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t-REDUCTIONS AND ¢(-INTEGRAL
CLOSURE OF IDEALS

S. KABBAJ AND A. KADRI

ABSTRACT. Let R be an integral domain and I a non-
zero ideal of R. An ideal J C [ is a t-reduction of I if
(JI™)e = (I"*l)t for some integer n > 0. An element z € R
is t-integral over I if there is an equation z™ + ajz™ 1 +
s 4+ ap_1T +an = 0 with a; € ([i)t for : = 1,...,n. The
set of all elements that are t-integral over I is called the t-
integral closure of I. This paper investigates the t-reductions
and t-integral closure of ideals. Our objective is to establish
satisfactory t-analogues of well known results in the litera-
ture, on the integral closure of ideals and its correlation with
reductions, namely, Section 2 identifies basic properties of
t-reductions of ideals and features explicit examples discrim-
inating between the notions of reduction and t¢-reduction.
Section 3 investigates the concept of t-integral closure of
ideals, including its correlation with ¢-reductions. Section 4
studies the persistence and contraction of t-integral closure
of ideals under ring homomorphisms. Throughout the paper,
the main results are illustrated with original examples.

1. Introduction. All rings considered here are commutative with
identity. Let R be a ring and I an ideal of R. An ideal J C I is a re-
duction of I if JI™ = I"*! for some positive integer n. An ideal which
has no reduction other than itself is called a basic ideal [15, 16, 26].
The notion of reduction was introduced by Northcott and Rees, and its
usefulness resides mainly in two facts:

First, it defines a relationship between two ideals which
is preserved under homomorphisms and ring exten-
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sions; secondly, what we may term the reduction pro-
cess gets rid of superfluous elements of an ideal without
disturbing the algebraic multiplicities associated with
it [26].

Their main purpose was a contribution to the analytic theory of ideals
in Noetherian (local) rings via minimal reductions.

Reductions became a very useful tool for the theory of integral
dependence over ideals. Let I be an ideal in a ring R. An element
x € R is integral over [ if there is an equation

2"+ a2+ ap_1r +a, =0

with a; € I' for i = 1,...,n. The set of all elements that are integral
over I is called the integral closure of I and is denoted by I. If I =1,
then I is called integrally closed. It turns out that an element x € R
is integral over [ if and only if I is a reduction of I + Rz, and, if I is
finitely generated, then I C J if and only if J is a reduction of I [20,
Corollary 1.2.5]. This correlation allowed proving a number of crucial
results in the theory, including the fact that the integral closure of an
ideal is an ideal [20, Corollary 1.3.1]. For a full treatment of this topic,
the reader is referred to Huneke and Swanson [20].

Let R be a domain with quotient field K, I a nonzero fractional
ideal of R, and let
I :=(R:I)={x€ K|zl CR}.
The v- and t-closures of I are defined, respectively, by
I, =Y and I, :=UJ,,

where J ranges over the set of finitely generated subideals of I. The
ideal I is a v-ideal (or divisorial) if I,, = I and a t-ideal if I; = I. Under
the ideal ¢t-multiplication

(IvJ)'_> (IJ)t»

the set F;(R) of fractional t -ideals of R is a semigroup with unit R.
Recall that factorial domains, Krull domains, GCDs and PvMDs can be
regarded as t-analogues of the principal domains, Dedekind domains,
Bézout domains and Priifer domains, respectively. For instance, a dom-
ain is Priifer, respectively, a PvMD, if every nonzero finitely generated
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ideal is invertible, respectively, t-invertible. For relevant work on v-
and t-operations, we refer the reader to [13, 19, 22, 23, 24, 27, 28,
29, 30].

This paper investigates the t-reductions and t-integral closures of
ideals. Our objective is to establish satisfactory t-analogues of well-
known results in the literature on the integral closure of ideals and corr-
elations with reductions, namely, Section 2 identifies basic properties
of t-reductions of ideals and features explicit examples discriminating
between the notions of reduction and ¢-reduction. Section 3 investigates
the concept of t-integral closure of ideals, including its correlation with
t-reductions. Section 4 studies the persistence and contraction of -
integral closure of ideals under ring homomorphisms. Throughout the
paper, the main results are illustrated with original examples.

2. t-Reductions of ideals. This section identifies basic ideal-
theoretic properties of the notion of ¢-reduction including its behavior
under localizations. As a prelude to this, we provide explicit examples
discriminating between the notions of reduction and ¢-reduction.

Recall that in a ring R a subideal J of an ideal [ is called a reduction
of I'if JI™ = I"*! for some positive integer n [26]. An ideal which has
no reduction other than itself is called a basic ideal [15, 16].

