H1(V,GU ) = 0, since V is simply connected. If follows
that I is a constant sheaf; hence, H1(V, I) = 0 for any simply connected
open subset V of U , and then F|U is constant. �

Proposition 2.3 was given in [6] for finite topological spaces.

2.2. The differentiable case. Let S be a separated differentiable
space, for example, a differentiable manifold, with a countable basis.
From the results of [3], we have the following:

Theorem 2.4. The functor

πS∗ : {C∞S -modules} −→ {A-modules}

is fully faithful and π∗S ◦ πS∗ is the identity. In particular, any C∞S -
module is quasi-coherent.

2.3. Affine ringed spaces. Let (S,OS) be a ringed space, and let

πS : (S,OS) −→ (∗, A)

be the natural morphism, with A = OS(S).

Definition 2.5. We say that S is affine if:

(1) S is acyclic, i.e., Hi(S,OS) = 0 for any i > 0.
(2) The direct and inverse image functors

{Quasi-coherent OS-modules}
πS∗−→
←−
π∗
S

{A-modules}

establish an equivalence between the category of A-modules and the
category of quasi-coherent OS-modules.
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In the following propositions, we see the meaning of affineness in
topological, differentiable and algebro-geometric contexts.

Proposition 2.6 ([4, Section 7]). Let S be a connected, locally path-
connected and locally simply connected topological space and OS = Z
the constant sheaf Z. Then, (S,Z) satisfies Definition 2.5 (2) if and
only if S is simply connected.

Proof. By Proposition 2.3, a quasi-coherent Z-module is a locally
constant sheaf of abelian groups, i.e., a representation of the funda-
mental group in an abelian group. Then, S satisfies Definition 2.5 (2)
if and only if any locally constant sheaf of abelian groups is constant,
i.e., any representation of the fundamental group in any abelian group
is trivial; this is equivalent to saying that π1(S) = 0. �

Now, to characterize affine topological spaces, we shall use the
following basic result (which is essentially a consequence of Hurwitz’s
theorem and the universal coefficient formula).

Proposition 2.7. Let S be a simply connected topological space. The
following conditions are equivalent :

(1) πi(S) = 0 for any i > 0, i.e., S is homotopically trivial.
(2) Hi(S,Z) = 0 for any i > 0.
(3) Hi(S,G) = 0 for any i > 0 and any abelian group G.
(4) Hi(S,Z) = 0 for any i > 0.
(5) Hi(S,G) = 0 for any i > 0 and any abelian group G.

Proposition 2.8 (Affine topological spaces [4, Proposition 7.8]). Let S
be a connected, locally path-connected and locally simply connected
topological space and OS = Z the constant sheaf Z. Then (S,Z) is
an affine ringed space if and only if S is homotopically trivial.

Proof. Immediate from Propositions 2.6 and 2.7. �

Proposition 2.9 (Affine differentiable spaces). Let (S, C∞S ) be a separ-
ated differentiable space with countable basis. Then (S, C∞S ) is an affine
ringed space if and only if S is compact.
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Proof. We shall need the following result, see [3]. We denote by
Specr A the set of real points of A, i.e., the set of maximal ideals m
of A such that

R −→ A

m

is an isomorphism. It is a topological space with the Zariski topology.
For each s ∈ S, we have a real point

ms := {f ∈ A : f(s) = 0};

thus, we have a map
S −→ Specr A.

This map is a homeomorphism. In particular, if any maximal ideal
of A is real, then S is homeomorphic to the maximal spectrum of A,
and hence, S is compact.

The converse is also true. If S is compact, then any maximal ideal
of A is real. Indeed, let m be a maximal ideal of A. If m is not real,
then, for each s ∈ S, there exists an fs ∈ m such that fs /∈ ms, i.e.,
fs(s) ̸= 0. Then, fs does not vanish in a neighborhood Us of s. The
Us cover S, and further, the Us1 , . . . , Usn cover S. Then,

f2
s1 + · · ·+ f2

sn

belongs to m and does not vanish at any point of S, i.e., it is invertible.

We now prove the proposition. Any C∞S -module is acyclic since C∞S is
soft. Hence, by Theorem 2.4, (S, C∞S ) is affine if and only if it satisfies
the following condition: πS∗ is essentially surjective, or equivalently,
πS∗ ◦ π∗S is the identity.

Assume that S is compact. Let M be an A-module. We must prove
that the natural morphism

M −→ πS∗π
∗
SM

is an isomorphism. By Theorem 2.4, this morphism is an isomorphism
after taking π∗S . Since π∗S is an exact functor, it suffices to prove the
following statement: if π∗SM = 0, then M = 0. Now, π∗SM = 0 implies
that Ms = 0 for any s ∈ S, and further, Mm = 0 for any maximal
ideal m of A. Hence, M = 0.

