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THE DISTRIBUTION OF THE NUMBER OF
PARTS OF m-ARY PARTITIONS MODULO m

TOM EDGAR

ABSTRACT. We investigate the number of parts mod-
ulo m of m-ary partitions of a positive integer n. We prove
that the number of parts is equidistributed modulo m on a
special subset of m-ary partitions. As consequences, we ex-
plain when the number of parts is equidistributed modulo m
on the entire set of partitions, and we provide an alternate
proof of a recent result of Andrews, Fraenkel and Sellers
regarding the number of m-ary partitions modulo m.

1. Preliminaries and statement of the main result. Through-
out this note, we let N = {0, 1, 2, 3, . . .} represent the set of natural
numbers. For any m ≥ 2, every natural number n has a unique base-m
representation of the form n = n0 + n1m + · · · + nkm

k with nk ̸= 0.
We express this more compactly as n = (n0, n1, . . . , nk)m and use the
convention that ni = 0 if i > k.

For m ≥ 2, we say that a partition of n ∈ N is an m-ary partition if
each part is a power of m. We let bm(n) represent the number of m-ary
partitions of n. For instance, the 2-ary partitions of 8 are

8, 4 + 4, 4 + 2 + 2, 4 + 2 + 1 + 1,

4 + 1 + 1 + 1 + 1, 2 + 2 + 2 + 2,

2 + 2 + 2 + 1 + 1, 2 + 2 + 1 + 1 + 1 + 1,

2 + 1 + 1 + 1 + 1 + 1 + 1,

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1,

such that b2(8) = 10.

In a recent article, Andrews, Fraenkel and Seller, see [3], provided
the following beautiful characterization of the number of m-ary parti-
tions mod m relying only on the base-m representation of a number.
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Theorem 1.1 ([3]). If m ≥ 2 and n = (n0, n1, . . . , nk)m, then

bm(mn) =
k∏

i=0

(ni + 1) mod m.

Their elegant proof follows from clever manipulation of power series
and the generating function for m-ary partitions. Their result allows
for a uniform proof of many known congruence properties of m-ary par-
titions, originally conjectured by Churchhouse and proved by Rødseth,
Andrews and Gupta, see [1, 6, 8, 9, 10].

Theorem 1.1 implies that

bm(mn)−
k∏

i=0

(ni + 1) = m · q

for some q ∈ N. Our primary result (Theorem 1.2) provides a combi-
natorial interpretation for the value of q. Furthermore, as a corollary
to our main result, we obtain a new proof of Theorem 1.1 which does
not rely on generating functions.

Note that the product in Theorem 1.1,

k∏
i=0

(ni + 1),

arises in various other places; for instance, when m is prime, this
number counts the nonzero entries in row n of Pascal’s triangle mod m,
see [7]. This product may also be interpreted in terms of a partial
order on the natural numbers arising from base-m representations. In
particular, for fixed m ≥ 2, we let ≪m represent the m-dominance
order defined by a≪m b if ai ≤ bi for all i, where a = (a0, a1, . . . , ak)m
and b = (b0, b1, . . . , bl)m, see [4, 5]. Then, for n = (n0, n1, . . . , nk)m,
the same product counts the number of integers dominated by n,
see [4]. We will use the interpretation of the product in terms of the
m-dominance order in what follows.

Now, let n be a positive integer with mk ≤ n < mk+1. Then, every
m-ary partition is of the form

ℓk ·mk + ℓk−1 ·mk−1 + · · · ℓ1 ·m+ ℓ0



NUMBER OF PARTS OF m-ARY PARTITIONS MODULO m 1827

with ℓi ≥ 0 for all i. We will denote such a partition by [ℓ0, ℓ1, . . . , ℓk−1,
ℓk]m. It is noteworthy to mention here that the base-m representation
of n yields an m-ary partition

(n0, n1, . . . , nk)m 7−→ [n0, n1, . . . , nk]m.

Finally, we define a function nops from m-ary partitions of n to N
by

nops([ℓ0, ℓ1, . . . , ℓk−1, ℓk]m) =
k∑

i=0

ℓi;

this represents the number of parts of the partition.

Now, let n = (n0, n1, . . . , nk)m. We call an m-ary partition, ℓ,
of n simple if ℓ = [ℓ0, ℓ1, . . . , ℓk]m with ℓi ≤ ni for all i ≥ 1. Thus,
simple partitions are obtained by replacing powers of m in the m-ary
representation with the appropriate number of 1s. Let Pm(n) be the set
of m-ary partitions of n, Sm(n) the set of simple m-ary partitions of n
and Nm(n) = Pm(n) \ Sm(n) the set of non-simple m-ary partitions
of n. Restricting the function nops to Nm(n), we obtain the following
result.

