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CONSTRUCTING MONOMIAL IDEALS WITH
A GIVEN MINIMAL RESOLUTION

SONJA MAPES AND LINDSAY C. PIECHNIK

ABSTRACT. This paper gives a description of various
recent results, which construct monomial ideals with a given
minimal free resolution. We show that these results are all
instances of coordinatizing a finite atomic lattice, as found
in [11]. Subsequently, we explain how, in some of these cases
[5, 6] where questions still remain, this point of view can
be applied. We also prove an equivalence for trees between
the notion of maximal defined in [6] and the notion of being
maximal in a Betti stratum.

1. Introduction. In recent years, there have been a number of
papers, see, for example, [5, 6, 9, 10, 13, 14], where the authors
focused on constructing monomial ideals with a specified minimal
resolution, typically described as being supported on a specific CW-
complex via the construction in [2]. Many of these constructions
may be interpreted as “coordinatizing” a finite atomic lattice via the
construction found in [11]. The main purpose of this paper is to
bring attention to this fact through three particular cases, as found
in [5, 6, 14].

In particular, a number of unanswered questions still remain which
are motivated by the latter two papers. We believe consideration of
the structure of the corresponding lcm lattices will help answer some of
these questions. Specifically, this is due to the fact that the lcm lattice
of a monomial ideal encodes important data which is obscured only
by considering the cell complex that supports the resolution. More
generally, we believe that, for many questions concerning monomial
ideals, it is important to consider this additional data. For example,
in the recent work [7], the authors give a characterization of which
finite atomic lattices can be the lcm lattices of monomial ideals with
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pure resolutions. For their work, it is significant that they work in the
context of the lcm lattice rather than a cell complex that supports the
resolution.

This paper is structured as follows. First, in Section 2 we present the
necessary background on finite atomic lattices and coordinatizations.
Proposition 3.2 in Section 3 completes the characterization of coordi-
natizations found in [11, Theorem 3.2]. It should be noted that, at
present, equivalent results have been independently proved [9]. How-
ever, we include our proof here for completeness since the language is
consistent with that of [11].

Section 4 gives a description of the “nearly Scarf” construction
of [14] and the “minimal squarefree” construction of [15] as coordi-
natizations. This section then shows that the construction found in [5]
is also an example of a coordinatization. Further, we offer context for
how the ideals in [5] fit in with the nearly Scarf ideals and the mini-
mal squarefree ideals, and how this can be useful for considering the
questions posed in [5].

Finally, in Section 5, we give a reformulation of the ideas in [6] in
terms of the underlying lcm lattice of these ideals. We also show that,
for trees, there is an explicit description of the finite atomic lattice and
coordinatization that yields the ideals constructed in [6]. Using this
description, we are able to show that, for trees, the maximal ideals
constructed in [6] are also maximal in their Betti stratum. Further,
we discuss how these ideals could be useful for understanding minimal
resolutions of monomial ideals in general.

2. Preliminaries.

2.1. Lattices. A lattice is a set (P,<) with an order relation <, which
is transitive and antisymmetric, satisfying the following properties:

(1) P has a maximum element denoted by 1̂;

(2) P has a minimum element denoted by 0̂;

(3) Every pair of elements a and b in P has a join a∨ b, which is the
least upper bound of the two elements;

(4) Every pair of elements a and b in P has a meet a ∧ b, which is
the greatest lower bound of the two elements.
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A related object is a finite meet-semilattice, a finite poset for which
every pair of elements has a meet. Here, we will most often work with
a meet-semilattice P that is equal to a set L−{0̂}, where L is a lattice.

We define an atom of a lattice P to be an element x ∈ P such that x
covers 0̂, i.e., x > 0̂, and there is no element a such that x > a > 0̂.
We will denote the set of atoms as atoms(P ).

Definition 2.1. If P is a lattice and every element in P − {0̂} is the
join of atoms, then P is an atomic lattice. Further, if P is finite, then
it is a finite atomic lattice.

Given a lattice P , elements x ∈ P are meet-irreducible if x ̸= a ∧ b
for any a > x, b > x. The set of meet-irreducible elements in P is
denoted mi(P ). Given an element x ∈ P , the order ideal of x is the
set ⌊x⌋ = {a ∈ P | a 6 x}. Similarly, the filter of x is ⌈x⌉ = {a ∈ P |
x 6 a}. We can also define intervals (open and closed, respectively)
between two elements a and b of P as follows:

(a, b) = {c ∈ P | a < c < b}

and

[a, b] = {c ∈ P | a ≤ c ≤ b}.

