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ON THE τ-LI COEFFICIENTS
FOR AUTOMORPHIC L-FUNCTIONS

KAMEL MAZHOUDA

ABSTRACT. In this paper, we extend the Li coefficients
for automorphic L-functions and the Li criterion for the Rie-
mann hypothesis to yield a necessary and sufficient con-
dition for the existence of zero-free strips for automorphic
L-functions inside the critical strip. Next, we give an arith-
metical and asymptotical formula for these coefficients. Fi-
nally, we show that there exists an entire function of ex-
ponential type that interpolates the extended Li coefficients
(or the τ -Li coefficients) at integer values. The results of
this paper arise from ideas of the author [15], Freitas [8],
Lagarias [11] and Odzăk and Smajlovic̀ [17].

1. Introduction. The Riemann hypothesis is the subject of several
studies and research papers. Most of them provide new reformulations
and numerical evidence for this hypothesis. In the literature, there exist
various formulations of the Riemann hypothesis [10, 12]. We believe
that most of them may be extended to automorphic L-functions and
to the framework of the Selberg class [19, 21, 26] or subclass. In
this paper, we specifically deal with the formulation of the Li criterion
for the Riemann hypothesis in the context of automorphic L-functions.
The Li criterion for the Riemann hypothesis, see [12], is a necessary
and sufficient condition for the sequence

λn =
∑
ρ

[
1−

(
1− 1

ρ

)n]
to be non-negative for all n ∈ N and where ρ runs over the non-trivial
zeros of ζ(s). This criterion holds for a large class of Dirichlet series,
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the so-called Selberg class, as given in [19, 21], and for automorphic
L-functions as given in [11]. More recently, Omar and Bouanani [18]
extended the Li criterion for function fields and established an explicit
and asymptotic formula for the Li coefficients.

In this paper, our main objective is to extend the Li coefficients
and the Li criterion for the Riemann hypothesis to automorphic L-
functions. Next, we give an arithmetical and asymptotical formula for
these coefficients. Finally, we show that there exists an entire function
of exponential type that interpolates the extended Li coefficients (or
the τ -Li coefficients) at integer values.

2. Automorphic L-functions. First, we recall basic facts regard-
ing principal L-functions L(s, π) attached to irreducible cuspidal uni-
tary automorphic representations of GL(N), as in Rudnick and Sar-
nak [25] (here, we use the same notation as in the Lagarias paper [11,
Section 2]). These L-functions are associated to GL(n,Q) | GL(n,AQ),
and they are denoted by L(s, π, ρ) in which the Langland L-group
lG = GL(N,C) and ρ : lG → GL(N,C) is the standard representation.
For the trivial representation πtriv of GL(1), we have the completed
automorphic L-function Λ(s, πtriv) = π−s/2Γ(s/2)ζ(s). This function
has simple poles at s = 0 and s = 1. Aside from this representation,
all other Λ(s, π) are entire functions. Each completed automorphic
L-function Λ(s, π) has an Euler product factorization:

Λ(s, π) = Q(π)s/2L∞(s, π)L(s, π).

Here, Q(π) is a positive integer, called the conductor of the represen-
tation π, and the Archimedean factor is

L∞(s, π) =
N∏

k=1

ΓR(s+ kj(π)),

in which kj(π) are certain constants and

ΓR(s) := π−s/2Γ(s/2).

The L-function L(s, π) is given by an Euler product over the finite
places

L(s, π) =
∏
p

N∏
j=1

(1− αp,j(π)p
−s)−1 =

∞∑
n=1

an(π)n
−s.
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The Euler product and its associated Dirichlet series absolutely con-
verge in the half-plane Re(s) > 1. The Ramanujan-Peterson conjecture
states that the local parameters |αp,j(π)| are of absolute value at most

one. We have, for all n ≥ 1, that |an(π)| ≤ d(n)nN/2, where d(n) is the
number of divisors of n, see [9, subsections 5.11, 5.12]. The function
Λ(s, π) satisfies a functional equation

Λ(s, π) = ϵ(π)Λ(1− s, π̌),

in which ϵ(π) is a constant of absolute value one, and π̌ denotes the
contragredient representation. The archimedean factors ΓR(s+ kj(π))
in the Euler product Λ(s, π) satisfy Re(kj(π)) > −1/2 and L∞(s, π) =

L∞(s, π), see [11]. The zeros of Λ(s, π) all lie in the open critical strip
0 < Re(s) < 1. In particular, Λ(s, π) is non-vanishing on the lines
Re(s) = 0 and Re(s) = 1, see [9, Theorem 5.42]. Letting Nπ(T ) be
the number of zeros ρ = β + iγ of L(s, π) such that 0 ≤ β ≤ 1 and
0 < γ ≤ T , then, see [9, Theorem 5.8],

(2.1) Nπ(T ) =
N

2π
T log T + C(π)T +O(log T ),

where C(π) = (1/π) logQ(π) − N(1 + log 2π)/2. We define the ξ-
function ξ(s, π) associated to π by

ξ(s, π) = s−e(0,π)(s− 1)−e(1,π)

(
1√

(−1)e(1/2,π)ϵ(π)
Λ(s, π)

)
,

where e(s0, π) denotes the order of a zero or pole of Λ(s, π) at s = s0,
with poles assigned negative orders. We have e(0, π) = e(1, π) by
the functional equation, and this definition ensures that ξ(s, π) is
holomorphic and has no zero at s = 0 nor at s = 1. In this definition,
the square roots must be consistently chosen so that√

(−1)e(1/2,π)ϵ(π)
√

(−1)e(1/2,π)ϵ(π̌) = 1.