Definition 2.1 (cf., [18, Definition 1.1]). Let R be a domain and I
a nonzero ideal of R. An ideal J C I is a t-reduction of I if (JI™), =
(I"+1), for some integer n > 0 (and, a fortiori, the relation holds for
n > 0). The ideal J is a trivial t-reduction of I if J; = I;. The ideal T
is t-basic if it has no t-reduction other than the trivial ¢-reductions.

At this point, recall a basic property of the ¢-operation (which, in
fact, holds for any star operation) that will be used throughout the
paper. For any two nonzero ideals I and J of a domain, we have

(IJ)t = (ItJ)t = (IJt)t = (It']t)t~

Thus, obviously, for nonzero ideals J C I, we always have:

J is a t-reduction of I <= J is a t-reduction of I; <= J;

is a t-reduction of I;.
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Note also that a reduction is necessarily a t-reduction, and the converse
is not true, in general, as shown by the next example which exhibits a
domain R with two t-ideals J ;Cé I such that J is a t-reduction but not
a reduction of I.

Example 2.2. We use a construction from [21]. Let 2 be an indeter-
minate over Z, and let

R := Z[3z, 2% 1%,

I:= (3z,2%,2%),
and
J = (3x,32% 23, 2*).
Then J ; I are two finitely generated t-ideals of R such that:

JI" G I forallm €N and  (JI), = (I*),.
Proof. I is a height-one prime ideal of R [21] and hence it is a -
ideal of R. Next, we prove that J is a t-ideal. We first claim that

J~1 = (1/2)Z]z]. Indeed, note that Q(z) is the quotient field of R and,
since 3z C J, then J=1 C (1/3z)R. Thus, let f := g/3z € J~!, where

g = Zaixi € Z[x]
i=0

with a; € 3Z. Then, the fact that 23f € R implies that a; € 3Z for
i=0,2,...,m, ie., g € 3Z[z]. Hence, f € (1/z)Z[x], whence J~! C
(1/x)Z[z]. The reverse inclusion holds since

1
EJZ[as] = (3,3z,2% 2*)Z[z] C R,

proving the claim.

Next, let h € (R : Z[z]) € R. Then, zh € R forces h(0) € 3Z,
and thus, h € (3,3z,22,23). Thus, (R : Z[z]) C (3, 3x,22,2%); hence,
(R: Z[z]) = (1/x)J. Tt follows that

Jo=Jy = (R : ;Z[x]) — (R Za]) = J,

as desired.
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Further, let n € N. It is to see that 232?" = 2273 is the monic
monomial with the smallest degree in JI”. Therefore, z2("+1) = g27+2
€ I"tL\ JI™, that is, J is not a reduction of I. It remains to prove
(JI); = (I?);. We first claim that (JI)™! = (1/2?)Z[x]. Indeed,

(JI)7H S (J7Y)? = L),

22

and the reverse inclusion holds since
1
EJIZ[.’L‘] = (3,3z, 2% 2°)(3,z,2%)Z[z] C R,
proving the claim. Now, observe that
I? = (922, 323, 2%, 25).

It follows that

(I))e = (IJ), = (R : ;Z[x]) =2%(R: Z[z]) = «J D I
Thus, (I.J); 2 (I?)¢, as desired. O

Observe that the domain R in the above example is not integrally
closed. Next, we provide a class of integrally closed domains where the
notions of reduction and ¢-reduction are always distinct.

Example 2.3. Let R be any integrally closed Mori domain that is
not completely integrally closed, i.e., not Krull. Then, there always
exist nonzero ideals J ; I in R such that J is a t-reduction but not a
reduction of I.

Proof. These domains do exist; for instance, let k ; K be a field
extension with k algebraically closed, and let = be an indeterminate
over K. Then, R := k + zKJz] is an integrally closed Mori do-
main [12, Theorem 4.18] that is not completely integrally closed [14,
Lemma 26.5], see [11, page 161]. Now, by [18, Proposition 1.5(1)],
there exists a t-ideal A in R that is not t-basic, say, B C A is a
t-reduction of A with B; & A;. By [4, Theorem 2.1], there exist
finitely generated ideals F' C A and J C B such that A=' = F~! and
B! = J!, yielding Ay = F; and B, = J;. Let I :== F 4+ J. Then,
it can easily be seen that J is a non-trivial ¢t-reduction of I. Finally,
we claim that J is not a reduction of I. Suppose this is not true.
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Since [ is finitely generated, I C J by [20, Corollary 1.2.5]. However,
J C J; by [25, Proposition 2.2]. It follows that J; = I;, the desired
contradiction. ]

Another crucial fact concerns reductions of ¢-ideals. Indeed, if J is a
reduction of a t-ideal, then so is J;; the converse is not true, in general,
as shown by the following example which features a domain R with a
t-ideal I and an ideal J C I such that J; is a reduction but J is not a
reduction of I.