There are two different simplicial complexes that can be associated
with a finite atomic meet-semilattice P (or any poset for that matter).
One is the order complex ∆(P ), which is the complex whose vertices
correspond to elements of P and facets correspond to maximal chains
of P . For finite atomic lattices, such as those discussed here, we also
have (a specific instance of) the cross cut complex, denoted Γ(P ). In
Γ(P ), vertices correspond to atoms of P , and simplices correspond to
subsets of atoms which have a join or meet in P . It is known that ∆(P )
is homotopy equivalent to Γ(P ) [3].

2.2. Coordinatizations. One of the main results of [15, Theo-
rem 5.1] is to show that every finite atomic lattice is in fact the lcm
lattice of a monomial ideal. Phan’s result is constructive in that, given
a finite atomic lattice, he constructs a monomial ideal with that lattice.
This result was generalized by a modified construction [11], which also
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showed that, with the modified construction, all monomial ideals (not
merely one instance of a monomial ideal with a given lattice) can be
obtained. For convenience, we include here a brief description of this
work.

Define a labeling of a finite atomic lattice P as any assignment of
non-trivial monomials M = {mp1 , . . . ,mpt} to some set of elements
pi ∈ P . It will be convenient to think of unlabeled elements as having
the label 1. Define the monomial ideal MM as the ideal generated by
monomials

(2.1) x(a) =
∏

p∈⌈a⌉c
mp

for each a ∈ atoms(P ), where ⌈a⌉c means taking the complement of ⌈a⌉
in P . We say that the labeling M is a coordinatization if the lcm lattice
of MM is isomorphic to P .

The next theorem, [11, Theorem 3.2], gives a criteria for when a
labeling is a coordinatization.

Theorem 2.2. Any labeling M of elements in a finite atomic lattice P
by monomials satisfying the following two conditions will yield a coor-
dinatization of P .

(C1) If p ∈ mi(P ), then mp ̸= 1, i.e., all meet-irreducibles are
labeled.

(C2) If gcd(mp,mq) ̸= 1 for some p, q ∈ P , then p and q must be
comparable, i.e., each variable only appears in monomials along one
chain in P .

Note that Theorem 2.2 is not an “if and only if” statement; Section 3
addresses this issue. A main ingredient in Section 3 is the following
discussion of deficit labelings from [11].

In order to complete our introduction to coordinatizations, we show
that every monomial ideal can be obtained via a specific coordinatiza-
tion of its lcm lattice. Let M be a monomial ideal with n generators,
and let LM be its lcm lattice. For notational purposes, let LM be the
set consisting of elements denoted lp, which represent the monomials
occurring in LM . Now, define the abstract finite atomic lattice P where
the elements in P are formal symbols p satisfying the relations p < p′
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if and only if lp < lp′ in LM , in other words, P is the abstract finite
atomic lattice isomorphic to LM obtained simply by omitting the data
of the monomials in LM . Define a labeling of P by letting D be the set
consisting of monomials mp for each p ∈ P , where

(2.2) mp =
gcd{lt | t > p}

lp
.

By convention, gcd{lt | t > p} for p = 1̂ is defined to be l1̂. Note that
mp is a monomial since, clearly, lp divides lt for all t > p.

This labeling may be used to prove that every monomial ideal can
be realized as a coordinatization of its lcm lattice, as shown in the next
proposition [11, Proposition 3.6].

Proposition 2.3. Given M , a monomial ideal with lcm lattice PM ,
if P is the abstract finite atomic lattice such that P and PM are
isomorphic as lattices, then the labeling D of P as defined by (2.2)
is a coordinatization, and the resulting monomial ideal MP,D = M .

Example 2.4. In Figure 1, we show a coordinatization of a finite
atomic lattice together with its labeling. The labeling shown is in fact
a coordinatization. It produces the monomial ideal M = (bc2d, acd,
a2d, a2bc2), where the monomials are ordered according to the atoms
in Figure 1. In this case, computing D as defined by (2.2), returns the
original labeling.

...

a

..

c

.

d

.

a

.

bc

.

Figure 1. Lattice for Example 2.4.
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3. Characterizing coordinatizations. A partial characterization
of how to coordinatize a finite atomic lattice is given in [11, Theo-
rem 3.2]. Further, [11] explains, given a monomial ideal M , how the
coordinatization of LM which produces M may be found. Here, we aim
to use this process to characterize when a labeling is a coordinatiza-
tion. With this in mind, we introduce a construction similar to D, for a
labeling M and a finite atomic lattice P . This object, which, as will be
shown, agrees with D in the case where M is a coordinatization of P ,
is denoted DM. Let P be a finite atomic lattice with n atoms and M
any labeling of the lattice P . As in subsection 2.2, MM will be the
monomial ideal generated by the monomials x(ai), described in (2.1).

