THE DISTRIBUTION OF THE NUMBER OF PARTS OF m-ARY PARTITIONS MODULO m

TOM EDGAR

Abstract

We investigate the number of parts modulo m of m-ary partitions of a positive integer n. We prove that the number of parts is equidistributed modulo m on a special subset of m-ary partitions. As consequences, we explain when the number of parts is equidistributed modulo m on the entire set of partitions, and we provide an alternate proof of a recent result of Andrews, Fraenkel and Sellers regarding the number of m-ary partitions modulo m.

1. Preliminaries and statement of the main result. Throughout this note, we let $\mathbb{N}=\{0,1,2,3, \ldots\}$ represent the set of natural numbers. For any $m \geq 2$, every natural number n has a unique base- m representation of the form $n=n_{0}+n_{1} m+\cdots+n_{k} m^{k}$ with $n_{k} \neq 0$. We express this more compactly as $n=\left(n_{0}, n_{1}, \ldots, n_{k}\right)_{m}$ and use the convention that $n_{i}=0$ if $i>k$.

For $m \geq 2$, we say that a partition of $n \in \mathbb{N}$ is an m-ary partition if each part is a power of m. We let $b_{m}(n)$ represent the number of m-ary partitions of n. For instance, the 2 -ary partitions of 8 are

$$
\begin{gathered}
8, \quad 4+4, \quad 4+2+2, \quad 4+2+1+1, \\
4+1+1+1+1, \quad 2+2+2+2, \\
2+2+2+1+1, \quad 2+2+1+1+1+1, \\
2+1+1+1+1+1+1, \\
1+1+1+1+1+1+1+1,
\end{gathered}
$$

such that $b_{2}(8)=10$.
In a recent article, Andrews, Fraenkel and Seller, see [3], provided the following beautiful characterization of the number of m-ary partitions mod m relying only on the base- m representation of a number.

[^0]Theorem 1.1 ([3]). If $m \geq 2$ and $n=\left(n_{0}, n_{1}, \ldots, n_{k}\right)_{m}$, then

$$
b_{m}(m n)=\prod_{i=0}^{k}\left(n_{i}+1\right) \bmod m
$$

Their elegant proof follows from clever manipulation of power series and the generating function for m-ary partitions. Their result allows for a uniform proof of many known congruence properties of m-ary partitions, originally conjectured by Churchhouse and proved by Rødseth, Andrews and Gupta, see $[\mathbf{1}, 6,8,9,10]$.

Theorem 1.1 implies that

$$
b_{m}(m n)-\prod_{i=0}^{k}\left(n_{i}+1\right)=m \cdot q
$$

for some $q \in \mathbb{N}$. Our primary result (Theorem 1.2) provides a combinatorial interpretation for the value of q. Furthermore, as a corollary to our main result, we obtain a new proof of Theorem 1.1 which does not rely on generating functions.

Note that the product in Theorem 1.1,

$$
\prod_{i=0}^{k}\left(n_{i}+1\right)
$$

arises in various other places; for instance, when m is prime, this number counts the nonzero entries in row n of Pascal's triangle $\bmod m$, see [7]. This product may also be interpreted in terms of a partial order on the natural numbers arising from base- m representations. In particular, for fixed $m \geq 2$, we let $<_{m}$ represent the m-dominance order defined by $a<_{m} b$ if $a_{i} \leq b_{i}$ for all i, where $a=\left(a_{0}, a_{1}, \ldots, a_{k}\right)_{m}$ and $b=\left(b_{0}, b_{1}, \ldots, b_{l}\right)_{m}$, see $[\mathbf{4}, 5]$. Then, for $n=\left(n_{0}, n_{1}, \ldots, n_{k}\right)_{m}$, the same product counts the number of integers dominated by n, see [4]. We will use the interpretation of the product in terms of the m-dominance order in what follows.