Example 2.4. Let k be a field, let x,y, 2z be indeterminates over k,
let R := k[z] + M, where M := (y,2)k(z)[[y,2]] and let J := M?2.
Note that R is a classical pullback issued from the local Noetherian
and integrally closed domain 7' := k(z)[[y, z]]. Then, M is a divisorial
ideal of R by [17, Corollary 5], and clearly, for all n € N,

Mn+2 g Mn+1’

that is, J is not a reduction of M in R. On the other hand, note that
(M : M) =T, since T is integrally closed, and M is not principal in T
Therefore, by [17, Theorem 13], we have
(R:(R:M?*)=(R:(M™':M))=(R:((M:M):M))
=(R:(T:M))=(R: M) =M,
such that J; = J, = M. Hence, J; is trivially a reduction of M in R.

In the sequel, R will denote a domain. For convenience, recall that,
for any nonzero ideals I, J, H of R, the equality (IJ+ H); = (I;J+ H);
always holds since

LiJ € (L)) = (1) € (1] + H)y.

This property will be used in the proof of the next basic result which
examines the t-reduction of the sum and product of ideals.

Lemma 2.5. Let J C I and J' C I’ be nonzero ideals of R. If J and
J’ are t-reductions of I and I', respectively, then J+J' is a t-reduction
of I+1I', and JJ' is a t-reduction of II'.

Proof. Let n be a positive integer. Then the following implication
always holds:

(2.1) (JI™)y = (I"TY)y = (JI™); = (I™ 1), for all m > n.
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Indeed, multiply the first equation through by I™~™, and apply the
t-closure to both sides. By (2.1), let m be a positive integer such that

(2.2) (JI™); = (I, and  (J'I'™); = (I'™T1),.
By (2.2), we obtain
(4T, C U™ I+ )™ + I I+ T)™),
(™D (I 4+ I)™ 4+ (I (L + 1))
((JI™) (T +I)™ + (JT™) (T4 1T')™),
=JIMI+ 1)+ JT™(I+ 1)),
(
< (

N

(J+ TN+ T )

C (I_|_Il)2m+l)t7
and then equality holds throughout, proving the first statement. The
proof of the second statement is straightforward via (2.2). ]

The next basic result examines the transitivity for ¢-reduction.

Lemma 2.6. Let K C J C I be nonzero ideals of R. Then:

(a) If K is a t-reduction of J and J is a t-reduction of I, then K is
a t-reduction of I.
(b) If K is a t-reduction of I, then J is a t-reduction of I.

Proof. For any positive integer m, we always have

(2.3)  (JI™)y = Iy = (J"I™), = (I™""); for all n > 1.

Indeed, multiply the first equation through by J"~!, apply the ¢-closure
to both sides, and conclude by induction on n. Let (KJ"); = (J"*1),
and (JI™); = (I™*1),, for some positive integers n and m. By (2.3),
we obtain

(I = (V) = () L™ )= (KT L™ )y = (KT,

proving (a). The proof of (b) is straightforward. O

The next basic result examines the t-reduction of the power of an
ideal.
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Lemma 2.7. Let J C I be nonzero ideals of R and let n be a positive
integer. Then:

(a) J is a t-reduction of I < J" is a t-reduction of I™.
(b) If J = (a1,...,ar), then, J is a t-reduction of I < (a7,...,a})
s a t-reduction of I™.

Proof.

(a) The “only if” implication holds by Lemma 2.5. For the converse,
suppose that (J™"I"™), = (I"™*+™), for some positive integer m. Then,

(Inm—i-n)t _ (JJn_II"m)t g (Jlnm-‘rn—l)t g (Inm—i-n)t,
and thus, equality holds throughout, as desired.

(b) Assume that J is a t-reduction of I. From [20, (8.1.6)], we
always have the following equality

(2.4) (a},...,a1)(a1,.. _’ak)(k—l)(n—l) — (ar,. .. 7ak)(n—1)k+1

and, multiplying (2.4) through by J*~1, we obtain (af, ..., a})J"k—" =
Jmk. Therefore, (a},...,a}) is a t-reduction of J" and a fortiori
of I™ by (a) and Proposition 2.6. The converse holds by (a) and
Proposition 2.6. ([l

The next basic result examines the t-reduction of localizations.

Lemma 2.8. Let J C I be nonzero ideals of R, and let S be a
multiplicatively closed subset of R. If J is a t-reduction of I, then
S~YJ is a t-reduction of STI.