The construction of DM is similar to D. However, rather than using
the lcm lattice of MM, the original lattice of P itself is used. Here,

(3.1) lai = x(ai)

for each atom ai ∈ P , and

(3.2) lp = lcm{lt | p > t}

for each element p ∈ P . It is worth emphasizing that each of the
x(ai) is used, appearing as lai for an atom of P , not merely a minimal
generating set for MM. The labeling DM is then defined as the set
of monomials mp described in equation (2.2), using the monomials lp
defined in (3.1) and (3.2). This means DM is a labeling of P (remember
that P may not be the lcm lattice of MM).

Example 3.1. In Figure 2, we show a poset P and the vertices which
are labeled using the variable x in a labeling M. This example M
violates condition (C2), since the variable x appears at non-comparable
positions. The symbol X indicates which elements of P are labeled
with x in DM. Note that one of the x labels “moves” to the minimal
element in P . This is due to the fact that there is at least one atom
of P that is not less than any of the poset elements labeled with x in
the original labeling M. As a result, x(ai) will have a factor of x for
each atom ai.

We also note that, if this partial labeling M is completed such
that the other variables satisfy (C2) and all the meet irreducibles are
nontrivially labeled, thus satisfying (C1), the resulting labeling will be
a coordinatization although it does not satisfy (C2).
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..X.......

x

..

x,X

...

x,X

...

Figure 2. The partial labeling described in Example 3.1, showing one
variable from M and the same variable in DM.

The next proposition asserts that DM determines whether the orig-
inal labeling M is in fact a coordinatization of P . An equivalent result
appears independently in [9, Theorem 3.4] using different terminology.
We include our proof here as it uses a continuation of the language and
terminology of [11, Theorem 3.2]. In the proof, we will use degx m to
denote the degree of a variable x in a given monomial m.

Proposition 3.2. M is a coordinatization of P if and only if DM
satisfies (C1) and (C2). In particular, this means MM has an lcm
lattice isomorphic to P .

Proof. The forward direction follows from [11, Proposition 3.6]
since, if M is a coordinatization of P , by definition, DM = D (i.e.,
P = PMM).

For the reverse direction, we assume that DM satisfies (C1) and
(C2), meaning that, by Theorem 2.2, DM is a coordinatization. In
particular, this tells us that P is the lcm lattice of the monomial ideal
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MD generated by the labeling DM. If we can show that the monomial
ideal MD = MM, then the lcm lattice of MM will also be P , making M
a coordinatization. It is enough to show that the monomial generators
derived from M agree with those obtained from DM, specifically, that
the exponents on each variable agree.

For clarity in the proof we emphasize that, in what follows, the
monomials lp will always be least common multiples of the generators
of MM, and the monomials mp will always be the labelings found in
MD.

Let x be a variable appearing in some generator of MM, and let r be
the highest power of x that divides any generator. There is a subset of
atoms in P whose corresponding generators in MM have xr as a factor;
call this set max(x). Define the set A to be the set of elements in P ≥
the elements in max(x), and define the set B to be the complement
of A in P .

For each element p in A, degx lp must be r; and, for each element p
in B, degx lp must be strictly less than r. In order to ensure that
degx x(ai) is r for each ai in max(x), where x(ai) is a generator of MD,
it is enough to show that ∑

p∈B

degx mp

is r.

Note that A must contain the maximal element 1̂ in P , as it is the
least common multiple of all generators. Also, the minimal element 0̂,
whose least common multiple is defined to be 1, must be in B.

We know that 1̂ is in A and degx lp for all p in A. Thus, xr divides
gcd{lt | t > b}, from equation (2.2), for every element b which is the
maximal element of a chain in B. If∑

p∈B−{0̂}

degx mp = k < r,

then xr−k will be a factor of m0̂. In order to see this, consider

equation (2.2), which shows that m0̂ = gcd{lt | t > 0̂}. This means
that ∑

p∈B

degx mp = r,



CONSTRUCTING MONOMIAL IDEALS 1971

as required. Therefore, degx x(ai) is r for each ai in max(x), where
x(ai) is the corresponding generator of MD.

It remains to show that exponents on x agree for generators of
MD corresponding to atoms in B. For this purpose, we consider the
subposet B of P , which is itself a poset, and iteratively apply our
previous procedure. Let s < r be the highest power of x derived from
a generator of MM corresponding to an atom in B. The elements in B
greater than the set of atoms for which xs divides x(ai) in MM will be
As, and the set of elements in B −As will be Bs.

The monomial lp for each p in As has xs as a factor. This means
that, if As has a unique maximal element, it will be labeled with xr−s

in DM using equation (2.2), and no other element p in As can have x
as a factor of the monomial mp in DM.