The choice of sign under the square root in the last equation may be
removed by the requirement that ξ(1/2 + it, π) > 0 holds for small
positive t, as justified by Lagarias [11, Theorem 2.1, assertion (5)].
For the trivial representation πtriv on GL(1), we have e(0, πtriv) =
e(1, πtriv) = −1, and ξ(s, πtriv) = 2ξ(s). This convention is forced
if we wish to obtain an entire function in all cases for which we must
remove the poles at s = 0 and s = 1 for the case πtriv. The function
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ξ(s, π) satisfies the functional equation

ξ(s, π) = (−1)kξ(1− s, π̌),

where k = e(1/2, π) = e(1/2, π̌) is the order of the zero of ξ(s, π) at
s = 1/2. It is real-valued on the critical line Re(s) = 1/2. Let Z(π)
denote the multi-set of zeros of ξ(s, π) (counted with multiplicity) which
is the same as that of Λ(s, π) except possibly at s = 0 and s = 1. The
multi-set Z(π) is invariant under the map ρ 7→ 1 − ρ. The function
ξ(s, π) is an entire function of order one and maximal type. It is
bounded in vertical strips −B < Re(s) < B for any finite B and has
a rapid decrease there as |ℑ(s)| → ∞. The function ξ(s, π) yields the
Hadamard factorization

ξ(s, π) = ea(π)+b(π)s
∏

ρ∈Z(π)

(
1− s

ρ

)
es/ρ,

where the constant b(π) in the last equation satisfies (see [9, Theo-
rem 5.6]).1

b(π) = −
∑′

ρ∈Z(π)

1

ρ
.

We refer to [27, Proposition 3.4] for the existence of the last sum,
where Smajlovic̀’s class of L-functions unconditionally contains all au-
tomorphic L-functions attached to irreducible cuspidal unitary repre-
sentations of GL(N), also see [11, Lemma 2.1].

3. Li coefficients for automorphic L-functions. In this section,
we recall some results on the Li criterion and the Li coefficients as in
Lagarias’s paper [11]. Let Z(π) denote the multi-set of zeros of ξ(s, π)
(counted with multiplicity) which is the same as that of Λ(s, π), except
possibly at s = 0 and s = 1. Lagarias [11, Lemma 2.1] proved that,
for any principal L-functions L(s, π) for GL(N), the power sums

σn(π) :=
∑′

ρ∈Z(π)

1

ρn
, n ≥ 1,

are absolutely convergent for n ≥ 2, *-convergent for n = 1, and
the real parts of these sums are absolutely convergent for all n ≥ 1.
Furthermore, for all irreducible unitary automorphic representations
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on GL(N), the sum

λn(π) =
∑

ρ∈Z(π)

1−
(
1− 1

ρ

)n

is *-convergent for all n ∈ Z. This is shown by

λn(π) =
n∑

j=1

(−1)j−1(nj )σj(π),

with λ0(π) = 0, which also satisfies λ−n(π) = λn(π). Lagarias [11]
states a general version of the Li criterion.

Theorem 3.1 ([11, Theorem 2.2]). Let π be an irreducible cuspidal
unitary automorphic representation of GL(n). The following conditions
are each equivalent to the Riemann hypothesis for ξ(s, π).

• (a) For all n ≥ 1, Re(λn(π)) ≥ 0.
• (b) For each ϵ > 0, there is a positive constant C(ϵ) such that

Re(λn(π)) ≥ −C(ϵ)eϵn for all n ≥ 1.

• (c) The generalized Li coefficients λn(π) satisfy

lim
n→∞

|λn(π)|1/n ≤ 1.

In addition, Lagarias [11] gave an arithmetical interpretation of the
coefficients in terms of the logarithmic derivative of ξ(s, π), expanded
around the point s = 1, and obtained an asymptotic formula for λn(π).

Theorem 3.2 ([11, Theorem 1.1]). Let π be an irreducible cuspidal
unitary automorphic representation for GL(N) over Q. For n ≥ 1, the
following holds:

λn(π) =
N

2
log n+ C1(π)n− λn(

√
n, π) +O(

√
n logn),

in which C1(π) is real-valued, λn(
√
n, π) denotes the incomplete Li co-

efficient 2 at height
√
n, and the implied constant in the O-notation

depends upon π. If the Riemann hypothesis holds for L(s, π), then the
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incomplete Li coefficient λn(
√
n, π) = O(

√
n log n) such that, for n ≥ 1,

λn(π) =
N

2
log n+ C1(π)n+O(

√
n log n),

where the implied constant in the O-notation depends upon π.