Assume now that S is affine, and we will prove that it is compact. It
suffices to see that any maximal ideal of A is real. Let m be a maximal
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ideal and A/m the residue field. If m is not real, then (A/m)s = 0 for
any s ∈ S, and then, π∗S(A/m) = 0. This is not possible since S is
affine. �

Remark 2.10. This proposition may lead one to think that our notion
of “affineness” does not behave correctly in the differentiable case since
Rn should be an affine ringed space. However, if Fréchet topology
is considered, the desirable statement is obtained. We shall be more
precise. Let (S, C∞S ) be a separated differentiable space with countable
basis A = C∞S (S). It is proven [3] that the functor

{C∞S -Fréchet modules} −→ {Fréchet A-modules}
M 7−→ M(S)

is an equivalence. Thus, (S, C∞S ) is affine in the Fréchet sense. In
conclusion, any separated differentiable space with a countable basis is
Fréchet-affine, and it is (algebraically) affine if and only if S is compact.

Proposition 2.11 (Affine schemes). Let (S,OS) be a quasi-compact
and quasi-separated scheme. Then, S is affine, in the sense of Defini-
tion 2.5, if and only if S is an affine scheme, i.e., S = SpecA.

Proof. In fact, condition (2) suffices to characterize affine schemes.
Indeed, there is a natural morphism of schemes

f : S −→ SpecA,

and, under condition (2), f∗ and f∗ yield equivalences between the
categories of quasi-coherent sheaves on X and SpecA. In particular,
we obtain a bijection between quasi-coherent ideals on S and ideals
of A. In particular, f is point-wise bijective and bi-continuous, i.e., a
homeomorphism. Since f∗OS=OSpecA, the conclusion is obtained. �

3. Reduction to ringed finite spaces. The aim of this section
is to show the method of reduction of the affineness of a ringed space
to the affineness of a ringed finite space, under a certain hypothesis
(the existence of a locally affine finite covering). We shall first recall
some elementary facts about finite topological spaces and ringed finite
spaces.
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3.1. Finite topological spaces.

Definition 3.1. A finite topological space is a topological space with
a finite number of points.

Let X be a finite topological space. For each p ∈ X, we shall denote
by Up the minimum open subset containing p, i.e., the intersection of
all of the open subsets containing p. The Up form a minimal base of
open subsets.

Definition 3.2. A finite preordered set is a finite set with a reflexive
and transitive relation (denoted ≤), i.e., a relation satisfying p ≤ p for
any p ∈ X and p ≤ q ≤ l ⇒ p ≤ l.

It is well known, Alexandroff [1], that an equivalence exists between
finite topological spaces and finite preordered sets. If X is a finite
topological space, the preorder relation is defined by:

p ≤ q if and only if Up ⊇ Uq,

Conversely, if X is a finite preordered set, the topology on X is defined
as p = {q ∈ X : q ≤ p} is the closure of a point p.

A map
f : X −→ X ′,

between finite topological spaces is continuous if and only if it is
monotone, i.e., for any p ≤ q, f(p) ≤ f(q). A finite topological space
is T0, i.e., different points have different closures, if and only if the
relation ≤ is antisymmetric, i.e., X is a partially ordered finite set (a
finite poset).

Example 3.3 (Finite topological space associated to a finite covering).
Let S be a topological space, and let U = {U1, . . . , Un} be a finite open
covering of S. We consider the following equivalence relation on S. Say
that s ∼ s′ if U does not distinguish s and s′, i.e., if we denote

Us =
∩
Ui∋s

Ui,
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then s ∼ s′ if and only if Us = Us′ . Let X = S/ ∼ be the quotient set
with the topology given by the following preorder:

[s] ≤ [s′] ⇐⇒ Us ⊇ Us′ .

This is a finite T0-topological space, and the quotient map

π : S −→ X, s 7→ [s],

is continuous. For each [s] ∈ X, we have that π−1(U[s]) = Us. We shall
say that X is the finite topological space associated to the topological
space S and the finite covering U .

3.2. Ringed finite spaces. Let X be a finite topological space.
Recall that we have a preorder relation

p ≤ q ⇐⇒ Uq ⊆ Up.

Giving a sheaf F of abelian groups, respectively rings, etc., on X is
equivalent to giving the following data:

(1) An abelian group, respectively a ring, etc., Fp for each p ∈ X.

(2) A morphism of groups, respectively rings, etc.,

rpq : Fp −→ Fq

for each p ≤ q, satisfying rpp = Id for any p, and

rqr ◦ rpq = rpr

for any p ≤ q ≤ r. The rpq are called restriction morphisms.

