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SUBGROUP AVOIDANCE FOR PRIMES
DIVIDING THE VALUES OF A POLYNOMIAL

PAUL POLLACK

In memory of those Jewish mathematicians, such as
Mihály Bauer and Alfred Brauer, persecuted during the Nazi era.

ABSTRACT. For f ∈ Q[x], we say that a rational prime p
is a prime divisor of f if p divides the numerator of f(n)
for some integer n. Let P(f) denote the set of prime divisors
of f . We present an elementary proof of the following theo-
rem, which generalizes results of Bauer and Brauer: fix a
nonzero integer g. Suppose that f(x) ∈ Q[x] is a nonconstant
polynomial having a root in Qp for every prime p dividing g,
and having a root in R if g < 0. Let m be a positive integer
coprime to g, and let H be a subgroup of (Z/mZ)× not
containing g mod m. Then there are infinitely many primes
p ∈ P(f) with p mod m /∈ H.

1. Introduction. In 1837, Dirichlet showed that every arithmetic
progression a mod m with gcd(a,m) = 1 contains infinitely many prime
numbers. One of the most surprising aspects of Dirichlet’s beautiful
proof is the crucial use it makes of ideas and methods from analysis. A
number of researchers have investigated how essential analytic methods
are to obtaining Dirichlet’s result. Particularly noteworthy are the
works of Zassenhaus [19], Selberg [14] and Shapiro [15], where proofs
are given that minimize analytic prerequisites, even avoiding any use
of infinite series.

While the proofs of Zassenhaus, Selberg and Shapiro are elementary
in a technical sense, the analysis is hidden just beneath the surface.
Anyone picking up one of these papers will quickly realize that they
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have wandered into the woods of analytic number theory. Thus, it
is still reasonable to ask whether there exists an elementary algebraic
approach to Dirichlet’s result. It seems that no argument of this kind is
known that yields the theorem for all coprime progressions. However,
such proofs are available in several special cases.

The most famous examples are the progressions 2 mod 3 and 3 mod 4.
That both of these progressions contain infinitely many primes can be
established by a simple variant of Euclid’s famous argument. Indeed,
this is a common exercise in first courses in elementary number theory.
Attempting to push this Euclidean method to its natural limit, one is
led to the following “subgroup avoidance” theorem, which appears in
Marcus’s text on algebraic number theory [8, page 205, Exercise 6].

Theorem A. Let m be a positive integer, and let H be a proper
subgroup of (Z/mZ)×. There are infinitely many primes p with p mod
m /∈ H.

Another special case of Dirichlet’s theorem that has often been
discussed in the literature is that of the progression 1 mod m, see [12,
pages 87–90] for several references. For each polynomial f with rational
coefficients, define

P(f) = {primes p : νp(f(n)) > 0 for some integer n}.

(Here νp is the usual p-adic valuation.) We refer to the elements of
P(f) as the prime divisors of f . For two sets of primes P and Q, we
write P .

= Q to mean that the symmetric difference of P and Q is
finite. Letting Φm denote the mth cyclotomic polynomial, it can be
proven in an elementary way that

(1.1) P(Φm)
.
= {primes p ≡ 1 mod m}.

(This quickly follows from the cyclicity of (Z/pZ)× and the following
well-known algebraic fact: over any field of characteristic not divid-
ing m, the roots of Φm are the primitive mth roots of unity. For an
explicit reference, see [5, Theorem 8].) It is straightforward to prove
that the left-hand side of (1.1) is infinite; indeed, a simple variant of
Euclid’s argument shows that P(f) is infinite for any nonconstant f ,
see [5, Theorem 1] or [13, pages 40–41]. Hence, the right-hand side
of (1.1) is also infinite.
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This discussion shows that extra hypotheses are needed to prove an
analogue of Theorem A where the primes p are restricted to a set P(f).
Indeed, when f = Φm, all but finitely many prime divisors p of f are
1 mod m, and thus, p mod m belongs to every subgroup of (Z/mZ)×.
In this note, these extra hypotheses are examined.

The first subgroup avoidance result for P(f) is due to Bauer [2],
see [6, Section 108] and [11, Section 49] for expositions. It appears as
a waystation in his elementary, algebraic proof that there are always
infinitely many primes p ≡ −1 mod m.

Theorem B ([2]). Let f be a nonconstant polynomial with rational
coefficients and a real root of odd multiplicity. For every m ≥ 3, the
set P(f) contains infinitely many primes p ̸≡ 1 (mod m).