Proof. Assume that (JI™); = (I"*1), for some positive integer n. Let
t; denote the t-operation with respect to S~'R. By [24, Lemma 3.4],
we have:

(ST e = (STHI"))e = (STHE™ )
= (STHII™)))e, = (STHIT™)s,
= (7', O
It is worth noting here that, in a PvMD, J is a t-reduction of I if

and only if J is t-locally a reduction of I, i.e., JRys is a reduction of
IRy for every maximal t-ideal M of R [18, Lemma 2.2].
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3. t-Integral closure of ideals. This section investigates the con-
cept of t-integral closure of ideals and its correlation with t-reductions.
Our objective is to establish satisfactory ¢-analogues of (and in some
cases generalize) well-known results in the literature on the integral
closure of ideals and its correlation with reductions.

Definition 3.1. Let R be a domain and I a nonzero ideal of R. An
element = € R is t-integral over I, if there is an equation

" 4az" '+ tan 1z t+a, =0

with a; € (I'); foralli=1,...,n.

The set of all elements that are ¢-integral over [ is called the {-integral
closure of I and is denoted by I. If I = I, then I is called t-integrally
closed.

Note that the t-integral closure of the ideal R is always R, whereas
the t-integral closure of the ring R, also called the pseudo-integral
closure, may be larger than R, e.g., consider any non v-domain [3, 11].
In addition, we have

JCI=JCI

More ideal-theoretic properties are provided in Remark 3.8.

It is well known that the integral closure of an ideal is an ideal
which is integrally closed [20, Corollary 1.3.1]. Next, we establish a
t-analogue for this result.

Theorem 3.2. The t-integral closure of an ideal is an integrally closed
ideal. In general, it is not t-closed and, a fortiori, mot t-integrally
closed.

The proof of Theorem 3.2 relies on the next lemma which sets a
t-analogue for the notion of Rees algebra of an ideal [20, Chapter 5].
Recall, for convenience, that the Rees algebra of an ideal I, in a ring R,
is the graded subring of R[z] given by

R[Ix] := @I" x",

n>0
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[20, Definition 5.1.1] and whose integral closure in R|x] is the graded
ring

@17 x",

n>0

[20, Proposition 5.2.1].

Lemma 3.3. Let R be a domain, I a t-ideal of R and x an indetermi-

nate over R. Let
Ry[Iz] == EPI")ea".
n>0

Then Ry[Ix] is a graded subring of R[x], and its integral closure in R|x]
is the graded ring
@ Inz™.

n>0

Proof. That R;[Ix] is N-graded follows from the fact that

(I - (1) C (I'7), for alli,5 € N.

Let R[Ix] denote its integral closure in R[z]. By [20, Theorem 2.3.2],

Ri[Iz] is an N-graded ring. Let & € N, and let S; denote the

homogeneous component of R[Ix] of degree k. We shall prove that
Sy = I*zF. Let s := spa® € S), for some s, € R. Then,

s"tas" M a, =0

for some positive integer n and a; € Ri[Iz], i = 1,...,n. Expanding

each
ki
a; = E ai’jajj
j=0

with a; ; € (I7), the coefficient of the monomial of degree kn in the
above equation is

n

n n—1

sg + E a; ks, =0,
i=1

with a; g € (I'*),. Tt follows that s, € I*, and thus, S, C IFz*.
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For the reverse inclusion, let z := ypa® € ﬁxk for y, € k. Then,
yr + alyz L4 ... +a, = 0 for positive integer n and aj € (I),,
j=1,...,n. Multiplying through by x*" yields

AN +a1xkz,? Ly qauzf =0

with 4 4 ,
ajxd € (I*),2" C Ry[Ix], j=1,...,n,

that is, 2z, € R[Iz]. However, z;, is homogeneous of degree k in R;[Ix].

Therefore, z, € Si, and hence, I¥z* C S}, completing the proof of
Lemma 3.3. O

Definition 3.4. The ¢-Rees algebra of an ideal I (in a domain R) is
the graded subring of R[z] given by

Ry[Iz] == EPI")ea".

n>0

Proof of Theorem 3.2. Let R be a domain and I a nonzero ideal of R.
Since I = It, we assume [ to be a t-ideal. We first prove that I is an
ideal. Clearly, T is closed under multiplication. Next, we show that I
is closed under addition. Let a,b € I. Then, by Lemma 3.3, ax and
bx € Ry[Ix]. Hence,

ax +bx = (a + b)x € Ry[lx].

Again, by Lemma 3.3, a + b € f, as desired.

Next, we prove that Iis integrally closed. For this purpose, observe
that, for all n € N, (S1)™ C S, forces

(3.1) ()" C I* for all n € N.

Consider the Rees algebra of the ideal I, ,

R[Iz] = P I)"=".

n>0
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Therefore, R[Iz] C Ry[Iz], and hence, R[Iz] C R;[Iz]. Now, a combin-
ation of Lemma 3.3 and [20, Proposition 5.2.1] yields

n>0 n>0

In particular, T C f that is, Iis integrally closed. The proof of the
last statement of Theorem 3.2 is handled by Example 3.10 (b), where

we provide a domain with an ideal I such that I G )t, that is, I is

not a t-ideal, and hence, not t-integrally closed since (f )t C I always
holds. O

The next result shows that the t-integral closure collapses to the
t-closure in the class of integrally closed domains. It also completes
two existing results in the literature on the integral closure of ideals,
[14, 25].