Now, let n be a positive integer with $m^{k} \leq n<m^{k+1}$. Then, every m-ary partition is of the form

$$
\ell_{k} \cdot m^{k}+\ell_{k-1} \cdot m^{k-1}+\cdots \ell_{1} \cdot m+\ell_{0}
$$

with $\ell_{i} \geq 0$ for all i. We will denote such a partition by $\left[\ell_{0}, \ell_{1}, \ldots, \ell_{k-1}\right.$, $\left.\ell_{k}\right]_{m}$. It is noteworthy to mention here that the base- m representation of n yields an m-ary partition

$$
\left(n_{0}, n_{1}, \ldots, n_{k}\right)_{m} \longmapsto\left[n_{0}, n_{1}, \ldots, n_{k}\right]_{m}
$$

Finally, we define a function nops from m-ary partitions of n to \mathbb{N} by

$$
n o p s\left(\left[\ell_{0}, \ell_{1}, \ldots, \ell_{k-1}, \ell_{k}\right]_{m}\right)=\sum_{i=0}^{k} \ell_{i}
$$

this represents the number of parts of the partition.
Now, let $n=\left(n_{0}, n_{1}, \ldots, n_{k}\right)_{m}$. We call an m-ary partition, ℓ, of n simple if $\ell=\left[\ell_{0}, \ell_{1}, \ldots, \ell_{k}\right]_{m}$ with $\ell_{i} \leq n_{i}$ for all $i \geq 1$. Thus, simple partitions are obtained by replacing powers of m in the m-ary representation with the appropriate number of 1s. Let $P_{m}(n)$ be the set of m-ary partitions of $n, S_{m}(n)$ the set of simple m-ary partitions of n and $N_{m}(n)=P_{m}(n) \backslash S_{m}(n)$ the set of non-simple m-ary partitions of n. Restricting the function nops to $N_{m}(n)$, we obtain the following result.

Theorem 1.2. Let $m \geq 2$ and $n \in \mathbb{N}$. Then, the nops function is equidistributed modulo m on the set $N_{m}(n)$.

As a corollary, we obtain the following.
Corollary 1.3. Let $b_{m}(n)$ be the number of m-ary partitions of $n=$ $\left(n_{0}, n_{1}, \ldots, n_{k}\right)_{m}$. Then

$$
b_{m}(n) \equiv \prod_{i=1}^{k}\left(n_{i}+1\right) \bmod m
$$

Note that the previous corollary is stated slightly differently than Theorem 1.1, which is given only for $b_{m}(m n)$; however, due to the fact that $b_{m}(m n+r)=b_{m}(m n)$ when $0<r<m$ (as stated in [3]), the two forms are equivalent.

This paper is organized as follows. Section 2 contains the details necessary to prove Theorem 1.2. We prove the theorem and its corollary
in Section 3. In addition, we use Theorem 1.2 to prove that the nops function is equidistributed $\bmod m$ on the entire set of m-ary partitions, $P_{m}(n)$, if and only if $m-1$ appears in the base- m representation of n, see Theorem 3.2. Section 4 contains a detailed example illustrating the results in Sections 2 and 3. Finally, in Section 5, we describe some possible extensions.
2. Technical details. In this section, we provide a systematic method for partitioning $N_{m}(n)$, which will be used to prove Theorem 1.2. We have included a detailed example of this method of partitioning in Section 4.

Let $m \geq 2$ and $n \in \mathbb{N}$ be fixed with $n=\left(n_{0}, n_{1}, \ldots, n_{k}\right)_{m}$. First, we define a function $f_{m, n}: N_{m}(n) \rightarrow \mathbb{N}$ by

$$
f_{m, n}\left(\left[\ell_{0}, \ell_{1}, \ldots, \ell_{k}\right]_{m}\right)=\left(b_{0}, b_{1}, b_{2}, \ldots, b_{k}\right)_{m}
$$

where $b_{i}=\min \left(n_{i}, \ell_{i}\right)$ for all i; note that $b_{0}=n_{0}$ since $\ell_{0} \equiv n_{0}(\bmod m)$. The next lemma follows by construction.

Lemma 2.1. For any non-simple partition $\ell \in N_{m}(n)$, we have $f_{m, n}(\ell)<_{m} n$.

Now, we use $f_{m, n}$ to define a relation on $N_{m}(n)$ by $\rho \sim \gamma$ if $f_{m, n}(\rho)=$ $f_{m, n}(\gamma)$.

Lemma 2.2. The relation \sim is an equivalence relation, and thus,

$$
\left\{f_{m, n}^{-1}(b) \mid b \in \mathbb{N} \text { and } b<_{m} n \text { and } f_{m, n}^{-1}(b) \neq \emptyset\right\}
$$

forms a partition of $N_{m}(n)$.

Proof. Any function yields such an equivalence relation.