Indeed, if F is a sheaf on X, then Fp is the stalk of F at p, and it
coincides with the sections of F on Up, that is,

Fp is the stalk of F at p := sections of F on Up := F (Up).

The morphisms Fp → Fq are merely the restriction morphisms

F (Up) −→ F (Uq).

Example 3.4. Given a group G, the constant sheaf G on X is given
by the data Gp = G for any p ∈ X, and rpq = Id for any p ≤ q.
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We use the following elementary cohomological properties of finite
topological spaces:

(1) For any sheaf F of abelian groups on a finite topological space X,
we have:

Hi(Up, F ) = 0

for any i > 0 and any p ∈ X.

(2) Let
f : S −→ X

be a continuous map, with X a finite topological space. For any sheaf
F on S, we have

(Rif∗F )p = Hi(f−1(Up), F ) for each p ∈ X.

Definition 3.5. A ringed finite space is a ringed space (X,O) such
that X is a finite topological space.

By the previous consideration, we have a ring Op for each p ∈ X,
and a morphism of rings

rpq : Op −→ Oq

for each p ≤ q such that rpp = Id for any p ∈ X and rql ◦ rpq = rpl for
any p ≤ q ≤ l.

Giving a morphism of ringed spaces

(X,O) −→ (X ′,O′)

between two ringed finite spaces, is equivalent to giving:

(1) a continuous, i.e., monotone, map

f : X −→ X ′;

(2) for each p ∈ X, a ring homomorphism

f#
p : O′f(p) −→ Op,
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such that, for any p ≤ q, the diagram (denote p′ = f(p), q′ = f(q))

O′p′

f#
p //

rp′q′

��

Op

rpq

��
O′q′

f#
q

// Oq

is commutative.

Let M be a sheaf of O-modules on a ringed finite space (X,O).
Thus, for each p ∈ X, Mp is an Op-module and, for each p ≤ q, we
have a morphism of Op-modules

Mp −→ Mq;

hence, a morphism of Oq-modules

Mp ⊗Op Oq −→ Mq.

The next theorem may be found in [6]:

Theorem 3.6. An O-module M is quasi-coherent if and only if, for
any p ≤ q, the morphism

Mp ⊗Op Oq −→ Mq

is an isomorphism.

3.3. Reduction to finite spaces.

Definition 3.7. Let (S,OS) be a ringed space, and let U = {U1, . . . , Un}
be a finite open covering of S. Let X be the finite topological space
associated to S and U , and

π : S −→ X

the natural continuous map (Example 3.3). We then have a sheaf of
rings on X, namely, O := π∗OS such that

π : (S,OS) −→ (X,O)

is a morphism of ringed spaces. We say that (X,O) is the ringed finite
space associated to the ringed space S and the finite covering U .
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Definition 3.8. Let (S,OS) be a ringed space and let U = {U1, . . . , Un}
be a finite open covering. We say that U is locally affine if, for any s ∈ S,

Us :=
∩
Ui∋s

Ui

is affine.

For example, a scheme S admits a locally affine finite covering if and
only if S is quasi-compact and quasi-separated, see [6].

Theorem 3.9. Let (S,OS) be a ringed space, U a locally affine covering
and

π : S −→ X

the associated ringed finite space. Then:

(1) For any quasi-coherent OS-module M, the direct image π∗M is
a quasi-coherent module on X.

(2) The functors

{Quasi-coherent OS-modules}
π∗−→
←−
π∗

{Quasi-coherent OX-modules}

establish an equivalence between the categories of quasi-coherent mod-
ules on S and X.

(3) Hi(S,OS) = Hi(X,OX).

In particular, S is affine if and only if X is affine.

Proof. First, we need the following lemma.

Lemma 3.10. Let (S,OS) be a ringed space, U an affine open subset
of S and V ⊆ U an affine open subset. The natural morphism

M(U)⊗OS(U) OS(V ) −→ M(V )

is an isomorphism for any quasi-coherent module M on S.
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Proof. We denote A = OS(U), B = OS(V ), which yields a commu-
tative diagram

V
i //

πV

��

U

πU

��
(∗, B)

j
// (∗, A).

Since U is affine, M|U = π∗UM , with M = Γ(U,M). Analogously,
since V is affine, M|V = π∗V N , with N = Γ(V,M). Hence,

π∗V N = M|V = i∗M|U = i∗π∗UM = π∗V j
∗M = π∗V (M ⊗A B),

and then, N = M ⊗A B. �

Now, we prove (1). By Theorem 3.6, we must prove that, for any
p ≤ q in X, the natural morphism

(π∗M)p ⊗Op Oq −→ (π∗M)q

is an isomorphism. Since π−1(Up) and π−1(Uq) are affine, the result
immediately follows from Lemma 3.10.