Theorem 3.5. Let R be a domain. The following assertions are
equivalent:

(a) R is integrally closed,

(b) Every principal ideal of R is integrally closed;
(¢) Every t-ideal of R is integrally closed;

(d) I C I for each nonzero ideal I of R;

(e) Ewery principal ideal of R is t-integrally closed;
() Every t-ideal of R is t-integrally closed;

) 1

(g) I =1 for each nonzero ideal I of R.

Proof.

(a) & (b) and (a) < (c) < (d) are handled by [14, Lemma 24.6] and
[25, Proposition 2.2], respectively. Also, (g) < (f) = (e) = (b) are
straightforward. Thus, it remains to prove (a) = (g). Assume that R
is integrally closed, and let I be a nonzero ideal of R. The inclusion
I; C I holds in any domain. Next, let o € I.

Claim 1. There exists a finitely generated ideal J C I such that
acld.
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Indeed, « satisfies an equation of the form
a" +ara" 4t a, =0

with a; € (I'); foralli = 1,...,n. Now, leti € {1,...,n}. Hence, there
exists a finitely generated ideal F; C I* such that a; € F;,. Further,
each generator of Fj is a finite combination of elements of the form

H cj € I’
1<5<i

Let J denote the subideal of I generated by all ¢;js emanating from all
F;s. Clearly, a; € (J%); for all i = 1,...,n, that is, a € J, proving the
claim.

Claim 2. J C J,.

Indeed, we first prove that J=1 = (J)~1. Clearly, (J)~* C J~L.

For the reverse inclusion, let € J~! and y € J. Then, y satisfies
an equation of the form

YUy T e ay =0

with a; € (J%); for alli = 1,...,n. It follows that (yz)" +ajz(yz)" 1+
<-4 apx™ = 0 with

ax’ € (J)(J ) C(I)(J) T = (IN((J)) " C R

Hence, yr € R. Thus, x € (j)_l, as desired. Therefore,

Jg(J)v: v:Jta
proving the claim.

_ Now, by the above claims, we have o € JC J: C I;. Consequently,
I = I, which completes the proof of the theorem. O

In the case where all ideals of a domain are t-integrally closed, it
must then be Priifer. This is a well-known result in the literature:

Corollary 3.6 ([14, Theorem 24.7]). A domain R is Priifer if and
only if every ideal of R is (t-)integrally closed.
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Now, we examine the correlation between the t-integral closure and
t-reductions of ideals. In this vein, recall that, for the trivial operation,
two crucial results assert that

x € I < T is a reduction of I + Rz
[20, Corollary 1.2.2], and if 7 is finitely generated and J C I, then
I C J <= Jis areduction of I

[20, Corollary 1.2.5].

Next, we establish t-analogues of these two results.

Proposition 3.7. Let R be a domain, and let J C I be nonzero ideals
of R.

(a) x € I = I is a t-reduction of I + Rz.
(b) Assume that I is finitely generated. Then, I C J = J is a
t-reduction of I.

Moreover, both implications are irreversible in general.

Proof.

(a) Let z € I. Then, 2" 4+ a12" ' + - - - 4+ a,, = 0 for some a; € (I*),
for each i € {1,...,n}. Hence,
g€ "M+ (IM) S (L™ 4+ (1)) C (I + Ro)™ ),
It follows that

(I + Rx)" C (I(I + Rx)"1),.
Hence,
(I +Rx)")y = (I(I + Rx)"');.

Thus, I is a t-reduction of I + Rx.

(b) Assume that I = (a1,...,ay) for some integer n > 1 and a; € R
for all i = 1,...,n. Suppose that I C J. By (a), J is a t-reduction of

J + Ra,;, for each i € {1,...,n}. By Lemma 2.5, J is a t-reduction of
J+ (a1,...,a,) = I, as desired.

The converse of (a) is not true, in general, as shown by Example
3.10 (a). Also, (b) can be irreversible even with both I and J being
finitely generated. For instance, consider the integrally domain R of
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Example 2.3 with two ideals J g I, where J is a non-trivial ¢-reduction
of I,ie., Jy G I;. By Theorem 3.5, J =J; 2 1. O

Next, we collect some ideal-theoretic properties of the integral clo-
sure of ideals.

Remark 3.8. Let R be a domain, and let I, J be nonzero ideals of R.
Then,

(1) I €T C1IC I, Example 3.9 (a) features a t-ideal for which
these three containments are strict. However, note that radical, and,
a fortiori, prime, t-deals are necessarily t-integrally closed.