It was noted by Brauer [3] that Theorem B can be pushed further
in the direction of Theorem A.

Theorem C ([3]). Let f be a nonconstant polynomial with rational
coefficients and at least one real root. Let m be a positive integer, and
let H be a subgroup of (Z/mZ)× not containing −1 mod m. Then, the
set P(f) contains infinitely many primes p with p mod m /∈ H.

We will prove, in an elementary, algebraic way, the following natural
generalization of Theorem C.

Theorem 1.1. Fix a nonzero integer g. Let m be a positive integer
prime to g, and let H be a subgroup of (Z/mZ)× not containing
g mod m. Suppose that f is a nonconstant polynomial with rational
coefficients having a root in Qp for every prime p dividing g, and having
a root in R if g < 0. Then, there are infinitely many primes p ∈ P(f)
with p mod m /∈ H.

In keeping with the goal of remaining as down to earth as possible,
our proof will use none of the theory of algebraic numbers and only the
bare rudiments of the theory of p-adic numbers.

Example 1.2. Let g = 17 and m = 3, and let H be the trivial
subgroup of (Z/3Z)×. A simple application of Hensel’s lemma shows
that the conditions of Theorem 1.1 hold with f(x) = x4+1. We deduce
that there are infinitely many prime divisors of f with p ≡ 2 (mod 3).
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From (1.1),

P(f) = P(Φ8)
.
= {primes p ≡ 1 mod 8}.

Consequently, we have proved, using an elementary, algebraic method,
that there are infinitely many primes p ≡ 17 (mod 24).

In Example 1.2, any novelty claimed is for the approach, rather than
the final result. Indeed, 172 ≡ 1 (mod 24), and it was shown in 1912 by
Schur [13] that, whenever a2 ≡ 1 mod m, there is an algebraic proof
of Dirichlet’s theorem for the progression a mod m. Full details for the
particular case m = 24 are presented in [1]. Conversely, Murty has
shown that, in a certain precise sense, Schur’s are the only progressions
for which such proofs can be given, [9, 10].

The reader interested in a thorough development of the basic the-
ory of prime divisors of polynomials from an elementary point of view
should consult the article of Gerst and Brillhart [5]. Additional refer-
ences concerning algebraic approaches to cases of Dirichlet’s theorem
include [7, 16, 17, 18].

2. Proof of Theorem 1.1. We need two lemmas. The first is a
well-known result on independence of valuations. In what follows, the
primes of Q are the standard finite primes 2, 3, 5, 7, . . . , along with ∞.
We let | · |∞ denote the usual (Archimedean) absolute value, and, for
finite p, we let | · |p = p−νp(·).

Proposition 2.1 (Strong approximation). Fix a prime p0 of Q. Let S
be a finite set of primes of Q distinct from p0. For each p ∈ S, suppose
that an element αp ∈ Qp is given. For every ϵ > 0, there is an α ∈ Q
with

|α− αp|p < ϵ for all p ∈ S

and
|αp|p ≤ 1 for all p /∈ S, except possibly p = p0.

While we do not give its proof here, Proposition 2.1 is not deep; it is
essentially equivalent to the classical Chinese remainder theorem. For
a full treatment of the analogous result in a general global field, see [4,
pages 67–68].
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Lemma 2.2. Let f be a nonconstant polynomial with rational coef-
ficients. Suppose that f has a simple root in Qp, where p is a finite
prime. Then, for all sufficiently large natural numbers ν, there is an
α ∈ Qp with νp(f(α)) = ν.

Proof. Let α be a simple root of f in Qp, and write f(x) =
(x − α)q(x), where q(x) ∈ Qp[x] and q(α) ̸= 0. For each natural
number n, let αn = α+ pn. Then,

νp(f(αn)) = νp(αn − α) + νp(q(αn)) = n+ νp(q(αn)).

By continuity,
q(αn) −→ q(α) as n → ∞.

Since q(α) ̸= 0, we have νp(q(αn)) = νp(q(α)) = C (say) for all large
enough n. Therefore, νp(f(αn)) = n+C for all large n, and the lemma
follows. �

We can now prove the main theorem.