As in the previous case, there will be s copies of x remaining to label
elements in Bs in the construction of DM. Again, since 0̂ is in Bs, the∑

p∈Bs

degx mp

will be s. Therefore, s is the degx x(ai) for ai an atom in As, where
the monomial x(ai) is a generator for MD.

This process may be repeated for the next highest power of x
appearing in a generator of MM derived from Bs.

If, however, As does not contain a unique maximal element, equa-
tion (2.2) shows that there will be at least two non-comparable elements
in As that are labeled with xr−s in DM. This yields that DM contains
copies of x at non-comparable elements, violating (C2), which we are
assuming to be true.

Applying this procedure for each variable appearing in the generators
of MM shows that MD and MM have the same generators, proving M
a coordinatization of P . �

Example 3.3. For clarity, we illustrate the sets As for our Example 3.1
in Figure 3. Since the greatest exponent of x among the generators
x(ai) for the labeling M is 3, we use A3 to denote the set A from the
proof, distinguishing it from the subsequent sets A2 and A1. In this
example, B = A2 ∪A1 ∪ {0̂}, B2 = A1 ∪ {0̂} and B1 = {0̂}.
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Figure 3. The sets As for variable x, as described in Example 3.3.

4. Nearly Scarf ideals and minimal monomial ideals. Coordi-
natizations of lattices have indirectly appeared in several other places
as instances of associating monomial ideals to cell complexes which
then support a minimal free resolution. One important example of co-
ordinatizations are the “nearly Scarf” ideals introduced by Peeva and
Velasco [14, 17]. The nearly Scarf construction is as follows. Given a
simplical complex ∆, assign to each face σ of ∆ the variable xσ. For a
fixed vertex v of ∆, let A∆(v) be the subcomplex of ∆ contacting all
the faces of ∆ which do not contain the vertex v. The monomial ideal
M∆ is generated by the monomials

mv =
∏

σ∈A∆(v)

xσ

for each vertex v of ∆.

This construction may be seen as a coordinatization of the (aug-
mented) face poset of the simplicial complex ∆ (note that the face
poset of a simplicial complex is a meet semi-lattice, and thus, with a
maximal element becomes a finite atomic lattice). Since labeling ev-
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ery face σ with a variable xσ corresponds to labeling every element of
the face poset of the simplicial complex with a different variable, the
formula for mv is identical to equation (2.1). Clearly, this satisfies the
conditions of Proposition 2.2, since all faces are labeled with distinct
variables.

Another important example of coordinatizations are Phan’s “mini-
mal monomial ideals” [15]. In some sense, these are the opposite of
nearly Scarf ideals, as they use the smallest number of variables possi-
ble. The construction for minimal squarefree ideals is as follows. Given
a finite atomic lattice P , let mi(P ) denote the set of meet-irreducible

elements in P − {0̂, 1̂}. Then, label each element in mi(P ) with a dis-
tinct variable. This labeling clearly satisfies conditions (C1) and (C2);
thus, it is a coordinatization of P .

4.1. Resolutions supported on simplicial trees. In [5], Faridi
addressed Scarf ideals corresponding to acyclic simplicial complexes,
in particular, simplicial trees, offering an alternative Scarf ideal in
fewer variables than those constructed by Peeva and Velasco. Given a
simplicial complex ∆, a variable xσ is still assigned to each face σ, but
only variables for certain faces appear in the ideal. In [5], the monomial
generators for each vertex v are defined as:
(4.1)

m′
v =

√√√√( ∏
{G∈B∆(v)}

xG−{v}

)( ∏
{F∈A∆(v)}

xF

( ∏
{|σ|=|F |−1}

xσ

))
.

Here, B∆(v) and A∆(v) are the facets of ∆ that do and do not
contain v, respectively, and the square root indicates that m′

v is the
square-free monomial containing all variables in the described product.

The first product indicates that, for each facet G containing v, the
variable for the facet of G not containing v is to be included. The
second product indicates that, for each facet F not containing v, both
the variable for that face and all of the facets of F are to be included.
It was established in [5, Proposition 4.3] that, when ∆ is acyclic (a
simplicial tree), the ideal generated by the monomialsm′

v has a minimal
free resolution supported on ∆.

In order to see that this construction gives a coordinatization, we
must check that the meet-irreducibles are still labeled (since each face
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obtains its own variable, we do not need to check condition (C2))
and that the products obtained agree with the equations given in
equation (2.1) for the given labeling.

In the B∆(v) term, since G will always be a facet and we are taking
products of variables corresponding to xG−{v}, as we let v vary we use
the labels on all of the codimension 1 faces of each facet G. Moreover,
since every vertex is contained in a facet, we are using the labels on
every codimension 1 face of each of the facets of ∆.

In the A∆(v) term, we use the label on all of the facets F which do
not contain v and then all of the codimension 1 faces of that facet F .