(2) INJ CINJ. The inclusion can be strict, for instance, in any
integrally closed domain that is not a PuMD by [1, Theorem 6] and
Theorem 3.5. Another example is provided in the non-integrally closed
case by Example 3.9 (c).

(3)I+JC T+ J. The inclusion can be strict. For instance, in Z[x],
we have

(2) + (z) = (2,2) and (2,z) ' = Z[z]

so that

e~

(2,7) = (2,z); = Z7]
via Theorem 3.5.

(4) By (3.1), for all n > 1, (I)™ C I". The inclusion can be strict,
as shown by Example 3.9 (b).

(5) For all z € R, 2l C zI. Indeed, let y € 2I. Then, there is an
equation of the form

y" + (wal)y"_l +---+z2"a, =0

with . o .
zla; € ' (I')y = ((zI)"), i=1,...,n.

Hence, y € zI. Note that zI = 21 for all z € R and for all I ideal < R
is integrally closed, Theorem 3.5.

We close this section with the next examples.
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Example 3.9. Let
R := Z[V=-3|[2z, 2%, 27,

I:= (222,223 2 2°)

and
J = (2%),
where x is an indeterminate over Z. Then I is a t-ideal of R such that

() IGTGTG VT

b) (PSP

(¢) JNTISJNT.

Proof. We first show that [ is a t-ideal. Clearly, (1/22)Z[v/=3][z] C
I~1. For the reverse inclusion, let f € 7! C 27*R. Then f = (ag +
a1z + -+ apa™)/z* for some n € N, ag € Z[v/=3], a1 € 2Z[/—3] and
a; € Z[v/=3] for i > 2. Since 222f € R, then ag = a; = 0. It follows
that f € (1/2%)Z[v/=3][z]. Therefore, I-* = (1/2%)Z[v/—3][z]. Next,
let g € (R : Z[V-3][z]) € R. Then, xg € R forces ¢g(0) € 2Z[/—3],
and hence, g € (2,2x,2% 23). Thus, (R : Z[V-3|[z]) C (2,2,
22, 23). The reverse inclusion is obvious. Therefore, (R : Z[v/—3][x])
= (2,2z, 2%, 2%). Consequently, we obtain

L=1I,= (R: ;Z[ﬁ][x}> =2*(R: Z[V-3][z]) = I.

(a) Next, we prove the strict inclusions I ST & I G V1. For I cI,
note that (1++/=3)z% € T\ I as ((1++v/—=3)z?)> = —825 € I? and 1+
V=3¢ 2Z[vV=3).

For I & I, we claim that 28 € T\ 1. Indeed, let f € (I2)~! C 2 8R.
Then, there are n € N, a; € Z[/=3] for i € {0,2,...,n}, and
a1 € 2Z]y/=3] such that f = (ag+a1z+ - -+a,z™)/28. Since 4zt f € R,
ag = a; = ag = ag = 0. Therefore, (I?)~1 C (1/2*)Z[v/=3][z]. The
reverse inclusion is obvious. Hence, (I?)~! = (1/2Y)Z[v=3|[z]. Tt
follows that

1

U%tU%v(R%ﬁzwﬁﬂm>xﬂR:ﬂ¢:ﬂﬂ)ﬁL

Hence 26 € (I2),, and thus, 2® € 1.
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It remains to show that 23 ¢ I. By [20, Corollary 1.2.2], it suffices
to show that I is not a reduction of I + (2®). Let n € N. It is easy
to see that x%z3" is the monic monomial with the smallest degree in
I(I + (23))™. Therefore,

2PFD) — @348 (T (23)" N\ (T + (2%)™.

Hence, I is not a reduction of I + (2?), as desired.

For f; VI, we claim that 22 € \ﬁ\f Obviously, 22 € v/I. In order
to prove that 2?2 ¢ I~7 it suffices by Proposition 3.7 to show that I is not a
t-reduction of I+ (x?). Towards this purpose, note that I+ (2?) = (2?).
Suppose, by way of contradiction, that (I(I+(x2))"); = ((I+(x?))"+1),
for some n € N. Then,

(IQ)n+1 — m2n+2 c (I(I+ ($2))n)t — J,‘Zn].
Consequently, #2 € I, which is absurd.

(b) We first prove that I = (222, (1 + \/7)10 z3 14) In view
of (a) and its proof, we have (222, (1 + v/—3)z2, 23, 2*) C I. Next, let
a:= (a+by/=3)z2 € I, where a,b € Z. If b = 0, thena#las:ﬂgél
Moreover since 222 € I, a must be even, that is, & € (222). Now,
assume that b # 0. If a = 0, then b # 1 as v/—322 ¢ I. Moreover, since
2v/—=32% € 1:7 b must be even, that is, a € (22%). Therefore, suppose
that a # 0. Then, similar arguments force a and b to be of the same
parity. Further, if @ and b are even, then o € (222), and, if @ and b are

odd, then a € (222, (1 + v/—3)z2). Finally, we claim that I contains
no monomials of degree 1.