Next, we prove (2). Let M be a quasi-coherent module on S, and
we show that the natural morphism

π∗π∗M −→ M

is an isomorphism. The question is local on X, so we may assume
that X = Up, and then S is affine. Then, M = π∗SM with M =
Γ(S,M). Since π∗M is a quasi-coherent module on X and X is
affine, see Proposition 4.1, we have π∗M = π∗XM due to the fact that
Γ(X,π∗M) = Γ(S,M). We reach a conclusion since πX ◦ π = πS .
Now, let N be a quasi-coherent module on X, and let us prove that
the natural morphism

N −→ π∗π
∗N

is an isomorphism. The question is local on X; hence, we assume
that X and S are affine. Then, N = π∗XN and π∗N = π∗SN . Now, it
suffices to see that

N −→ π∗π
∗N
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is an isomorphism after taking global sections. Indeed,

N = Γ(X,N ) −→ Γ(X,π∗π
∗N ) = Γ(S, π∗SN) = N,

where the last equality is due to the affineness of S.

For (3), since π∗OS = OX , it suffices to see that Riπ∗OS = 0 for
i > 0. Now, for each p ∈ X,

[Riπ∗OS ]p = Hi(f−1(Up),OS),

which vanishes for i > 0 since f−1(Up) is affine. �

4. Affine schematic spaces. The aim of this section is to charac-
terize affine schematic spaces in terms of the combinatorial data (X,O).

4.1. Schematic spaces and schematic morphisms. The concepts
of a schematic finite space and a schematic morphism were introduced
in [5]. Briefly, schematic finite spaces and morphisms are those ringed
finite spaces and morphisms which have good behavior with respect
to quasi-coherent modules. We recall these concepts and some basic
results due to them which shall be used later. See [5] for the proofs.

Proposition 4.1. Let (X,O) be a ringed finite space. For each p ∈ X,
Up is affine. Therefore, any ringed finite space is locally affine.

Definition 4.2. A finite space is a ringed finite space (X,O) such that,
for any p ≤ q, the morphism

Op −→ Oq

is flat.

Theorem 4.3. Let X be a finite space. The following conditions are
equivalent :

(1) X is affine.
(2) X is acyclic, and every quasi-coherent module is generated by

its global sections.
(3) Every quasi-coherent module on X is acyclic and generated by

its global sections.
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Definition 4.4. Let X be a finite space and

δ : X −→ X ×X

the diagonal map. We say that X is schematic if Riδ∗O is quasi-
coherent for any i ≥ 0. We say thatX is semi-separated if it is schematic
and Riδ∗O = 0 for any i > 0.

Example 4.5. Let (S,OS) be a quasi-compact and quasi-separated
scheme, U a locally affine finite covering of S and X the associated
ringed finite space. Then, X is schematic. Moreover, X is semi-
separated if and only if S is a semi-separated scheme (the intersection
of any two affine open subschemes is affine).

For any p, q ∈ X, we denote

Upq = Up ∩ Uq and Opq = O(Upq).

Then, X is schematic if and only if, for any p ≤ p′, any q ∈ X and any
i ≥ 0, the natural morphism

Hi(Upq,O)⊗Op Op′ −→ Hi(Up′q,O)

is an isomorphism. X is semi-separated if and only if the natural
morphism

Opq ⊗Op Op′ −→ Op′q

is an isomorphism and Upq is acyclic. In particular, if X is schematic,
then for any q, q′ ≥ p, the natural morphism

Oq ⊗Op Oq′ −→ Oqq′

is an isomorphism.

Any open subset of a schematic space is schematic. X is schematic
if and only if Up is schematic for any p ∈ X. An affine finite space is
schematic if and only if it is semi-separated. Hence, a finite space X is
schematic if and only if Up is semi-separated for any p ∈ X. If X is an
affine schematic space, then an open subset of X is affine if and only if
it is acyclic.

Definition 4.6. Let f : X → Y be a morphism between finite spaces
and

Γ: X −→ X × Y



2068 F. SANCHO DE SALAS AND P. SANCHO DE SALAS

its graph. We say that f is schematic if RiΓ∗O is quasi-coherent for
all i ≥ 0. A schematic morphism f : X → Y is called affine if f−1(Uy)
is affine for any y ∈ Y .

If f : X → Y is schematic, then Rif∗M is quasi-coherent for any
i ≥ 0 and any quasi-coherent module M on X. If X is schematic,
then, for any open subset U , the inclusion

U ↩→ X

is schematic. A finite space X is semi-separated if and only if the
diagonal morphism

X −→ X ×X

is affine.

Affine schematic spaces have the following properties:

Proposition 4.7. Let (X,O) be an affine schematic space, A = O(X).
Then:

(1) the natural injective morphism

A −→
∏
p∈X

Op

is faithfully flat.
(2) For any p, q in X, the natural morphism

Op ⊗A Oq −→ Opq

is an isomorphism.