As we let v range over all vertices of ∆, we see that, if every facet
contains every vertex v, i.e., if G is in B∆(v) for all v, ∆ = G and ∆
is a simplex. Otherwise, each facet G of ∆ will be in B∆(v) for some v
and then in A∆(v

′) for some v′. Thus, if ∆ is not a simplex, we must
use the label on every facet of ∆. If ∆ is a simplex, the only facet
corresponds to the maximal element of the face poset, and its labeling
is irrelevant for the coordinatization since the element is greater than
every atom (which is consistent with the fact that it will not appear as
a monomial in equation (4.1)).

Therefore, we can describe the labeling of the (augmented) face
poset P∆ of ∆ as labeling all of the elements corresponding to facets
of ∆ (unless ∆ is a simplex) and all of the elements corresponding to
codimension 1 faces of those facets. We call this labeling F∆.

Lemma 4.1. The labeling F∆ of P∆is a coordinatization.

Proof. Note that each element, or equivalently, each face in ∆, is
labeled with a distinct variable. Therefore, in F∆, condition (C1) will
automatically be satisfied. It remains to show that F∆ non trivially
labels all of the meet irreducible elements of P∆.

If ∆ is a simplex, F∆ labels all coatoms of the face poset, which
coincide with the meet irreducibles.

If ∆ is not a simplex, each facet F of ∆ is a simplex. Therefore, the
interval of P below F is a Boolean lattice. The meet irreducibles of a
Boolean lattice are its coatoms, which, in this sublattice, correspond to
codimension 1 faces of F . For each facet F , there is at least one vertex v
in ∆ not contained in F . For each vertex v, the codimension 1 faces
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of facets not containing v are labeled; thus, the codimension 1 faces of
every facet are labeled. The only other possible meet irreducibles of
the lattice are elements corresponding to the facets themselves. Again,
since, for each facet F , there is at least one vertex v of ∆ such that F
does not contain v, and, for each vertex v, the facets not containing v
are labeled, all facets are labeled. Therefore, all meet irreducibles are
labeled. �

Lemma 4.2. The monomial ideal created by the labeling F∆ equals the
ideal obtained using equation (4.1).

Proof. Since both the ideal defined by F∆ and the ideal defined by
equation (4.1) are squarefree, it suffices to show that the variable x
divides m′

v if and only if x divides x(av), where av is the atom in P∆

corresponding to vertex v in ∆.

Unpacking equation (4.1), we see that, if x divides m′
v, then x is

the variable associated to either a facet of ∆ not containing v or a
codimension 1 face of any facet of ∆ which does not contain v. These
simplices are precisely the elements P∆ which are not greater than av
and are labeled via F∆. Thus, by the definition of x(av), x divides
x(av). This equality of sets also shows that, if x divides x(av), then x
will divide m′

v. �

In [5], Faridi notes that her construction yields ideals using fewer
variables than in the nearly Scarf construction. It should be noted that
her ideals are not in general the “smallest possible.” Phan’s minimal
monomial ideals produce the ideals using the fewest variables [15].
She also considers some “in-between” ideals, those where she adds
back some of the variables found in the nearly Scarf ideal to some
of the generators found using (4.1). The reason she finds these “in-
between” ideals have different minimal resolutions is that, adding
back variables to some, but not all, generators will typically cause
the lcm lattice to change. In particular, we suggest that it could be
interesting to characterize which “in-between” ideals have the same
minimal resolution and study the relationship on the corresponding
lcm-lattices. Understanding this type of behavior from either the
cellular resolution or lcm-lattice perspective may shed light on topics
related to generic deformation of monomial ideals, as described in
[1, 12].
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We believe the perspective presented here, using lcm lattices and
coordinatizations, can provide insights for the questions posed towards
the end of [5] concerning localization, removal of facets and other
operations that preserve forests.

5. Maximal ideals with resolutions supported on trees.
In [6], Fløystad defines the category of monomial ideals M in a poly-
nomial ring S where the quotients S/M are Cohen-Macaulay, and he
defines maximal elements in this category. He then gives constructions
which associate maximal elements in this category to certain regular
cell complexes (trees, and some polytopes), when minimal resolutions
are supported on the cell complexes. As in [15], the focus is on con-
structing monomial ideals with a specific cellular resolution. We will
discuss the relationship between the two works in subsection 5.1, but
first we provide a summary of the main points from [6] that will be
used.

In [6], the set CM(n, c) is defined as the set of ordered sets of n
monomials generating a monomial ideal M such that the quotient ring
is Cohen-Macaulay of codimension c. This is a category but the added
structure is not necessary for our work here. The set CM∗(n, c) is the
subset (subcategory) of CM(n, c) consisting of monomial ideals which
are squarefree and for which the sets

Vt = {i | xt divides mi} ⊆ [n]

are distinct.