Suppose this is not true. Let ax € T, for some nonzero a € 2Z[/—3].
Then, by [20, Remark 1.1.3 (7)],

arelC (;/2) = (22) C 22Z[vV=3][z].

By [20, Corollary 1.2.2], (2?) is a reduction of (az,x?) in Z[v/—3][x],
which is absurd. Consequently,

I = (222, (14+vV=3)2%,2% a%).

Now, we are ready to verify that ( )2 C I2. Tor this purpose,
recall that (I2); = 22I. Thus, 22* € I2. We claim that 2z* ¢ (I)%.
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Suppose this is not true. Then, 22% € (42%,2(1 + /=3)z*) yields
2 € (222, (1 ++/—=3)2?) C I, which is absurd.

(c) We claim that 2 elnld)\ InJ. In (a), it was proven that
2? el Thus, 2° € InJ. Now, observe that I NJ = zI and assume,
by way of contradiction, that x> € InJ =zl Then, 2> satisfies an
equation of the form

@) + a1 (@) 4+ an =0

with ‘ o
€ () =2'I"), i=1,...,n.

For each i, let a; = x'b;, for some b; € (I*);. Therefore,

(xQ)n 4 b1($2)n_1 N bn —
It follows that z2 € f, the desired contradiction. O
Example 3.10. Let R := Z + 2Q(v/2)[z], I := (x/v/2) and a := 2/2,
where x is an indeterminate over Q. Then:

(a) Iis a t-reduction of I +aR and a ¢ I.
(b) IC( D), andICI
Proof.

(a) First, we prove that (I(I + aR)); = ((I + aR)?);. It suffices to
show that a? € (I(I + aR));. For this purpose, let

I 22\ 7! 2
I(I R Cl— =—R
e (5 25) < (5) -2
Then, f = 2(ap + a1z + - -+ + apz™) /22, for some n > 0, ag € Z, and
a; € Q(v/2) for i > 1. Since (22/2v2)f € R, ag = 0, it follows that

(I(T +aR)™ € 2Q(VD)a].
On the other hand,

(I(I + aR)) (i@(ﬁ)[w]) CR.
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Thus, we have

H

(3.2) (I(I +aR))~ (2 M) %Q(\/ﬁ)[m].
Now, clearly, a®>(I(I + aR))™* C R. Therefore, a* € (I(I + aR)), =
(I(I 4 aR));, as desired.

Next, we prove that a ¢ I=T. By [20, Corollary 1.2.2], it suffices
to show that I is not a reduction of I + aR. Suppose this is not true,
and that I(I + aR)" = (I + aR)"*! for some positive integer n. Then

a"tt = (;)RH eI(I+aR)" = % (\g/g, 325)"
It can be verified that this yields
1eV2(vV2,1)" C (vV2) in Z[V2],
the desired contradiction.

(b) We claim that a € (I);. Note first that = € I as 2% € I2 = (I2);.
Therefore, A := (z, (z/v2)) C I. Clearly,

(53
A7 = Q(vV2)[a].

However, aA~' C R, whence,

G,EAU:Atg(T)t.

Hence, by (3.2),

Consequently, a € (I), \ I. O

4. Persistence and contraction of the ¢-integral closure. Re-
call that the persistence and contraction of the integral closure describe,
respectively, the facts that, for any ring homomorphism ¢ : R — T,
o(I) C o(I)T for every ideal I of R and p=1(J) = ¢~ 1(J) for every
integrally closed ideal J of T.

This section studies the persistence and contraction of the t-integral
closure. For this purpose, we first introduce the concept of t-compatible
homomorphism which extends the well-known notion of ¢-compatible
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extension [2]. Throughout, we denote by t, respectively t;, and v,
respectively vy, the ¢- and v- closures in R, respectively T.

Lemma 4.1. Let ¢ : R — T be a homomorphism of domains. Then,
the following statements are equivalent:

(a) o(I,)T C (e(I)T)y, for each nonzero finitely generated ideal I
of R;

(b) @(I)T C (p(I)T)t, for each nonzero ideal I of R;

(c) ¢ 1(J) is at-ideal of R for each t-ideal J of T such that ¢=*(J)
# 0.

Proof.

(a) = (c). Let J be a t;-ideal of T', and let A be any finitely gener-
ated ideal of R contained in ¢ ~1(J). Then, p(A)T C J = J;,. Further,
©(A)T is finitely generated. Hence, (p(A)T),, CJ. It follows, via (a),
that

P(A)T C (p(A)T ), C J.