Our aim now is to give a type of converse of this result, i.e., to
characterize affine schematic spaces in terms of their combinatorial
data.

4.2. The cylinder space. Let (X,O) be a ringed finite space, A =
O(X).

Definition 4.8. ([2, subsection 2.8]). The cylinder of X is the ringed

finite space (Cyl(X), Õ), where
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(1) The topological space Cyl(X) is the set

{∗}
⊔

X

with the following preorder: the restriction to X is the given preorder
of X and ∗ < p for any p ∈ X. Note that X is then an open subset of
Cyl(X).

(2) The sheaf of rings Õ is given by: Õ∗ = A, Õp = Op for any
p ∈ X. The morphism

Õ∗ −→ Õp

is the natural morphism

A −→ Op and Õ|X = O.

By definition, ∗ is a minimum of Cyl(X); hence, Cyl(X) = U∗. In
particular, Cyl(X) is affine.

Example 4.9. Let S be a scheme, U a locally affine covering and X
the associated finite space. X is schematic, but in general Cyl(X) is
not. It is simple to prove that Cyl(X) is schematic if and only if S is
a quasi-affine scheme, i.e., an open subset of an affine scheme.

Theorem 4.10. Let (X,O) be a ringed finite space, A = O(X).
Then, X is an affine schematic space if and only if it satisfies:

(1)

A −→
∏
p∈X

Op

is faithfully flat.
(2) Cyl(X) is schematic.

Proof. Assume that X is affine and schematic. Then, it satisfies
Proposition 4.7 (1). We now show that Cyl(X) is schematic. It is clear
that it is a finite space. Towards our conclusion, we must prove that,

for any p̃, q̃ ∈ Cyl(X) and any p̃ ≤ l̃, the natural morphism

Hi(Up̃q̃, Õ)⊗Õp̃
Õl̃ −→ Hi(Ul̃q̃, Õ)
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is an isomorphism. If p̃, q̃ ∈ X, it is an isomorphism since X is
schematic. If q̃ = ∗, both sides are zero for i > 0 and an isomorphism
for i = 0 by Proposition 4.7. Finally, if p̃ = ∗, both members are
zero for i > 0 (the right hand is zero since Upq is acyclic and X is
semi-separated), and it is an isomorphism for i = 0 by Proposition 4.7.

Assume now that X satisfies (1) and (2). Then, X is schematic
since it is an open subset of Cyl(X). It remains to prove that X is
affine. Since Cyl(X) is affine, it suffices to see that X is acyclic. Let
j : X ↩→ Cyl(X). Since j is schematic, Rij∗O is quasi-coherent. Hence,
for any p ∈ X,

Hi(X,O)⊗A Op = (Rij∗O)∗ ⊗Õ∗
Õp = (Rij∗O)p = Hi(Up,O) = 0

for i > 0. From condition (1), Hi(X,O) = 0 for i > 0. �

In view of Theorem 4.10, in order to characterize affine schematic
spaces in terms of their combinatorial data, it suffices to characterize
when the cylinder is schematic. The next theorem characterizes when
a ringed finite space is schematic.

Theorem 4.11. Let (X,O) be a ringed finite space. The following
conditions are equivalent :

(1) X is a schematic finite space.

(2) For any p ∈ X and any q, q′ ∈ Up the natural morphism

Oq ⊗Op Oq′ −→
∏

t≥q,q′
Ot

is faithfully flat.

(3) For any p ∈ X and any q, q′ ∈ Up the natural morphism

Oq ⊗Op Oq′ −→ Oqq′

is an isomorphism and the morphism

Oqq′ −→
∏

t≥q,q′
Ot

is faithfully flat.
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Proof.

(3) ⇒ (2) is immediate. Moreover, if

Oq ⊗Op Oq′ −→
∏

t≥q,q′
Ot

is faithfully flat, then
Op −→ Ot

is flat for any p ≤ t (take q = q′ = p). Hence, we assume that X is a
finite space.

(1) ⇒ (3). If X is schematic, then

Oq ⊗Op Oq′ −→ Oqq′

is an isomorphism and Uqq′ is affine since Up is semi-separated; thus,

Oqq′ −→
∏

t≥q,q′
Ot

is faithfully flat by Proposition 4.7.