Lemma 2.3. Let ℓ be a non-simple m-ary partition of n. Then ℓ can be component-wise decomposed as

$$
\ell=\left[\ell_{0}, \ell_{1}, \ldots, \ell_{k}\right]_{m}=\left[r_{0}, r_{1}, \ldots, r_{k}\right]_{m}+\left[b_{0}, b_{1}, b_{2}, \ldots, b_{k}\right]_{m}
$$

where $b=\left(b_{0}, b_{1}, b_{2}, \ldots, b_{k}\right)_{m}=f_{m, n}(\ell)$ and $r_{i} \geq 0$ for all i. Moreover, it follows that $r_{i}>0$ only if $n_{i}=b_{i}$.

Proof. Since $r_{i}=\ell_{i}-\min \left(\ell_{i}, n_{i}\right)$, it is clear that $r_{i} \geq 0$. Now, if $r_{i}>0$, then $\min \left(\ell_{i}, n_{i}\right) \neq \ell_{i}$ so that $b_{i}=n_{i}$, as required.

Lemma 2.4. Let ℓ be a non-simple m-ary partition of $n=\left(n_{0}, n_{1}\right.$, $\left.\ldots, n_{k}\right)_{m}$ with $\ell \in f_{m, n}^{-1}(b)$ where $b=\left(b_{0}, b_{1}, \ldots, b_{k}\right)_{m}$. Suppose that ℓ is of the form

$$
\ell=\left[\ell_{0}, b_{1}, b_{2}, \ldots, b_{j-1}, \ell_{j}, \ell_{j+1}, \ldots, \ell_{k}\right]_{m}
$$

with $\ell_{j}>n_{j}=b_{j}$. Then, there is a unique pair (r, h) with $r \geq 1$ and $0 \leq h<m^{j}$ such that $\ell_{j} \leq n_{j}+m r$, there is an m-ary partition of the form $\left[h, b_{1}, b_{2}, \ldots, b_{j-1}, b_{j}+m r, \ell_{j+1}, \ldots, \ell_{k}\right]_{m}$, and there is no m-ary partition of the form $\left[h^{\prime}, b_{1}, b_{2}, \ldots, b_{j-1}, g, \ell_{j+1}, \ldots, \ell_{k}\right]_{m}$ with $g>b_{j}+m r$.

Proof. Let $s=\ell_{j}-b_{j}=\ell_{j}-n_{j}>0$. According to the division algorithm, there is a unique h satisfying $\ell_{0}=t \cdot m^{j}+h$ where $0 \leq h<m^{j}$. Then, clearly,

$$
\left[h, b_{1}, b_{2}, \ldots, b_{j-1}, b_{j}+s+t, \ell_{j+1}, \ldots, \ell_{k}\right]_{m}
$$

is an m-ary partition of n. Note that

$$
\left[h^{\prime}, 0,0, \ldots, 0, b_{j}+s+t, \ell_{j+1}, \ldots, \ell_{k}\right]_{m}
$$

is an m-ary partition of n where

$$
h^{\prime}:=h+\sum_{i=1}^{j-1} b_{i}=\sum_{i=0}^{j-1} n_{i}<m^{j} .
$$

This implies that

$$
\left[0,0,0, \ldots, 0, b_{j}+s+t, \ell_{j+1}, \ldots, \ell_{k}\right]_{m}
$$

is an m-ary partition of $n^{\prime}=\left(0,0, \ldots, 0, n_{j}, n_{j+1}, \ldots, n_{k}\right)_{m}$. However, since $n_{j}=b_{j}$ and $s+t>0$, then

$$
0<s+t=\sum_{i=j+1}^{k}\left(n_{i}-\ell_{i}\right) \cdot m^{i-j}
$$

Thus, $s+t=m r$ for some $r \geq 1$, as required. Finally, we see that $b_{j}+m r$ is the largest number of parts of the form m^{j} we can have without reducing some ℓ_{i} with $i>j$.