Proof of Theorem 1.1. Put f0 = f . Let f1(x) = f0(x + t), where
t ∈ Z is chosen so that f(x + t) has a nonzero constant term. Let
f2 = f1/ gcd(f1, f

′
1), so that f2 has only simple roots. Scale f2 to have

constant term 1, and call the result f3. Finally, let f4(x) = f3(Ax),
where the nonzero integer A is chosen such that f3(Ax) has integer
coefficients. It is straightforward to check that P(fi)

.
= P(fi+1) for

each i = 0, 1, 2, 3. (It is helpful here to observe that f2 and f1 have the
same irreducible factors in Q[x], with possibly different multiplicities.)
Hence, it suffices to verify the conclusion of the theorem for f4 instead
of f , that is, we can (and will) assume that f has the form

(2.1) f(x) = 1 + a1x+ a2x
2 + · · ·+ anx

n,

where each ai ∈ Z, and that f has no multiple roots.

We introduce three sets of primes defined as follows. Let

S1 = {finite primes dividing g} ∪ {∞},
S2 = {finite primes dividing m},

S3 = {p ∈ P(f) : p - m, p mod m /∈ H, p /∈ S1}.

Then, S1, S2 and S3 are pairwise disjoint. Clearly, S1 and S2 are finite
sets. If the conclusion of Theorem 1.1 fails, then S3 is also finite.
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We now suppose S3 is finite and proceed to derive a contradiction.

Let B be a large positive (fixed) integer, to be specified more pre-
cisely momentarily. For each finite prime p ∈ S1, fix an αp ∈ Qp with

νp(f(αp)) = Bνp(g).

That this is possible for all large enough B follows from Lemma 2.2,
since f has a simple root over Qp for all p ∈ S1. If g < 0, we are
assuming that f has a simple root over R, and we fix α∞ ∈ R with
f(α∞) < 0. If g > 0, we set α∞ = 0, so that f(α∞) = 1. In either
case,

sgn(f(α∞)) = sgn(g).

Finally, fix a prime p0 ≡ 1 (mod m) larger than any finite element of
S1 ∪ S2 ∪ S3; the existence of p0 follows from the (algebraic) results
reviewed in the introduction.

We claim it is possible to choose α ∈ Q with

(2.2) νp(f(α)) = Bνp(g) for all finite primes p ∈ S1,

with

(2.3) sgn(f(α)) = sgn(g),

with

(2.4) νp(α) ≥ B if p ∈ S2 ∪ S3,

and with

(2.5) νp(α) ≥ 0 for all p /∈ S1 ∪ S2 ∪ S3 ∪ {p0}.

Conditions (2.2) and (2.3) can be enforced by selecting α sufficiently
close to αp for all p ∈ S1, while (2.4) can be enforced by selecting α
close to 0 ∈ Qp for p ∈ S2 ∪ S3. The existence of the desired rational
number α thus follows from strong approximation (Proposition 2.1).

Conditions (2.2) and (2.3) together imply that

f(α) = sgn(g)|g|B · r

for a certain r ∈ Q with r > 0 and with

(2.6) νp(r) = 0 for all finite primes p | g.
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We now impose the conditions thatB is odd and that gcd(B,ϕ(m)) = 1.
Then, sgn(g) = sgn(g)B , and thus, in fact,

(2.7) f(α) = gBr.

From the form of f in (2.1) and the valuation conditions in (2.4),

(2.8) νp(f(α)− 1) ≥ B > 0 for each p ∈ S2 ∪ S3.

Note that this forces νp(f(α)) = 0 for all p ∈ S2 ∪ S3, and hence,

(2.9) νp(r) = 0 for all p ∈ S2 ∪ S3.

Since both sides of (2.7) are integral at all primes dividing m, it makes
sense to reduce (2.7) modulo m. Assuming that B is sufficiently large,
(2.7) and (2.8) yield

1 ≡ f(α) ≡ gBr (mod m),

and hence, r mod m generates the same subgroup as gB mod m.
Since B is coprime to ϕ(m), that subgroup coincides with the one gen-
erated by g mod m. Therefore, if r mod m were in H, g mod m ∈ H,
contrary to assumption. Hence, using r > 0, there must be some finite
prime P having νP (r) ̸= 0 and P mod m /∈ H.

Clearly, P ̸= p0 since p0 mod m = 1 mod m ∈ H, whereas P mod m
/∈ H. From (2.6) and (2.9), we deduce that P /∈ S1∪S2∪S3. Recalling
(2.5), α is P -integral. Since f has integer coefficients and P - g,

νP (r) = νP (f(α)) ≥ 0.

Since νP (r) ̸= 0, it must be that νP (f(α)) > 0. As α is P -integral, it
follows that P ∈ P(f). Hence, P is a prime of P(f) not dividing mg
with P mod m /∈ H and with P /∈ S3. This contradicts the definition
of S3. �
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