(3) ⇒ (1). We proceed by induction on #X, the case #X = 1 being
obvious. Since the question is local, we may assume that X = Up, and
we must prove that Uqq′ is acyclic. If either q = p or q′ = p, it is
immediate. Hence, let us assume q, q′ > p. Since

Oqq′ −→
∏

t≥q,q′
Ot

is faithfully flat, it suffices to see that

Hi(Uqq′ ,O)⊗Oqq′ Ot = 0

for any t ∈ Uqq′ and i > 0. Let

δ : Uqq′ −→ Uq ×A Uq′

be the diagonal morphism (A = Op). By induction, Uq and Uq′ are
schematic; thus, δ is schematic. Then, Riδ∗OUqq′ is quasi-coherent and

(Riδ∗OUqq′ )(q,q′) ⊗O(q,q′) O(t,t) = (Riδ∗OUqq′ )(t,t) = Hi(Ut,O) = 0
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for i > 0. Now, taking into account the equalities

O(q,q′) = Oq ⊗A Oq′ = Oqq′ ,

O(t,t) = Ot, (R
iδ∗OUqq′ )(q,q′) = Hi(Uqq′ ,O),

we obtain
Hi(Uqq′ ,O)⊗Oqq′ Ot = 0,

as desired.

Finally, we see that (2) ⇒ (3). We proceed by induction on #X,
the case #X = 1 being obvious. We must prove that

Oq ⊗Op Oq′ −→ Oqq′

is an isomorphism. If either q = p or q′ = p, it is immediate; thus,
assume that q, q′ > p. Since O is a sheaf we have an exact sequence

0 −→ Oqq′ −→
∏

t∈Uqq′

Ot −→
∏

t,t′∈Uqq′

Ott′ .

On the other hand, we denote

B = Oq ⊗Op Oq′ and C =
∏

t∈Uqq′

Ot.

By hypothesis, B → C is faithfully flat; hence, we have an exact se-
quence

0 −→ B −→ C −→ C ⊗B C.

For the conclusion, it is enough to see that

C ⊗B C =
∏

t,t′∈Uqq′

Ott′ .

This is the same as proving that Ot ⊗B Ot′ = Ott′ . We have natural
morphisms

Ot ⊗Oq Ot′ −→ Ot ⊗B Ot′ −→ Ott′ ,

whose composition is an isomorphism by induction (#Uq < #X). Since

Ot ⊗Oq Ot′ −→ Ot ⊗B Ot′

is surjective, we are done. �

Now, we can characterize affine schematic spaces.
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Theorem 4.12. Let (X,O) be a ringed finite space A = O(X). The
following conditions are equivalent :

(1) (X,O) is an affine schematic space.
(2) (X,O) satisfies

(2a)

A −→
∏
p∈X

Op

is faithfully flat.
(2b) For any p, q ∈ X, the natural morphism

Op ⊗A Oq −→ Opq

is an isomorphism.
(2c) For any p, q ∈ X, the natural morphism

Opq −→
∏
t≥p,q

Ot

is faithfully flat.
(3) (X,O) satisfies

(3a)

A −→
∏
p∈X

Op

is faithfully flat.
(3b) For any p, q ∈ X, the natural morphism

Op ⊗A Oq −→
∏
t≥p,q

Ot

is faithfully flat.
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Proof.

(1) ⇒ (2). If X is affine and schematic, it satisfies (2a) and (2b) by
Proposition 4.7. Since X is semi-separated, Upq is affine; hence, (2c)
follows from Proposition 4.7.

(2) ⇒ (3) is immediate. For the conclusion, we must show that (3)
⇒ (1).

From condition (3b) it follows that, for any p ∈ X and any q, q′ ∈ Up,
the morphism

Oq ⊗Op Oq′ −→
∏
t≥p,q

Ot

is faithfully flat. Indeed, we have morphisms

Oq ⊗A Oq′ −→ Oq ⊗Op Oq′ −→
∏

t≥q,q′
Ot,

whose composition is faithfully flat and the first morphism is surjective.
This implies that the second morphism is faithfully flat. Moreover,
condition (3b) in the case p = q states that

Op ⊗A Op −→
∏
t∈Up

Ot

is faithfully flat. Since this morphism factors through the epimorphism

Op ⊗A Op −→ Op,

we conclude that Op → Ot are flat. It is now easy to see that Cyl(X)
satisfies Theorem 4.11 (3); hence, Cyl(X) is schematic. We conclude
that X is affine and schematic by Theorem 4.10. �

Corollary 4.13. Let X be a semi-separated finite space, A = O(X).
Then, X is affine if and only if :

(1)

A −→
∏
p∈X

Op

is faithfully flat.
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(2) For any p, q ∈ X, the natural morphism

Op ⊗A Oq −→ Opq

is an isomorphism.