Corollary 2.5. Let ℓ be a non-simple m-ary partition of $n=\left(n_{0}, n_{1}\right.$, $\left.\ldots, n_{k}\right)_{m}$ with $\ell \in f_{m, n}^{-1}(b)$ where $b=\left(b_{0}, b_{1}, \ldots, b_{k}\right)_{m}$. Suppose that ℓ is of the form

$$
\ell=\left[\ell_{0}, b_{1}, b_{2}, \ldots, b_{j-1}, \ell_{j}, \ell_{j+1}, \ldots, \ell_{k}\right]_{m}
$$

with $\ell_{j}>n_{j}=b_{j}$. Then, there is an m-ary partition of the form $\left[v, b_{1}, b_{2}, \ldots, b_{j-1}, u, \ell_{j+1}, \ldots, \ell_{k}\right]_{m}$ for all $b_{j}<u \leq b_{j}+m r$ where r is given by Lemma 2.4.

Proof. Let $b_{j}<u \leq b_{j}+m r$, and consider the partition of the form $\rho=\left[h, b_{1}, b_{2}, \ldots, b_{j-1}, b_{j}+m r, \ell_{j+1}, \ldots, \ell_{k}\right]_{m}$ guaranteed by Lemma 2.4. Then we find y such that $b_{j}+m r=u+y$ where $y \geq 0$. Next, construct an m-ary partition from ρ by converting y parts of the form m^{j} to $y \cdot m^{j}$ parts of the form m^{0}, obtaining the partition

$$
\left[h+y \cdot m^{j}, b_{1}, b_{2}, \ldots, b_{j-1}, u, \ell_{j+1}, \ldots, \ell_{k}\right]_{m}
$$

as required.
Now, fix $b<_{m} n$ with $f_{m, n}^{-1}(b) \neq \emptyset$. For each $1 \leq z \leq k$, we define

$$
B(z):=\left\{\rho \in f_{m, n}^{-1}(b) \mid \min \left\{i \geq 1 \mid \rho_{i} \neq b_{i}\right\}=z\right\} .
$$

Again, the following lemma is clear by construction.

Lemma 2.6. Let $b<_{m} n$ with $f_{m, n}^{-1}(b) \neq \emptyset$. Then, the collection of sets $\{B(z) \mid B(z) \neq \emptyset\}$ forms a partition of $f_{m, n}^{-1}(b)$.

As our final step, we fix z with $1 \leq z \leq k$ such that $B(z) \neq \emptyset$. Now, we define a relation on $B(z)$ as follows. We say that $\rho \simeq_{b, z} \gamma$ if $\gamma_{i}=\rho_{i}$ for all $i>z$.

Lemma 2.7. The relation $\simeq_{b, z}$ on $B(z)$ is an equivalence relation and thus provides a partition of $B(z)$.

Proof. This is again clear by construction.
Proposition 2.8. Let $n \in \mathbb{N}, b \in \mathbb{N}$ with $b<_{m} n$ and $1 \leq z \leq k$ be such that $f_{m, n}^{-1}(b) \neq \emptyset$ and $B(z) \neq \emptyset$. Then, the nops function is equidistributed modulo m on each equivalence class of $\simeq_{b, z}$.

Proof. Suppose that C is an equivalence class of $\simeq_{b, z}$. Then, by construction, there exists an $\ell_{z+1}, \ell_{z+2}, \ldots, \ell_{k}$ such that every partition in C is of the form

$$
\left[h, b_{1}, b_{2}, \ldots, b_{z-1}, h^{\prime}, \ell_{z+1}, \ell_{z+2}, \ldots, \ell_{k}\right]_{m}
$$

for some h and h^{\prime} with $h^{\prime}>b_{z}$. Now, according to Lemma 2.5 and Corollary 2.5, there exists some $r \geq 1$ such that

$$
\begin{aligned}
C=\left\{\left[h, b_{1}, b_{2}, \ldots, b_{z-1}, u, \ell_{z+1}, \ell_{z+2}\right.\right. & \left., \ldots, \ell_{k}\right]_{m} \\
& \left.h \in \mathbb{N} \text { and } b_{j}<u \leq b_{j}+m r\right\}
\end{aligned}
$$

Thus, $|C|=m r$. Now, for each $1 \leq w \leq m$, we define
$C_{w}=\left\{\left[h_{j}, b_{1}, b_{2}, \ldots, b_{j}+w+j m, \ell_{z+1}, \ell_{z+2}, \ldots, \ell_{k}\right]_{m} \mid 1 \leq j \leq(r-1)\right\}$,
and we note that $\left|C_{w}\right|=r-1$ for all w and the set $\left\{C_{w}\right\}$ forms a partition of C. Moreover, for each $w, \operatorname{nops}(\gamma) \equiv \operatorname{nops}(\rho)(\bmod m)$ for all $\gamma, \rho \in C_{w}$, and $\operatorname{nops}(\rho) \equiv \operatorname{nops}(\gamma)+1(\bmod m)$ whenever $\gamma \in C_{w}$ and $\rho \in C_{w+1}$.