In [6], Fløystad initially defines what it means for a monomial ideal
to be maximal using the maps in the category CM(n, c). However,
the maps in this category are heavily dependent upon the choice
of coordinatization for each monomial ideal. Thus, for our work,
his characterization identifying objects in CM(n, c) with families F
consisting of subsets of [n] is more useful. These sets F correspond to
the set of all sets Vt described above. In [6], he also gives a description
of what properties a family of sets F must have in order to correspond
to an element in CM∗(n, c).

The following are presented as [6, Propositions 1.7, 1.10]. Since
they are equivalence statements, we state them here as definitions to
simplify notation.
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Definition 5.1. A family of subsets of [n], denoted F , as described
above, is reduced if it consists of elements which are not the disjoint
union of other elements in F . Such a family F , which corresponds to
an element in CM∗(n, c), is maximal if it is reduced and is maximal
among reduced families corresponding to the elements in CM∗(n, c) for
the refinement order. The refinement order states that, for two families
of subsets, F > G if and only if F consists of refinements of elements
of G together with additional subsets of [n].

In general, characterizing families F which are also in CM∗(n, c)
seems to be a nontrivial task. Fløystad restricts to families whose
minimal resolution is supported on a specific regular CW-complex.
These sets are defined as follows.

Definition 5.2. Given a regular d-dimensional cell complexX, CM∗(X)
is the subset of CM∗(n, c) whose minimal resolution is supported on X.

A family F is an object in CM∗(X) if the following conditions hold.

(1) No d of the subsets in F cover [n].

(2) If W is a union of subsets F , the restriction of X to the
complement of W is acyclic.

(3) For every pair F  G of faces of X, there is a set S ∈ F such
that S ∩ F is empty, but S ∩G is not empty.

Definition 5.2 describes the method of “labeling” a regular cell
complex X so that we can construct an appropriate monomial ideal
whose resolution is supported on X. In particular, condition (1)
shows that the corresponding ideal has codimension at least d + 1,
condition (2) guarantees that X supports a cellular resolution and
condition (3) ensures this resolution is minimal.

The next lemma, [6, Lemma 1.13], gives a necessary condition for
when a family F satisfying Definition 5.1 is maximal.

Lemma 5.3. If a family of subsets F of [n] corresponds to a maximal
object in CM∗(X), then, for every S ∈ F , the restriction of X to S is
connected.

The families F , used to describe ideals whose resolutions are sup-
ported on cell complexes [6], can be viewed as subsets of the lcm lat-
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tices of these monomial ideals. Next is a description of the connections
between the constructions appearing in [6, 15].

5.1. Dictionary between labeling regular cell complexes and
coordinatizing lattices. We begin by addressing how to translate
between the families F in [6] and the lcm lattice associated to the
ideal they represent. First, consider the sets Vt = {i | xt divides mi}.
Let M be the squarefree monomial ideal in CM(n, c) corresponding to
a family F = {V1, . . . , Vs}. For each variable xt, there is a point in
the deficit labeling p ∈ P = LCM(M) such that p is labeled with the
variable xt. Thus, by the construction in [15], xt will precisely divide
the monomials that correspond to

Vt = ⌊p⌋c ∩ atoms(P ),

where ⌊p⌋c is the complement of the set of elements in P which are less
than or equal to p. Reversing this, we can determine which element p
must be labeled with xt by taking the join of the elements in the
complement of Vt among atoms(P ). By definition, this labeling should
yield the original ideal M .

5.2. Codimension 2 Cohen-Macaulay monomial ideals. The
Auslander-Buchsbaum formula makes it clear that the projective di-
mension of Cohen-Macaulay monomial ideals of codimension 2 must
be two.

In terms of cellular resolutions, this implies their resolutions are
supported on trees. For this special case, [6] gives a very specific
construction which associates a maximal monomial ideal in CM(T )
to every tree T using any given orientations of the edges of T .

First, let us establish the notation that a tree T = (V,E) is a pair of
sets: a set of vertices, denoted V , and a set of edges, denoted E. The
construction assigns to each vertex in V a monomial in the following
way. Given an edge ei ∈ E, deleting the edge ei produces two connected
components of T , Ti,1 and Ti,2. The monomial associated to each vertex
v ∈ T is

mv =

( ∏
{i|v∈Ti,1}

xi

)( ∏
{i|v∈Ti,2}

yi

)
.

The squarefree monomial ideal MT = (mv1 , . . . ,mvn+1) is maximal
Cohen-Macaulay, and its minimal resolution is supported on T .
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Figure 4. The tree T described in Example 5.4.