Therefore, A, C ¢~1(J), and thus, p~1(J) is a t-ideal.

(¢) = (b). Let I be a nonzero ideal of R. The ideal J := (¢(I)T)s,
is clearly a t1-ideal of T' with ¢ =1(J) # 0. By (c), p~(J) is a t-ideal
of R. Consequently, we obtain

I € (71 (@(DT)) € (07 He(DT)ey)e = (97 () = ¢~ (J)

such that (I;)T C J = (o(I)T),, as desired.
(b) = (a). Trivial. O

Definition 4.2. A homomorphism of domains ¢ : R — T is called
t-compatible if it satisfies the equivalent conditions of Lemma 4.1.

When ¢ denotes the natural embedding R C 7T, this definition
matches the notion of ¢-compatible extension, i.e., [T C (IT) for
every ideal I of R, previously profusely studied [2, 5, 6, 10].

Next, we detail the main results of this section which establish
persistence and contraction of ¢-integral closure under ¢-compatible
homomorphisms.
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Proposition 4.3. Let ¢ : R — T be a t-compatible homomorphism of
domains, I an ideal of R and J an ideal of T. Then

~ —~

(a) o()T S o(I)T.

— .

(b) ¢=1(J) S ¢7'(J).

Moreover, if J is t-integrally closed, then p=1(J) = @~ 1(J).

Proof.

e~

(a) Let z € I, y := o(z) and z € T. We prove that yz € o(I)T.
Suppose that = satisfies the equation

2"+ a4+ a, =0

with a; € (I'); for i = 1,...,n. Then, apply ¢ and multiply through
by 2", to obtain

(y2)" +biz(yz)" " 4 by 12" (y2) + b2 =0,
where

bi == (a;) € ((I)T S ((I')T)e, = ((o(1)T)")e,
by t-compatibility. Hence, b;z* € ((¢(I)T)"), for i = 1,...,n. Conse-
quently, yz € go/(})/T .
(b) Let H := ¢(p~1(J))T. Then, by (a), we have

ple=(J)T C HC J.
It follows that <,0/_—1\(/J) - w_l(j), as desired. Now, if J is t-integrally
closed, then

—_~— — —~—

e HJ) ST (D) =97 (J) S,

and hence, the equality holds. ]

In the special case where both R and T are integrally closed, per-
sistence of t-integral closure coincides with ¢-compatibility by Theo-
rem 3.5. This shows that the t-compatibility assumption in Proposi-
tion 4.3 is imperative.
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Corollary 4.4. Let R C T be a t-compatible extension of domains
and I an ideal of R. Then

(a) IT CIT.
(b) ICITNRCITNR.

Moreover, the above inclusions are strict in general.

Proof. (a) and (b) are direct consequences of Proposition 4.3. The
inclusion in (a) and second inclusion in (b) can be strict as shown by
Example 4.6. The first inclusion in (b) can also be strict. For instance,
let R be an integrally closed domain and let P ; (@ be prime ideals

of R with x € @\ P. Then (z) = (x) by Theorem 3.5, while
¢RpNR=RpNR=R,

that is,

() G (z)Rp N R. O

Corollary 4.5. Let R be a domain, I an ideal of R and S a multi-
plicatively closed subset of R. Then, S~™'I C S—11.

Proof. Tt is well known that flatness implies t-compatibility [10,
Proposition 0.6]. Hence, Corollary 4.4 leads to the conclusion. O

For the integral closure, we always have S~ = S—1I [20, Propo-
sition 1.1.4]. However, in Corollary 4.5, the inclusion can be strict, as
shown in the following example.

Example 4.6. We use a construction due to Zafrullah [28]. Let E be
the ring of entire functions and x an indeterminate over E. Let S denote
the set generated by the principal primes of E. Then, we claim/t\lrgt
R := E+ xS 'E[z] contains a prime ideal P such that S~ P S S-LP.
Indeed, R is a P-domain which is not a PvMD [28, Example 2.6]. By
[29, Proposition 3.3], there exists a prime t-ideal P in R such that
PRp is not a t-ideal of Rp. By Theorem 3.5, we have

PRp = PRp G R, = (PRp); = PRp
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since R is integrally closed. Also note that

P=PRpNRS PRpNR=R,

Corollary 4.7. Let R be a domain and I a t-ideal that is t-locally t-
integrally closed, i.e., Iny is t-integrally closed in Ry for every mazimal
t-ideal M of R. Then, I is t-integrally closed.

Proof. Let Max;(R) denote the set of maximal t-ideals of R. By
Corollary 4.5, we have

MgMax (R)

N o

MgMax (R)
= ﬂ I,
MgMaxq (R)
=1

N

Consequently, I is t-integrally closed. O
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