3. Proof of Theorem 1.2 and consequences.

Proof of Theorem 1.2. Let $b<_{n} n$ with $f_{m, n}^{-1}(b) \neq \emptyset$. Then, let $1 \leq z \leq k$ with $B(z)$ be non-empty. By Proposition 2.8 and Lemma 2.7, the nops function is equidistributed $\bmod m$ on $B(z)$. Likewise, by Lemma 2.6, the nops function is equidistributed $\bmod m$ on $f_{m, n}^{-1}(b)$. Finally, Lemma 2.2 implies that the nops function is equidistributed $\bmod m$ on $N_{m}(n)$.

Let $n=\left(n_{0}, n_{1}, \ldots, n_{k}\right)_{m}$. Then, according to Theorem 1.2, $N_{m}(n)=m \cdot q$, where q is the number of non-simple m-ary partitions with the number of parts divisible by m. However, it is clear that there is a bijection between simple m-ary partitions of n and the integers equivalent to $n \bmod m$ that are m-dominated by n :

$$
\left[\ell_{0}, b_{1}, b_{2}, \ldots, b_{k}\right]_{m} \longleftrightarrow\left(n_{0}, b_{1}, b_{2}, \ldots, b_{k}\right)_{m}
$$

As previously mentioned, there are $\prod_{i=1}^{k}\left(n_{i}+1\right)$ integers equivalent to $n \bmod m$ that are m-dominated by n (see [4] and use the fact that b is
equivalent to $n \bmod m$ if and only if $\left.b_{0}=n_{0}\right)$. Thus, we see that

$$
b_{m}(n)=\left|N_{m}(n)\right|+\left|S_{m}(n)\right|=m \cdot q+\prod_{i=1}^{k}\left(n_{i}+1\right)
$$

therefore, Corollary 1.3 holds.
Understanding the nops function on $N_{m}(n)$ allows us to characterize when the nops function is equidistributed $\bmod m$ on the entire set of m-ary partitions, $P_{m}(n)$.

Corollary 3.1. The nops function is equidistributed modulo m on $P_{m}(n)$ if and only if nops is equidistributed modulo m on the simple m-ary partitions, $S_{m}(n)$.

Proof. This follows from Theorem 1.2 since $P_{m}(n)$ is the disjoint union of $N_{m}(n)$ and $S_{m}(n)$.

Theorem 3.2. Let $m \geq 2$, and let $n=\left(n_{0}, n_{1}, \ldots, n_{k}\right)_{m}$ be the base-m representation of n. Then, the nops function is equidistributed modulo m on $P_{m}(n)$ if and only if the set $\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$ contains $m-1$.

Proof. First, suppose that $n_{i}=m-1$ for some $i \geq 1$. Due to Corollary 3.1, we need to show that the nops function is equidistributed on $S_{m}(n)$. Now, for each $w \in\{0,1, \ldots, m-1\}$, let

$$
A_{w}=\left\{\ell \in S_{m}(n) \mid \ell_{i}=w\right\}
$$

Then, it is clear that $\left\{A_{w} \mid w \in\{0,1, \ldots, m-1\}\right\}$ forms a set partition of $S_{m}(n)$. Furthermore, since all the m-ary partitions in A_{w} are simple, there is a bijection $g_{w, w^{\prime}}: A_{w} \rightarrow A_{w^{\prime}}$ given by

$$
g_{w, w^{\prime}}\left(\left(\ell_{0}, \ell_{1}, \ldots, w, \ldots, \ell_{k}\right)\right):=\left(\ell_{0}+\left(w-w^{\prime}\right) \cdot m^{i}, \ell_{1}, \ldots, w^{\prime}, \ldots, \ell_{k}\right)
$$

such that $\left|A_{w}\right|=\left|A_{w^{\prime}}\right|$ for all $w, w^{\prime} \in\{0,1, \ldots, m-1\}$. Finally, let $\ell \in A_{0}$. Then, for each $w \in\{0,1, \ldots, m-1\}$, we have nops $\left(g_{0, w}(\ell)\right) \equiv$ nops $(\ell)+w(\bmod m)$. Thus, the nops function is equidistributed $\bmod m$ on $S_{m}(n)$.