4. The τ-Li coefficients. We introduce, in a similar manner as
defined by Freitas [8], the extended Li coefficient or the τ -Li coefficients.
For τ ≥ 1 and n ∈ N, let

λn(π, τ) :=
∑′

ρ∈Z(π)

(
1−

(
ρ

ρ− τ

)n)
.

The definition of λn(π, τ) for τ = 1 is not identical to that given by
Lagarias [11]. Note that λn(π, 1) = λ−n(π) according to the notation.
The convergence of the sum on the right is justified by the next lemma.

Lemma 4.1. Let τ ≥ 1. Then, we have

• (a) λn(π, τ) is *-convergent for all n ∈ N.
• (b) The real parts of the sums are absolutely convergent for all
n ≥ 1.

• (c) ∑
ρ∈Z(π,τ)

1 + |Re(ρ)|
(1 + |ρ|)2

<∞.

Proof. We define the set

Z(π, τ) =

{
ρ

τ
/ ρ ∈ Z(π)

}
,

where ρ/τ and ρ have the same multiplicity. Recall that the sum∑′

ρ∈Z(π)

1

ρ

is *-convergent. Then the sum∑′

ρ∈Z(π,τ)

1

ρ
=

∑′

ρ∈Z(π)

τ

ρ
= τ

∑′

ρ∈Z(π)

1

ρ
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is also *-convergent. Since ξ(s, π) is an entire function of order one, the
sum

∑′
ρ∈Z(π) 1/|ρ|2 is absolutely convergent. Furthermore, for τ ≥ 1,

we have

1

τ

∑
ρ∈Z(π,τ)

1 + |Re(ρ)|
(1 + |ρ|)2

=
1

τ

∑
ρ∈Z(π)

1 + |Re(ρ/τ)|
(1 + |ρ/τ |)2

=
∑

ρ∈Z(π)

τ + |Re(ρ)|
(τ + |ρ|)2

.

Since 0 ≤ Re(ρ) ≤ 1, we obtain

1

τ

∑
ρ∈Z(π,τ)

1 + |Re(ρ)|
(1 + |ρ|)2

< (τ + 1)
∑

ρ∈Z(π)

1

|ρ|2
.

Therefore, the sum ∑
ρ∈Z(π,τ)

1 + |Re(ρ)|
(1 + |ρ|)2

is absolutely convergent simultaneously with the sum∑
ρ∈Z(π)

1 + |Re(ρ)|
(1 + |ρ|)2

.

Using that the sum
∑′

ρ∈Z(π,τ) 1/ρ is *-convergent,∑
ρ∈Z(π,τ)

1 + |Re(ρ)|
(1 + |ρ|)2

<∞,

and that 0, 1 /∈ Z(π, τ), we conclude using Bombieri and Lagarias’s
lemma [2, Lemma 1] and the fact that

λn(π, τ) =
∑′

ρ∈Z(π)

(
1−

(
ρ

ρ− τ

)n)

=
∑′

ρ∈Z(π)

(
1−

(
ρ/τ

ρ/τ − 1

)n)

=
∑′

ρ∈Z(π,τ)

(
1−

(
ρ

ρ− 1

)n)
is *-convergent for all n ≥ 1. The two assertions (a) and (b) hold. �
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For τ ≥ 1 and n ∈ N, consider

αn(π, τ) :=
1

(n− 1)!

dn

dsn
[sn−1 log ξ(s, π)]s=τ .

Let s0 ̸= 1 be a real number. Denote φ(s, π) = ξ(1/(s− 1), π) and
dn(s0, π) the power series coefficient of the logarithmic derivative of
φ(s, π) around s0.

φ′(s, π)

φ(s, π)
=

+∞∑
n=0

dn(s0, π)(s− s0)
n.

Note that, for τ ≥ 1, if 0 /∈ Z(π), then τ /∈ Z(π). Therefore, for all
n ∈ N, we have

αn(π, τ) =
1

(n−1)!

dn

dsn
[sn−1 log ξ(s, π)]s=τ

=
1

(n−1)!

[ n−1∑
k=0

(
k

n

)(
dk

dsk
sn−1

)(
dn−k

dsn−k
log ξ(s, π)

)]
s=τ

=
1

(n−1)!

[ n−1∑
k=0

(
k

n

)
(n−1)!

(n−1−k)!
sn−1−k

(
dn−k

dsn−k
log ξ(s, π)

)]
s=τ

.

Recall that, for s /∈ Z(π),

(4.1)
ξ′(s, π)

ξ(s, π)
= b(π) +

∑′

ρ∈Z(π)

[
1

s− ρ
+

1

ρ

]
,

with

b(π) = −
∑′

ρ∈Z(π)

1

ρ
.

Hence,
dn−1

dsn−1

[
ξ′(s, π)

ξ(s, π)

]
= −

∑′

ρ∈Z(π)

(n− 1)!

(ρ− s)n
.

Since τ ≥ 1 is not in Z(π), we obtain

αn(π, τ)=
1

(n−1)!

[ n−1∑
k=0

(
k

n

)
(n−1)!

(n−1−k)!
sn−1−k

(
dn−k

dsn−k
log ξ(s, π)

)]
s=τ
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=− 1

(n−1)!

[ n−1∑
k=0

(
k

n

)
(n−1)!