Proof. If X is affine, then it satisfies conditions (1) and (2) by Theo-
rem 4.12. Conversely, assume that X is semi-separated and satisfies (1)
and (2), and we shall prove thatX is affine. By Theorem 4.12, it suffices
to see that

Opq −→
∏
t≥p,q

Ot

is faithfully flat. However, Upq is affine since X is semi-separated; thus,
we conclude by Proposition 4.7. �

5. Serre’s criterion of affineness. Let (S,OS) be a quasi-compact
and quasi-separated scheme. We have the following cohomological char-
acterization of affineness.

Theorem 5.1. The following conditions are equivalent :

(1) S is an affine scheme.
(2) S is Serre-affine, i.e., any quasi-coherent module on S is acyclic.
(3) H1(S, p) = 0 for any quasi-coherent sheaf of ideals p.

The aim of this section is to generalize Serre’s characterization of
affine schemes to schematic finite spaces. We will first show that Serre’s
criterion does not hold in the topological context.

Definition 5.2. We say that a ringed space (S,OS) is Serre-affine if
any quasi-coherent module on S is acyclic.

Theorem 5.3. Let S be a locally simply connected topological space,
and let us assume that there exists an integer d such that Hi(S,M) = 0
for i > d and any quasi-coherent module M on S, for example, any
finite topological space. Let

π : S −→ S

be a finite cover. Then, S is Serre-affine if and only if so is S.
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Proof. Assume that S is Serre-affine. For any quasi-coherent module
M on S, we have

Hi(S,M) = Hi(S, π∗M)

since Riπ∗M = 0 for i > 0. Now, π∗M is quasi-coherent; hence,

Hi(S, π∗M) = 0 for i > 0

since S is Serre-affine. Then, S is Serre-affine.

We assume that S is Serre-affine. Let M be a quasi-coherent module
on S and

π∗π
∗M −→ M,

the trace morphism, which is surjective. Then, we have an exact
sequence

0 −→ K −→ π∗π
∗M −→ M −→ 0,

and K is quasi-coherent. Since Hd+1(S,K) = 0,

Hd(S, π∗π
∗M) −→ Hd(S,M)

is surjective. However,

Hd(S, π∗π
∗M) = Hd(S, π∗M) = 0;

thus, Hd(S,M) = 0, that is, we have proved that Hd(S,M) = 0 for
any quasi-coherent module M on S. Hence, the long exact sequence of
cohomology proves that Hd−1(S,M) = 0, that is, we have proved that
Hd−1(S,M) = 0 for any quasi-coherent module M on S. Proceeding
in this way, we reach our conclusion. �

Corollary 5.4. Let S be a topological space under the hypothesis of
Theorem 5.3. Let

π : S̃ −→ S

be the universal cover. Assume that π is finite, i.e., the fundamental

group of S is finite. Then, S is Serre-affine if and only if S̃ is homo-
topically trivial.

Proof. By Theorem 5.3, S is Serre-affine if and only if S̃ is Serre-

affine. Since S̃ is simply connected, we reach our conclusion by Propo-
sition 2.7. �
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Proposition 5.5. Let S be a connected and locally simply connected
topological space. Then, H1(S, p) = 0 for any quasi-coherent sheaf of
ideals p if and only if H1(S,Z) = 0.

Proof. A quasi-coherent sheaf of ideals p is a locally constant sub-
sheaf of abelian groups of the constant sheaf Z. It is easy to see that p
must be a constant sheaf; hence, it is isomorphic to Z. �

These propositions state, in particular, that Serre’s criterion does not
hold in the topological case; as a positive counterpart, Proposition 2.7
states that, if S is simply connected, then S is affine if and only
if S is Serre-affine. Regarding the differentiable case, let S be a
separated differentiable manifold with countable basis. Any C∞S -module
is acyclic; hence, S is Serre-affine. On the other hand, S is affine if and
only if S is compact (Proposition 2.9). Thus, Serre’s criterion fails
in the differentiable context. If we consider Fréchet topology, as in
Remark 2.10, then S is Fréchet- and Serre-affine.

Our aim now is to prove that Serre’s criterion of affineness holds for
schematic finite spaces.

5.1. Removable points.

Definition 5.6. A weak equivalence is a schematic affine morphism

f : X −→ Y

satisfying f∗OX = OY .

It is proven in [5] that, if f : X → Y is a weak equivalence, then f∗
and f∗ yield equivalences between the categories of quasi-coherent
modules on X and Y ; moreover,

Hi(X,M) = Hi(Y, f∗M)

for any quasi-coherent module M on X. Consequently, X is affine if
and only if so is Y .

Definition 5.7. Let X be a schematic finite space, and let p ∈ X be
a closed point. We say that p is removable if
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Op −→
∏
q>p

Oq

is faithfully flat.

Examples 5.8. In order to illustrate the role that removable points
play, we show a couple of examples in the algebro-geometric case. We
omit the proofs since these results are unnecessary for the rest of the
paper. Let S be a scheme, U a locally affine covering and X the
associated finite space. Then,

(1) X has no removable points. If p1, . . . , pn are the closed points
of X, there exists a quasi-coherent ideal p such that the support of O/p
is {p1, . . . , pn}.