Conversely, suppose that $m-1 \notin\left\{n_{1}, \ldots, n_{k}\right\}$. First, assume that the only nonzero base- m digits are n_{0} and n_{k} so that, by assumption,
$n_{k} \leq m-2$. Then, there are only $n_{k}+1 \leq m-1$ simple partitions, and thus, the nops function cannot be equidistributed $\bmod m$ on $S_{m}(n)$. Next, assume that $0<n_{j} \leq m-2$ for some $1 \leq j<k$. Similar to the previous paragraph, for each $w \in\left\{0,1, \ldots, n_{j}\right\}$, let

$$
A_{w}=\left\{\ell \in S_{m}(n) \mid \ell_{j}=w\right\}
$$

As before, $\left|A_{w}\right|=\left|A_{w^{\prime}}\right|$ for all $w, w^{\prime} \in\left\{0,1, \ldots, n_{j}\right\}$ and, for each $\ell \in A_{0}$ and each $w \in\left\{0,1, \ldots, n_{j}\right\}$, we have $\operatorname{nops}\left(g_{0, w}(\ell)\right) \equiv \operatorname{nops}(\ell)+w$ $(\bmod m)$. Since $n_{j} \leq m-2$, the nops function will be equidistributed $\bmod m$ on $S_{m}(n)$ if and only if the nops function is equidistributed $\bmod m$ on A_{0}. However, we see that there is a bijection $h: A_{0} \rightarrow$ $S_{m}\left(n-n_{j} \cdot m^{j}\right)$ given by

$$
h\left(\left(\ell_{0}, \ell_{1}, \ldots, 0, \ldots, \ell_{k}\right)\right):=\left(\ell_{0}-n_{j} \cdot m^{j}, \ell_{1}, \ldots, 0, \ldots, \ell_{k}\right)
$$

Moreover, we note that $\operatorname{nops}(h(\ell)) \equiv \operatorname{nops}(\ell)(\bmod m)$ such that nops is equidistributed $\bmod m$ on A_{0} if and only if nops is equidistributed $\bmod m$ on $S_{m}\left(n-n_{j} \cdot m^{j}\right)$, which implies that nops is equidistributed $\bmod m$ on $S_{m}(n)$ if and only if nops is equidistributed $\bmod m$ on $S_{m}\left(n-n_{j} \cdot m^{j}\right)$. Since the digit sets of n and $n-n_{j} \cdot m^{j}$ are identical except in position j, we can use this argument to deduce that nops is equidistributed $\bmod m$ on $S_{m}(n)$ if and only if nops is equidistributed $\bmod m$ on $S_{m}\left(n-\sum_{i=1}^{k-1} n_{i} \cdot m^{i}\right)$. However,

$$
n-\sum_{i=1}^{k-1} n_{i} \cdot m^{i}=\left(n_{0}, 0, \ldots, 0, n_{k}\right)
$$

and $n_{k} \leq m-2$; in this case, we have already shown that nops is not equidistributed $\bmod m$ on $S_{m}\left(n-\sum_{i=1}^{k-1} n_{i} \cdot m^{i}\right)$. The result follows.
4. Detailed example. We illustrate the results of the previous two sections with an example. Let $m=3$, and consider $n=60=$ $(0,2,0,2)_{3}$. Then, the total number of 3 -ary partitions of 60 is 117 , i.e., $b_{3}(60)=117$. Of these 117 , there are 9 simple partitions listed in Figure 1.

In Figures 2-7, we list the remaining 108 non-simple partitions, those in $N_{3}(60)$, using the results in Section 2. The numbers 3-dominated by 60 are

$$
0,3,6,27,30,33,54,57,60
$$

$S_{3}(60)$

$[0,2,0,2],[3,1,0,2],[6,0,0,2],[27,2,0,1],[30,1,0,1],[33,0,0,1],[54,2,0,0],[57,1,0,0]$, $[60,0,0,0]$

Figure 1.