(n−1−k)!
sn−1−k

∑′

ρ∈Z(π)

(n−1−k)!
(ρ−s)n−k

]
s=τ

= −
n−1∑
k=0

(
k

n

)
τn−k−1

∑′

ρ∈Z(π)

1

(ρ−τ)n−k
.

Hence,

αn(π, τ) = −1

τ

∑′

ρ∈Z(π)

n−1∑
k=0

(
k

n

)(
τ

ρ− τ

)n−k

(4.2)

= −1

τ

∑′

ρ∈Z(π)

[ n∑
k=0

(
k

n

)(
τ

ρ− τ

)n−k

− 1

]

= −1

τ

∑′

ρ∈Z(π)

[(
1 +

τ

ρ− τ

)n

− 1

]

=
1

τ

∑′

ρ∈Z(π)

[
1−

(
ρ

ρ− τ

)n]
=

1

τ
λn(π, τ).

The same argument as used above yields3

(4.3) αn(π, τ) =
1

τn+1
dn−1(1− 1/τ, π).

Now, we are ready to state our first main theorem which extends
Freitas’s result [8, Theorem 1] to a general class of automorphic L-
functions.

Theorem 4.2. Let τ ≥ 1 be a real number. Then, we have

1− τ

2
≤ Re(ρ) ≤ τ

2
⇐⇒ Re(λn(π, τ)) ≥ 0 for all n ∈ N,

where ρ denotes the zeros of ξ(s, π).

The main remark here is that, when τ = 1, we recover the Li
coefficients for automorphic L-functions as defined by Lagarias [11].
Positivity of Re(λn(π, τ)) for other values of τ is equivalent to the non-
existence of zeros in the half-plane Re(s) > τ/2. In particular, when
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τ ≤ 1, we obtain a region that contains the critical line. In the latter
case, some of the coefficients Re(λn(π, τ)) must take negative values.
On the other hand, for τ ≥ 2, we are outside of the critical strip, and
hence, the Re(λn(π, τ)) must all be nonnegative.

For the proof of Theorem 4.2, we need the next lemma which is an
adaptation of Bombieri and Lagarias’s theorem [2, Theorem 1].

Lemma 4.3. Let τ > 0 be a real number and R a multi-set of complex
numbers such that τ /∈ R and∑

R

1 + |Re(ρ)|
(1 + |ρ|)2

<∞.

The following assertions are equivalent.

• (a) Re(ρ) ≤ τ/2 for all ρ ∈ R.
• (b)

∑
R Re[1− (ρ/(ρ− τ))n] ≥ 0 for all n ∈ N.

• (c) For all ϵ > 0, there exists a constant c(ϵ), such that∑
R

Re

[
1−

(
ρ

ρ− τ

)n]
≥ −c(ϵ)eϵn

for all n ≥ 1.

The proof is similar to that stated by Bombieri and Lagarias [2,
Theorem 1] with Rτ = {(ρ/τ)/ρ ∈ R}, where ρ/τ has multiplicity in
Rτ , equivalent to ρ in R.

Proof of Theorem 4.2. Since τ /∈ Z(π), by Lemma 4.1 (c), the sum∑
ρ∈Z(π)

1 + |Re(ρ)|
(1 + |ρ|)2

<∞.

Then, we apply Lemma 4.3 with R = Z(π). Therefore,

Re(ρ) ≤ τ

2
for all ρ ∈ Z(π)

⇐⇒
∑

ρ∈Z(π)

Re

[
1−

(
ρ

ρ− τ

)n]
≥ 0 for all n ∈ N
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⇐⇒ for all ϵ>0, there exists c(ϵ) such that
∑

ρ∈Z(π)

Re

[
1−

(
ρ

ρ−τ

)n]
≥ −c(ϵ)eϵn for all n ≥ 1.

Using the fact that

ρ ∈ Z(π) ⇐⇒ 1− ρ ∈ Z(π),

we conclude that Re(1 − ρ) ≤ τ/2 for all ρ ∈ Z(π). Then, 1 − τ/2 ≤
Re(ρ) for all ρ ∈ Z(π). Therefore, Theorem 4.2 follows. �

5. Arithmetical formula for λn(π, τ). In this section, we derive
an arithmetical formula for the coefficients λn(π, τ). This formula is
stated in the next theorem.

Theorem 5.1. Let π be an irreducible cuspidal automorphic represen-
tation of GL(N) over Q. Then, for all n ≥ 1, we have

λn(π, τ) = δ(π)

[
2 +

(−1)n+1

(τ − 1)n

]
+
nτ

2
logQ(π)− nτN

(
γ +

1

2
log π

)(5.1)

+
nτ

2

N∑
j=1

(
−2

τ + kj(π)
+

∞∑
l=1

τ + kj(π)

l(2l + τ + kj(π))

)

+
N∑
j=1

n∑
k=2

(
k

n

)
(−τ)k

∞∑
m=0

1

(τ + kj(π) + 2m)k

+
n∑

k=1

(
k

n

)
(−τ)k

(k − 1)!

∞∑
m=1

Λπ(m)(logm)k−1

nτ
,

where

δ(π) =

{
1 if π = πtriv,

0 otherwise.