Example 5.4. For each edge ei between two vertices vj and vk, assume
that j < k. Let Ti,1 be the component of T containing vertex j and
Ti,2 the component of T containing vertex k. With this convention, the
ideal obtained via the construction in [6] from the tree in Figure 4 is:

MT = (x1y2x3x4, y1x2x3x4, y1y2x3x4, y1y2y3x4, y1y2y3y4)

in the ring k[x1, x2, x3, x4, y1, y2, y3, y4].

We will show that, for an appropriate choice of finite atomic lat-
tice P , this construction coincides with the minimal squarefree coordi-
natization in [15]. Given a tree T with n edges and n+ 1 vertices, we
define PT to be the set of all subtrees of T ordered by inclusion (note
that we include vertices and the empty set as subtrees).

Lemma 5.5. A poset PT defined as above is an element of L(n + 1),
where L(n) is the set of all finite atomic lattices with n ordered atoms.

Proof. We will show that PT is a meet-semilattice with a maximal
element making it a finite lattice by [16, Proposition 3.3.1]. In order to
show that PT is a meet-semilattice, we must show that, for every pair
of elements a, b ∈ PT , there exists a meet or least upper bound. Since a
and b are subtrees of T , define a ∧ b to be the intersection of a and b.
Since ∅ ∈ PT , a∩b will be a subtree of T ; thus, PT is a meet-semilattice.

It remains to show that PT is atomic with n+1 atoms. This follows
from the fact that T has n + 1 vertices and that every subtree can be
realized as an induced graph on a subset of the vertices. �
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The next lemma demonstrates that any coordinatization of the
lattice PT will yield a monomial ideal in Mon(T ), which is the set
of monomial ideals whose resolution is supported on T .

Lemma 5.6. The minimal resolution of any coordinatization of PT is
supported on T .

Proof. Since PT will be the lcm lattice for any coordinatization of
PT , by [2, Proposition 1.2], it is enough to show that T6p is acyclic for
each p ∈ PT .

Each p ∈ PT corresponds to a subtree of PT ordered by inclusion;
thus, by construction, T6p is the subtree corresponding to p. Since
they are themselves trees, each subtree is acyclic; therefore, T supports
the minimal resolution of any coordinatization of PT . �

Finally, we show that minimal squarefree coordinatization of PT

in [15] always agrees with the ideals constructed in [6].

Theorem 5.7. If M is the minimal squarefree coordinatization of PT ,
then MM ∼= MT .

Proof. Recall that, in the construction of MT , we assigned a variable
to each subtree Ti,1 or Ti,2 of T obtained by deleting an edge ei of T .
Hence, each component was assigned a variable, and each vertex v was
assigned a monomial (the product of the variables corresponding to the
trees Ti,j containing v).

We must show that the trees Ti,j obtained by deleting edges are
precisely the meet-irreducibles of PT and explain how to coordinatize
PT to obtain MT .

Clearly, the meet-irreducibles of PT will be the subtrees of T ′ ⊂ T
that have only one subtree T ′′ ⊂ T containing them, which satisfy

(5.1) |{ei ∈ T ′}|+ 1 = |{ei ∈ T ′′}|,

where the ei are the edges of a tree.

If T ′ is obtained as above by deleting an edge ei, i.e., T
′ = Ti,1, then

the only subtree T ′′ satisfying equation (5.1) is

T ′′ = T ′ ∪ ei,
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i.e., T ′′ is obtained by adding edge ei to T ′. Since the only other
edges which could be added are in the other connected component,
to add an edge, we would be forced to add ei as well, which would
violate equation (5.1). Therefore, the meet-irreducibles are precisely
the subtrees Ti,j obtained by deleting edge ei.

As stated above, we want to use a minimal squarefree coordinatiza-
tion of PT . If we carefully place variables, it will be clear that

MPT ,M ∼= MT .

Recall that, for MT , the variables xi were assigned to the trees Ti,1

and yis to the trees Ti,2. Moreover, note that, if v ∈ Ti,1, it is
necessarily not in Ti,2, and conversely. Thus, the trees Ti,1 and Ti,2

partition the vertices into two disjoint sets. The monomial label
for the construction of MT assigns to each vertex the product of
the variables corresponding to the subtrees containing v. In lattice
language, the subtrees containing v will be in ⌈av⌉, where av is the atom
corresponding to the vertex v. For our coordinatization construction,
this is not what we want since we take the product over the complement
of the filter. However, the complement of the filter consists precisely
of the subtrees not containing v; thus, we can proclaim the following
coordinatization.