Figure 2.
Let f represent $f_{3,60}$. It turns out that $f^{-1}(54), f^{-1}(57)$ and $f^{-1}(60)$ are all empty. There are 6 partitions in $f^{-1}(0)$ and $f^{-1}(3)$; there are 69 partitions in $f^{-1}(6)$; there are 3 partitions in $f^{-1}(27)$ and $f^{-1}(30)$; and there are 21 partitions in $f^{-1}(33)$. All of the nonempty inverse images are listed in Figures 2-7. The subsets correspond to the nonempty sets $B(z)$ for $1 \leq z \leq 3$, and then, the subsets of $B(z)$ correspond to the partition given by $\simeq_{b, z}$ guaranteed by Lemma 2.7. The most representative example is that of $f^{-1}(6)$ as it contains both $B(1)$ and $B(2)(B(3)=\emptyset)$ and $B(1)$ is further partitioned into six equivalence classes for $\simeq_{6,1}$.

We can then check that the cardinality of each of the equivalence classes of $\simeq_{b, z}$ is a multiple of 3 , and the nops function is equidistributed mod3 on these smallest parts (see the proof of Theorem 1.2), thus showing that the nops function is equidistributed on $N_{3}(60)$.

Figure 3.

Figure 4.

Figure 5.

Figure 6.
5. Extensions. In this section, we briefly discuss a possible way of extending these results to other congruence relations. We note that the set of non-simple m-ary partitions $N_{m}(n)$ can be defined as

$$
N_{m}(n)=\left\{\ell \in P_{m}(n) \mid \ell_{j}>n_{j} \text { for some } j \geq 1\right\}
$$

where $n=\left(n_{0}, \ldots, n_{k}\right)_{m}$ is the base- m representation of n. Consider the following generalizations. For any $c \geq 1$, we let

$$
\begin{aligned}
& N_{m, c}=\left\{\ell \in P_{m}(n) \mid\right. \\
& \left.\quad \ell_{j}>n_{j}, \quad \ell_{j+1}=n_{j+1}, \ldots, \ell_{j+c}=n_{j+c} \text { for some } j \geq 1\right\}
\end{aligned}
$$

Figure 7.
where we note that $N_{m}(n)$ can be interpreted as $N_{m, 0}$. Then, we prove an analogous result to Lemma 2.4 that shows $\left|N_{m, c}\right| \equiv 0\left(\bmod m^{c+1}\right)$. Therefore, if we can determine the size of the set

$$
S_{m, c}(n):=P_{m}(n) \backslash N_{m, c}(n)
$$

using mere knowledge of n (possibly the base- m representation of n), then we obtain interesting congruence properties for $b_{m}(n) \bmod m^{c+1}$ for any c.

REFERENCES

1. George E. Andrews, Congruence properties of the m-ary partition function, J. Number Theory 3 (1971), 104-110.
2. \qquad , The theory of partitions, Cambr. Math. Libr., Cambridge University Press, Cambridge, 1998.
3. George E. Andrews, Aviezri S. Fraenkel and James A. Sellers, Characterizing the number of m-ary partitions modulo m, Amer. Math. Month. 122 (2015), 880885.
4. Tyler Ball, Tom Edgar and Daniel Juda, Dominance orders, generalized binomial coefficients, and Kummer's theorem, Math. Mag. 87 (2014), 135-143.
5. Tyler Ball and Daniel Juda, Dominance over \mathbb{N}, Rose Hulman Undergrad. Math. J. 14 (2013).
6. R.F. Churchhouse, Congruence properties of the binary partition function, Proc. Cambr. Philos. Soc. 66 (1969), 371-376.
7. N.J. Fine, Binomial coefficients modulo a prime, Amer. Math. Month. 54 (1947), 589-592.
8. Hansraj Gupta, On m-ary partitions, Proc. Cambr. Philos. Soc. 71 (1972), 343-345.
9. \qquad A simple proof of the Churchhouse conjecture concerning binary partitions, Indian J. Pure Appl. Math. 3 (1972), 791-794.
10. Øystein Rødseth, Some arithmetical properties of m-ary partitions, Proc. Cambr. Philos. Soc. 68 (1970), 447-453.

Pacific Lutheran University, Department of Mathematics, Tacoma, WA 98447
Email address: edgartj@plu.edu

[^0]: 2010 AMS Mathematics subject classification. Primary 05A17, 11P83.
 Keywords and phrases. Partitions, m-ary partitions, congruence properties.
 Received by the editors on January 20, 2016.