Proof. From equation (4.2), we have

λn(π, τ) = ταn(π, τ)

(5.2)
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=
τ

(n− 1)!

[ n∑
k=0

(
k

n

)(
dn−k

dsn−k
sn−1

)(
dk

dsk
log ξ(s, π)

)]
s=τ

=
τ

(n− 1)!

n∑
k=1

(
k

n

)
(n− 1)!

(k − 1)!
τk−1

[
dk

dsk
log ξ(s, π)

]
s=τ

=
n∑

k=1

(
k

n

)
τk

(k − 1)!

[
dk

dsk
log ξ(s, π)

]
s=τ

.

Now, we write

ξ′

ξ
(s, π) =

1

2
logQ(π) +

N∑
j=1

Γ′
R

ΓR
(s+ kj(π))(5.3)

+
L′

L
(s, π)− e(0, π)

s
− e(1, π)

s− 1
.

Therefore,

λn(π, τ) =

n∑
k=1

(
k

n

)
τk

(k − 1)!

[
dk−1

dsk−1

(
L′

L
(s, π)− e(1, π)

s− 1

)]
s=τ

(5.4)

− e(0, π)
n∑

k=1

(
k

n

)
τk

(k − 1)!

dk−1

dsk−1

[
1

s

]
s=τ

+
1

2
logQ(π)

n∑
k=1

(
k

n

)
τk

(k − 1)!
δk,1

+
n∑

k=1

(
k

n

)
τk

(k − 1)!

N∑
j=1

[
dk−1

dsk−1

Γ′
R

ΓR
(s+ kj(π))

]
s=τ

,

where δk,1 is the Kronecker delta function (defined by δk,1 = 1 if k = 1,
and δk,1 = 0, otherwise). Hence, we obtain

λn(π, τ) = −e(0, π) + nτ

2
logQ(π)(5.5)

+
n∑

k=1

(
k

n

)
τkηk−1(π, τ)

+

n∑
k=1

(
k

n

)
τkϑk−1(π, τ),
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where

ηk(π, τ) =
1

k!

[
dk

dsk

(
L′

L
(s, π)− e(1, π)

s− 1

)]
s=τ

,

ϑ0(π, τ) = −N
2
log π +

1

2

N∑
j=1

ψ

(
τ + kj(π)

2

)
and

ϑk(π, τ) =
1

k!

N∑
j=1

(
1

2

)k+1

ψ(k)

(
τ + kj(π)

2

)
.

If τ > 1, we obtain

n∑
k=1

(
k

n

)
τkηk−1(π, τ) =

n∑
k=1

(
k

n

)
τk

(k − 1)!

[
dk−1

dsk−1

L′

L
(s, π)

]
s=τ

(5.6)

+ e(1, π)

n∑
k=1

(
k

n

)(
τ

1− τ

)k

= e(1, π)

[(
1 +

τ

1− τ

)n

− 1

]
+

n∑
k=1

(
k

n

)
τklk−1(π, τ)

= −e(1, π)
[
1 + (−1)n+1

(
1

τ − 1

)n]
+

n∑
k=1

(
k

n

)
τklk−1(π, τ),

with

lk(π, τ) =
1

k!

[
dk

dsk
L′

L
(s, π)

]
s=τ

.

Hence, from equations (5.5) and (5.6) and using the fact that e(0, π) =
e(1, π), we deduce

λn(π, τ) = −e(0, π)
[
2 + (−1)n+1

(
1

τ − 1

)n]
(5.7)

+
nτ

2
logQ(π)
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+
n∑

k=1

(
k

n

)
τklk−1(π, τ) +

n∑
k=1

(
k

n

)
τkϑk−1(π, τ).

By logarithmically differentiating the Euler product of L(s, π) in the
region Re(s) > 1, we obtain

L′

L
(s, π) =

∞∑
n=1

Λπ(n)

ns
,

in which, for n = pm a prime power,

Λπ(n) =
1

m

N∑
k=1

(αk,p(π))
m,

and Λπ(n) = 0 otherwise. We formally obtain

(5.8) lk(π, τ) =
(−1)k+1

k!

∞∑
m=1

Λπ(m)(logm)k

nτ
.

Now, recall the following formula of the digamma function ψ(z) =
Γ′(z)/Γ:

ψ(z) = −γ − 1

z
+

∞∑
l=1

z

l(l + z)
,

in which γ ≈ 0.5771 is the Euler constant. Then, for k ≥ 1, we obtain

ϑk(π, τ) =
1

k!

N∑
j=1

(
1

2

)k

ψ(k)

(
τ + kj(π)

2

)
(5.9)

=

N∑
j=1

(−1)k+1
∞∑

m=0

1

(τ + kj(π) + 2m)k+1

and

ϑ0(π, τ) = −N
2
log π +

1

2

N∑
j=1

ψ

(
τ + kj(π)

2

)
(5.10)

= −N
2
log π −Nγ −

N∑
j=1

1

τ + kj(π)
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+
N∑
j=1

∞∑
l=1

τ + kj(π)

l(2l + τ + kj(π))
.