Theorem 1.2. Let m ≥ 2 and n ∈ N. Then, the nops function is
equidistributed modulom on the set Nm(n).

As a corollary, we obtain the following.

Corollary 1.3. Let bm(n) be the number of m-ary partitions of n =
(n0, n1, . . . , nk)m. Then

bm(n) ≡
k∏

i=1

(ni + 1) mod m.

Note that the previous corollary is stated slightly differently than
Theorem 1.1, which is given only for bm(mn); however, due to the fact
that bm(mn+ r) = bm(mn) when 0 < r < m (as stated in [3]), the two
forms are equivalent.

This paper is organized as follows. Section 2 contains the details
necessary to prove Theorem 1.2. We prove the theorem and its corollary
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in Section 3. In addition, we use Theorem 1.2 to prove that the nops
function is equidistributed mod m on the entire set of m-ary partitions,
Pm(n), if and only if m− 1 appears in the base-m representation of n,
see Theorem 3.2. Section 4 contains a detailed example illustrating the
results in Sections 2 and 3. Finally, in Section 5, we describe some
possible extensions.

2. Technical details. In this section, we provide a systematic
method for partitioning Nm(n), which will be used to prove Theorem
1.2. We have included a detailed example of this method of partitioning
in Section 4.

Let m ≥ 2 and n ∈ N be fixed with n = (n0, n1, . . . , nk)m. First, we
define a function fm,n : Nm(n)→ N by

fm,n([ℓ0, ℓ1, . . . , ℓk]m) = (b0, b1, b2, . . . , bk)m,

where bi=min(ni, ℓi) for all i; note that b0=n0 since ℓ0≡n0 (mod m).
The next lemma follows by construction.

Lemma 2.1. For any non-simple partition ℓ ∈ Nm(n), we have
fm,n(ℓ)≪m n.

Now, we use fm,n to define a relation onNm(n) by ρ ∼ γ if fm,n(ρ) =
fm,n(γ).

Lemma 2.2. The relation ∼ is an equivalence relation, and thus,

{f−1
m,n(b) | b ∈ N and b≪m n and f−1

m,n(b) ̸= ∅}

forms a partition of Nm(n).

Proof. Any function yields such an equivalence relation. �

Lemma 2.3. Let ℓ be a non-simple m-ary partition of n. Then ℓ can
be component-wise decomposed as

ℓ = [ℓ0, ℓ1, . . . , ℓk]m = [r0, r1, . . . , rk]m + [b0, b1, b2, . . . , bk]m,

where b = (b0, b1, b2, . . . , bk)m = fm,n(ℓ) and ri ≥ 0 for all i. Moreover,
it follows that ri > 0 only if ni = bi.
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Proof. Since ri = ℓi − min(ℓi, ni), it is clear that ri ≥ 0. Now, if
ri > 0, then min(ℓi, ni) ̸= ℓi so that bi = ni, as required. �

Lemma 2.4. Let ℓ be a non-simple m-ary partition of n = (n0, n1,
. . . , nk)m with ℓ ∈ f−1

m,n(b) where b = (b0, b1, . . . , bk)m. Suppose that ℓ
is of the form

ℓ = [ℓ0, b1, b2, . . . , bj−1, ℓj , ℓj+1, . . . , ℓk]m

with ℓj > nj = bj. Then, there is a unique pair (r, h) with r ≥ 1
and 0 ≤ h < mj such that ℓj ≤ nj + mr, there is an m-ary partition
of the form [h, b1, b2, . . . , bj−1, bj + mr, ℓj+1, . . . , ℓk]m, and there is no
m-ary partition of the form [h′, b1, b2, . . . , bj−1, g, ℓj+1, . . . , ℓk]m with
g > bj +mr.

Proof. Let s = ℓj − bj = ℓj − nj > 0. According to the division
algorithm, there is a unique h satisfying ℓ0 = t · mj + h where
0 ≤ h < mj . Then, clearly,

[h, b1, b2, . . . , bj−1, bj + s+ t, ℓj+1, . . . , ℓk]m

is an m-ary partition of n. Note that

[h′, 0, 0, . . . , 0, bj + s+ t, ℓj+1, . . . , ℓk]m

is an m-ary partition of n where

h′ := h+

j−1∑
i=1

bi =

j−1∑
i=0

ni < mj .