Let M label PT as follows. If p ∈ PT is a meet-irreducible
corresponding to a Ti,1, denote it as pi1, and label it with yi. Similarly,
if p corresponds to a Ti,2, denote it as pi2, and label it with xi. This
yields:

x(av) =
∏

p∈⌈av⌉c
mp

=

( ∏
pi1∈⌈av⌉c

yi

)( ∏
pi2∈⌈av⌉c

xi

)

=

( ∏
{i|v∈Ti,2}

yi

)( ∏
{i|v∈Ti,1}

xi

)
= mv. �

Example 5.8. Figure 5 depicts the lattice PT and the minimal square-
free coordinatization used in the proof of Theorem 5.7 for the tree in
Figure 4, as described in Example 5.4.
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Figure 5. PT with the minimal squarefree labeling outlined in Exam-
ple 5.8.

5.3. Connection to Betti strata. The sets L(n), introduced in
Lemma 5.5, have a rich structure [11]. Here, we will highlight the im-
portant features necessary for our discussion. The most important is
that L(n) is itself a finite atomic lattice (as shown in [15, Theorem 4.2])
under the partial order given by P > Q, if there is a join preserving
map which is a bijection on atoms from P to Q. Covering relations
in L(n) may be described as: P covers Q if, as sets, P = Q ∪ {p},
where p is a new element introduced to Q with appropriate relations
[11, Proposition 4.2]. Since each element in L(n) is a finite atomic
lattice, and therefore can be associated to a monomial ideal, we will
discuss the Betti numbers of these lattices as those of the associated
monomial ideals. Theorem 3.3 of [8] guarantees that L(n) is stratified
by total Betti numbers, which prompts the next definition.

Definition 5.9. Given a vector β ∈ Nn+1, we call the subset L(n)β of
L(n), where all of the finite atomic lattices have total Betti numbers
equal to β, the Betti stratum of L(n) associated to β.

Understanding the boundaries of these Betti strata in L(n) can
provide insights for how to move from one monomial ideal M to
another, whose minimal resolution is simple to determine, in a manner
that produces a minimal resolution for M .
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The next proposition is a special case of Conjecture 5.11 in the case
of trees.

Proposition 5.10. If P is a lattice in L(n + 1) satisfying P > PT ,
then the total Betti numbers of P are greater than that of PT , i.e., P
is in a different Betti stratum than PT .

Before providing the proof, we introduce the following useful formu-
lae from [8]. One can compute the “multigraded” Betti numbers for
monomial ideals (or equivalently finite atomic lattices) using intervals
in the corresponding lcm lattice P . Since the multidegree of a mono-
mial will always correspond to an element in the finite atomic lattice,
we abuse notation and say that the multidegree is an element p in the
lattice P . Thus, the computations for graded and total Betti numbers
are, respectively, as follows:

bi,p = H̃i−2(Γ(0̂, p), k)

and

bi =
∑
p∈P

H̃i−2(Γ(0̂, p), k).

Proof. We only need consider the lattices P in L(n + 1) which
cover PT . If we can show that, for each of these lattices the total
Betti numbers are greater than that of PT , we are finished. We know
that these lattices P differ from the lattice PT by only one element,
denoted p; thus, we need only consider how that one element affects
the Betti number computations.

First, we note that, since T supports the minimal free resolution of
any monomial ideal with PT as the lcm lattice, the only elements in
PT for which bi,p are nonzero are the atoms and the elements covering
the atoms.

Now, in P , which covers PT , we know that all of the elements q
from PT where bi,q were nonzero will continue to be nonzero since they
correspond to the face poset of T which is simplicial; thus, they are
undisturbed by the addition of the element p. This means that the
total Betti numbers of P are at least the total Betti numbers of PT .
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An obvious candidate for where a new nonzero Betti number might
exist is the element p which has been added to PT to create P .

Consider H̃0(Γ(0̂, p), k). If this is zero, the order complex of the in-

terval (0̂, p) in P is contractible. However, since p is the element we

added to PT , all of the elements in (0̂, p) correspond to subtrees of T .

Therefore, Γ(0̂, p) will be the union of the subtrees of T corresponding
to the elements covered by p. If this is contractible, it should also be a
subtree of T , and p would already be an element of PT . Thus, Γ(0̂, p)

is not contractible, and H̃0(Γ(0̂, p), k) is nonzero. This shows that the
total Betti numbers, namely b2, of P are greater than those of PT . �

We conjecture that this should be true more generally. Moreover,
if the next conjecture is true, it offers an alternate (and perhaps more
useful) description of elements on the boundary of these Betti strata.

Conjecture 5.11. Let X be a regular cell complex. The lcm lattice P
of a maximal monomial ideal M ∈ CM∗(X) satisfies the property that,
if Q > P in L(n), then the minimal resolution of Q has total Betti
numbers greater than that of P . In other words, P is maximal in its
Betti stratum.
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