Therefore, from (5.7), (5.8), (5.9) and (5.10), we deduce

λn(π, τ) = −e(0, π)
[
2 + (−1)n+1

(
1

τ − 1

)n]
(5.11)

+
nτ

2
logQ(π)− nτN

(
γ +

1

2
log π

)
+
nτ

2

N∑
j=1

(
−2

τ + kj(π)
+

∞∑
l=1

τ + kj(π)

l(2l + τ + kj(π))

)

+

N∑
j=1

n∑
k=2

(
k

n

)
(−τ)k

∞∑
m=0

1

(τ + kj(π) + 2m)k

+
n∑

k=1

(
k

n

)
(−τ)k

(k − 1)!

∞∑
m=1

Λπ(m)(logm)k−1

nτ
.

We note that

−e(0, π) = δ(π) =

{
1 if π = πtriv,

0 otherwise.

Then, Theorem 5.1 follows. �

6. Asymptotic formula for λn(π, τ). In this section, we apply the
saddle-point method in conjunction with the theory of the Nörlund-
Rice integrals to derive an asymptotic formula for the coefficients
λn(π, τ). This argument was used by the author [14] to derive an
asymptotic formula for the Li coefficients for L-functions in the Selberg
class.

Let Hn(m, k) be the sum defined by

Hn(m, k) =
n∑

l=2

(−1)l
(
n

l

)
ζ(l,m/k)

kl
,
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where ζ(s, q) is the Hurwitz zeta function given by

ζ(s, q) =

+∞∑
n=0

1

(n+ q)s
.

Using the saddle-point method in conjunction with the theory of the
Nörlund-Rice integrals (see [14, Proposition 4.3]), the sums Hn(m, k)
satisfy the estimate

(6.1) Hn(m, k) =

(
m

k
−1

2

)
−n
k

(
ψ

(
m

k

)
+log k+1−hn−1

)
+an(m, k),

where the an(m, k) are exponentially small:

an(m, k) =
1

k

(
2n

πk

)1/4

exp

(
−
√

4πn

k

)
cos

(√
4πn

k
− 5π

8
− 2πm

k

)
+O(n−1/4e−2

√
πn/k).

Here, hn = 1 + 1/2 + · · ·+ 1/n is a harmonic number, and ψ(x) is the
logarithmic derivative of the Gamma function.

Write the arithmetical formula of λn(π, τ) (equation (5.1)) as

λn(π, τ) = δ(π)

[
2 +

(−1)n+1

(τ − 1)n

]
(6.2)

+
nτ

2
logQ(π)− nτN

(
γ +

1

2
log π

)
+
nτ

2

N∑
j=1

(
−2

τ + kj(π)
+

∞∑
l=1

τ + kj(π)

l(2l + τ + kj(π))

)

+
N∑
j=1

Ij +
n∑

k=1

(
k

n

)
(τ)klk−1(π, τ),

where

Ij =

n∑
k=2

(
k

n

)
(−τ)k

∞∑
m=0

1

(τ + kj(π) + 2m)k

and

lk(π, τ) =
(−1)k+1

k!

∞∑
m=1

Λπ(m)(logm)k

nτ
.
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Note that

Ij =

n∑
k=2

(
k

n

)
(−1)k

∞∑
m=0

(
τ/2

((τ + kj(π))/2) +m

)k

,

which, with the above notation of Hn(m, k), is equal to

Ij = Hn

(
1 +

kj(π)

τ
,
2

τ

)
.

By applying the above estimate given by equation (6.1) with m = 1 +
(kj(π))/τ and k = 2/τ , we deduce

Ij =

(
τ

2
+
kj(π)

2
− 1

2

)
− n

τ

2

(
ψ

(
τ + kj(π)

2

)
+ log

(
2

τ

)
+ 1− hn

)(6.3)

+ an

(
1 +

kj(π)

τ
,
2

τ

)
.

If the an are exponentially small, then

an

(
1 +

kj(π)

τ
,
2

τ

)
= O(1)

and

Ij =

(
τ

2
+
kj(π)

2
− 1

2

)
− n

τ

2

(
ψ

(
τ + kj(π)

2

)
+ log

(
2

τ

)
+ 1− hn

)
+O(1).

Summing the last equation over j, we obtain

N∑
j=1

Ij =
N∑
j=1

(
τ

2
+
kj(π)

2
− 1

2

)(6.4)

− n
N∑
j=1

τ

2

[
ψ

(
τ + kj(π)

2

)
+ log

(
2

τ

)
+ 1− hn

]
+O(N).
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Using the expression

ψ(z) = −γ − 1

z
+

∞∑
l=1

z

l(l + z)

and the estimate

hn = log n− γ +
1

2n
+O

(
1

2n2

)
,

we obtain, from equations (6.2) and (6.4) that

λn(π, τ) =
Nτ

2
n log n

(6.5)

+

{
Nτ

2
(γ − 1− log π) +

τ

2
logQ(π) +N

τ

2
log

(
τ

2

)}
n

+O(N) + SL(π, τ),

where

SL(π, τ) :=
n∑

k=1

(
k

n

)
τklk−1(π, τ).

This concludes the proof of the following theorem.