(2) Assume that S is quasi-affine, i.e., an open subset of an affine
scheme. Then, Cyl(X) is schematic, see Remark 4.9, and ∗ is the
unique closed point. Then, ∗ is removable if and only if S is affine. If
∗ is removable, then there is no quasi-coherent ideal p on Cyl(X) such
that the support of OCyl(X)/p is ∗.

Proposition 5.9. Let p be a closed point of a schematic finite space X.
Let

j : X − p ↩→ X

be the natural inclusion. Then, p is removable if and only if j is a weak
equivalence.

Proof. Assume that p is a removable point. We first show that

j∗OX−p = OX .

The natural morphism OX → j∗OX−p is an isomorphism after taking
the fiber at any point q ̸= p since j−1(Uq) = Uq in this case. If we take
the fiber at p, then it is also an isomorphism. Indeed, since

Op −→
∏
q>p

Oq

is faithfully flat, it suffices to see that it is an isomorphism after
tensoring by ⊗OpOq for any q > p, i.e., the morphism

Oq −→ (j∗OX−p)p ⊗Op Oq
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is an isomorphism. Since j∗OX−p is quasi-coherent,

(j∗OX−p)p ⊗Op Oq = (j∗OX−p)q = Oq.

In order to conclude that j is a weak equivalence, we must see that
j−1(Uq) is affine. If q ̸= p, then it is immediate. If q = p, then we must
prove that Up − p is affine. Since Up is schematic and affine, it suffices
to show that Up−p is acyclic. Now, Rij∗OX−p is quasi-coherent; thus,
for any q > p,

Hi(Up − p,O)⊗Op Oq = (Rij∗OX−p)p ⊗Op Oq = (Rij∗OX−p)q

= Hi(Uq,O) = 0 for i > 0.

Hence, Hi(Up − p,O) = 0 since p is a removable point.

Assume now that j is a weak equivalence. Then, Up − p = j−1(Up)
is affine and O(Up − p) = Op since j∗OX−p = OX . By Proposition 4.7,

Op −→
∏
q>p

Oq

is faithfully flat. �

Corollary 5.10. Let p be a removable point of X. Then, X is affine
if and only if X − p is affine.

Theorem 5.11. Let X be a schematic finite space. Then, the following
conditions are equivalent :

(1) X is affine.
(2) Every quasi-coherent module on X is acyclic.
(3) For any quasi-coherent sheaf of ideals p, we have H1(X, p) = 0.

Proof.

(1) ⇒ (2) by Theorem 4.3, and (2) obviously implies (3).

It remains to prove that (3) implies (1). Let A = O(X) and Y =
SpecA. For each y ∈ Y , let Ay be the local ring at y. Let Xy be the
ringed finite space whose underlying topological space is X and whose
sheaf of rings is O⊗AAy, in other words, it is the fibered product of X
and (∗, Ay) over (∗, A). It is easy to see that X is affine, respectively, X
satisfies (3), if and only if Xy is affine, respectively, satisfies (3), for any
y ∈ Y , in other words, we may assume that A is a local ring. Now, by
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Corollary 5.10, we assume that X has no removable points. Then, the
result follows from the next proposition. �

Proposition 5.12. Let X be a schematic space with no removable
points and such that A = O(X) is a local ring. If H1(X, p) = 0 for any
quasi-coherent sheaf of ideals p, then X has a unique closed point p,
i.e., X = Up.

Proof. Let p1, . . . , pn be the closed points of X. Since pi is not
a removable point, there exists a prime ideal qi of Opi such that
qi · Oq = Oq for any q > pi. Let p be the sheaf of ideals on X given by

ppi = qi, pq = Oq for q ̸= p1, . . . , pn

By construction, p is quasi-coherent and O/p is supported at p1, . . . , pn.
Since H1(X, p) = 0, we have an epimorphism

A −→ Γ(X,O/p) = Op1/q1 × · · · × Op1/q1.

Since A is a local ring, it must be n = 1. �

Remark 5.13. Let S be a quasi-compact and quasi-separated scheme,
U a locally affine finite covering and π : S → X the associated ringed
finite space (which is a schematic finite space). The functors π∗ and π∗

yield equivalences between the categories of quasi-coherent modules
on S and X. Moreover, Hi(S,M) = Hi(X,π∗M) for any quasi-
coherent module on S, and p is a quasi-coherent sheaf of ideals on S if
and only if π∗p is a quasi-coherent sheaf of ideals on X. Hence, Serre’s
criterion on X yields the usual Serre’s criterion on S.
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