Theorem 6.1. For any irreducible cuspidal (unitary) automorphic
representation π on GL(N), we have

λn(π, τ) =
Nτ

2
n log n

(6.6)

+

{
Nτ

2

(
γ − 1− log π

)
+
τ

2
logQ(π) +N

τ

2
log

(
τ

2

)}
n

+O(N) + SL(π, τ),

where

SL(π, τ) :=
n∑

k=1

(
k

n

)
τklk−1(π, τ),

γ is the Euler constant and the implied constant in the O-notation is
absolute.
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7. An interpolation function of the Archimedean contribu-
tion. The τ -Li coefficients (5.7) may be written as

(7.1) λn(π, τ) = S∞(n, π, τ) + SNA(n, π, τ).

where

S∞(n, π, τ) = δ(π)

[
2 + (−1)n+1

(
1

τ − 1

)n]
+
nτ

2
logQ(π)

+ nτ

[
− N

2
log π +

1

2

N∑
j=1

ψ

(
τ + kj(π)

2

)]

+
N∑
j=1

n∑
k=2

(
k

n

)
(−τ)k

∞∑
m=0

1

(τ + kj(π) + 2m)k

represents the Archimedean contribution, and

SNA(n, π, τ) =

n∑
k=1

(
k

n

)
τklk−1(π, τ)

is the finite (non-Archimedean) term. The Archimedean contribution
to the nth τ -Li coefficients may be explicitly given as in Theorem 5.1.

The same argument as used by Odzăk and Smajlovic̀ in [17, The-
orem 4.1, Remark 3.2] shows that there exists an entire function of
order one and finite exponential type that interpolates the Archime-
dian contribution and the finite contribution to the τ -Li coefficients
λn(π, τ) attached to the automorphic L-functions L(s, π) at positive
integers. Furthermore, the interpolation function may be obtained as
limm→∞ φ∞,m(z, τ, Fπ), with the same notation as in [17], where

φ∞,m(z, τ, Fπ) =
∑
j∈Aπ

eiπz
(
− kj(π)

τ + kj(π)

)z

+
∑

j∈Bπ|Aπ

(
kj(π)

τ + kj(π)

)z

(7.2)

+ δ(π)

[
2 +

(−1)n+1

(τ − 1)n

]
+ z

[
τ

2
logQ(π)− Nτ

2
log π

]
+ z

τ

2

N∑
j=1

Γ′

Γ

(
τ + kj(π)

2
+ 1

)
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+
N∑
j=1

m−1∑
k=1

[(
1− 2

τ + kj(π) + 2k

)z

− 1 + z
2

τ + kj(π) + 2k

]
+

N∑
j=1

∞∑
l=2

(
z

l

)
(−τ)kζ(l, τ + kj(π) + 2m),

with

Aπ = {j ∈ {1, . . . , N} : Im(kj(π)) = 0 and Re(kj(π)) < 0}

and
Bπ = {j ∈ {1, . . . , N} : kj(π)) ̸= 0}.

Letting m 7→ ∞, we obtain

φ∞(z, τ, Fπ) =
∑
j∈Aπ

eiπz
(
− kj(π)

τ + kj(π)

)z

(7.3)

+
∑

j∈Bπ|Aπ

(
kj(π)

τ + kj(π)

)z

+ δ(π)

[
2 +

(−1)n+1

(τ − 1)n

]

+ z

[
τ

2
logQ(π)− Nτ

2
log π +

τ

2

N∑
j=1

Γ′

Γ

(
τ+kj(π)

2
+1

)]

+

N∑
j=1

m−1∑
k=1

[(
1− 2

τ+kj(π)+2k

)z

− 1+z
2

τ+kj(π)+2k

]
.

Since, for a fixed z,

lim
m 7−→∞

N∑
j=1

∞∑
l=2

(
z

l

)
(−τ)kζ(l, τ + kj(π) + 2m) = 0,

the interpolating function Fπ,∞(z, τ) of the Archimedean contribution,
using the same notation as in [11] or in [17, Remark 3.2], is given by

Fπ,∞(z, τ) = C3(π) + C4(π)z

(7.4)
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−
N∑
j=1

m−1∑
k=1

[(
1− 2

τ+kj(π)+2k

)z

− 1+z
2

τ+kj(π)+2k

]
,

for some constants C3(π) and C4(π). (In the notation of Lagarias,
Fπ,∞(z, 1) = Fπ,∞(z) corresponds to our −φ∞(z, 1, Fπ) = −φ∞(z, Fπ)
in the notation of Odzăk and Smajlovic̀.) Then, for |z| large and
Re(kj(π)) > −1/2, we have∣∣∣∣ kj(π)

τ + kj(π)

∣∣∣∣ < 1.

Therefore,

φ∞(z, τ, Fπ) = C1(π) + C2(π)z + o(1)

(7.5)

+

N∑
j=1

m−1∑
k=1

[(
1− 2

τ+kj(π)+2k

)z

− 1+z
2

τ+kj(π)+2k

]
,

with

C1(π) = δ(π)

[
2 +

(−1)n+1

(τ − 1)n

]
and

C2(π) =
τ

2

[
logQ(π)−N log π +

N∑
j=1

Γ′

Γ

(
τ + kj(π)

2
+ 1

)]
.

Since ∣∣∣∣1− 2

τ + kj(π) + 2k

∣∣∣∣ < 1 for all k ≥ 1,

then the function φ∞(z, τ, Fπ) is entire and of exponential type.

8. Concluding remarks. The coefficients αn(π, τ) satisfy an infi-
nite system of the linear differential equation

(8.1)
τ

n
α′
n(π, τ) +

(n+ 1)

n
αn(π, τ) = αn+1(π, τ), n ≥ 1.
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From the arithmetical formula, 1/τ is the homogeneous solution of this
set of equations. We have

αn+1(π, 0) = αn(π, 0)− σ1

and, by the functional equation of ξ(s, π),

αn(π, 1) = −λ1(π).

Then, αn(π, 0) = −nλ1(π) < 0. Furthermore, from equation (8.1), we
have

α′
n(π, 0) = nλn+1(π)− (n+ 1)λn(π).

Taking the (j − 1) derivative of (8.1), we obtain

τ

n
α(j)
n (π, τ) +

(n+ j)

n
α(j−1)
n (π, τ) = α

(j−1)
n+1 (π, τ), n ≥ 1.

This implies that all derivatives of αn(π, τ) can be calculated (recur-
sively) at τ = 1 only in terms of the Li coefficients λn(π). Therefore,
we have

α′′
n(π, 1) = (n+ 1)λn+2(π)− (n+ 1)(n+ 2)λn+1(π)

− (n+ 1)(n+ 2)λn(π).

Hence, since the order of the Li coefficients is known, then all derivatives
of αF,τ (n) at τ = 1 are known. Recall that λn(π) = O(n log n).
Then, α′

n(π, 1) is positive and linearly increasing with n and α′
n(π, 1) ∼

(n+ 1) > 0.

An interesting question on the Li criterion for a various class of L-
functions is whether the positivity of a few Li coefficients would be
enough to give us some information on the L-functions. The author,
along with Omar and Ouni, gave a partial answer to the question.
Indeed, it was proven in [23, 24] that there is a relation between the
positivity of the first Li coefficients and the partial Li criterion PRH(T),
i.e., the Riemann hypothesis holds up to a certain T > 0, and showed
that, if PRH(T) is true, then the Li coefficients of some L-functions
are positive up to T 2. Brown [3] proved that the positivity of the real
parts of the first N Li coefficients implies the existence of a zero-free
region of the corresponding L-function. Furthermore, he showed that
the positivity of the real part of the second Li coefficients yields the
non existence of a Siegel zero (this result was generalized to the Selberg
class with further conditions by the author in a work in progress and by
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a probabilistic argument in a special case of the Dirichlet L-functions
in [15]).

Future research includes:

• extending the work of Brown on the Siegel zero for the τ > 1
case as well as to consider the idea of the author [15] for giving
a probabilistic interpretation for Li coefficients corresponding
to automorphic L-functions or to other classes of L-functions
for the τ > 1 case;

• studying the distribution of the τ -Li coefficients λn(π, τ).

The author in [15], or with Omar and Ouni in [23, 24], conjectured
that the Li coefficients for some L-functions are increasing. A natural
question, then, is to see whether it remains true for the coefficients
λn(π, τ). Furthermore, it might be interesting to numerically analyze
the situation where τ is close to one but less than one and see how the
negative part of the sequence Re(λn(π, τ)) behaves as τ approaches
one.

These problems will be considered in a sequel to this article.

Acknowledgments. The author would like to express his sincere
gratitude to professor Sami Omar for many helpful discussions and
valuable suggestions that increased the clarity of the presentation.

ENDNOTES

1. The symbol ′ indicates that the (conditionally convergent) sum is
to be interpreted as limT→

∑
ρ, |ℑ(ρ)|<T ; we term this *-convergence.

2. The incomplete Li coefficient at height T is defined by

λn(T, π) =
∑

ρ∈Z(π);|Im(ρ)|<T

1−
(
1− 1

ρ

)n

.

3. To prove (4.3), we begin with equation (4.1). If 1/(1− s) /∈ Z(π)
and s ̸= 1, we write

φ′

φ
(s, π) =

1

ds
log

(
ξ

(
1

1− s
, π

))
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=
b(π)

(1− s)2
+

∑′

Z(π)

[
1

1− s

1

1− ρ+ sρ
+

1

ρ(1− s)2

]
.

Let s0 = 1 − 1/τ ̸= 1. Since 1/(1− s0) = τ /∈ Z(π), then s0 is not
a zero of φ(s, π). Using Freitas’s argument [8, Lemma 3.1], for any
ρ ∈ Z(π), we have

1

1− ρ+ sρ
=

(
−τ
ρ− τ

)(
1

1− (ρτ(s− s0)/(ρ− τ))

)
and

1

1− s
= τ

(
1

1− τ(s− s0)

)
.

For s sufficiently close to s0, we use geometric series and the fact that
1/2

∑
n≥0 2

−n = 1. We find, after simple computation,

φ′

φ
(s, π) =

∞∑
n=0

τn+1λn+1(π, τ)(s− s0)
n =

∞∑
n=0

dn(s0, π)(s− s0)
n.

Therefore, formula (4.3) easily follows from the last equation and
equation (4.2).
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