This implies that

[0, 0, 0, . . . , 0, bj + s+ t, ℓj+1, . . . , ℓk]m

is an m-ary partition of n′ = (0, 0, . . . , 0, nj , nj+1, . . . , nk)m. However,
since nj = bj and s+ t > 0, then

0 < s+ t =
k∑

i=j+1

(ni − ℓi) ·mi−j .

Thus, s + t = mr for some r ≥ 1, as required. Finally, we see that
bj + mr is the largest number of parts of the form mj we can have
without reducing some ℓi with i > j. �
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Corollary 2.5. Let ℓ be a non-simple m-ary partition of n = (n0, n1,
. . . , nk)m with ℓ ∈ f−1

m,n(b) where b = (b0, b1, . . . , bk)m. Suppose that ℓ
is of the form

ℓ = [ℓ0, b1, b2, . . . , bj−1, ℓj , ℓj+1, . . . , ℓk]m

with ℓj > nj = bj. Then, there is an m-ary partition of the form
[v, b1, b2, . . . , bj−1, u, ℓj+1, . . . , ℓk]m for all bj < u ≤ bj +mr where r is
given by Lemma 2.4.

Proof. Let bj < u ≤ bj + mr, and consider the partition of the
form ρ = [h, b1, b2, . . . , bj−1, bj + mr, ℓj+1, . . . , ℓk]m guaranteed by
Lemma 2.4. Then we find y such that bj +mr = u + y where y ≥ 0.
Next, construct an m-ary partition from ρ by converting y parts of the
form mj to y ·mj parts of the form m0, obtaining the partition

[h+ y ·mj , b1, b2, . . . , bj−1, u, ℓj+1, . . . , ℓk]m,

as required. �

Now, fix b≪m n with f−1
m,n(b) ̸= ∅. For each 1 ≤ z ≤ k, we define

B(z) := {ρ ∈ f−1
m,n(b) | min{i ≥ 1 | ρi ̸= bi} = z}.

Again, the following lemma is clear by construction.

Lemma 2.6. Let b ≪m n with f−1
m,n(b) ̸= ∅. Then, the collection of

sets {B(z) | B(z) ̸= ∅} forms a partition of f−1
m,n(b).

As our final step, we fix z with 1 ≤ z ≤ k such that B(z) ̸= ∅. Now,
we define a relation on B(z) as follows. We say that ρ ≃b,z γ if γi = ρi
for all i > z.

Lemma 2.7. The relation ≃b,z on B(z) is an equivalence relation and
thus provides a partition of B(z).

Proof. This is again clear by construction. �

Proposition 2.8. Let n ∈ N, b ∈ N with b ≪m n and 1 ≤ z ≤ k
be such that f−1

m,n(b) ̸= ∅ and B(z) ̸= ∅. Then, the nops function is
equidistributed modulom on each equivalence class of ≃b,z.
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Proof. Suppose that C is an equivalence class of ≃b,z. Then, by
construction, there exists an ℓz+1, ℓz+2, . . . , ℓk such that every partition
in C is of the form

[h, b1, b2, . . . , bz−1, h
′, ℓz+1, ℓz+2, . . . , ℓk]m

for some h and h′ with h′ > bz. Now, according to Lemma 2.5 and
Corollary 2.5, there exists some r ≥ 1 such that

C = {[h, b1, b2, . . . , bz−1, u, ℓz+1, ℓz+2, . . . , ℓk]m |
h ∈ N and bj < u ≤ bj +mr}.

Thus, |C| = mr. Now, for each 1 ≤ w ≤ m, we define

Cw = {[hj , b1, b2, . . . , bj+w+jm, ℓz+1, ℓz+2, . . . , ℓk]m | 1 ≤ j ≤ (r−1)},

and we note that |Cw| = r − 1 for all w and the set {Cw} forms a
partition of C. Moreover, for each w, nops(γ) ≡ nops(ρ) (mod m) for
all γ, ρ ∈ Cw, and nops(ρ) ≡ nops(γ) + 1 (mod m) whenever γ ∈ Cw

and ρ ∈ Cw+1. �

3. Proof of Theorem 1.2 and consequences.

Proof of Theorem 1.2. Let b ≪n n with f−1
m,n(b) ̸= ∅. Then, let

1 ≤ z ≤ k with B(z) be non-empty. By Proposition 2.8 and Lemma 2.7,
the nops function is equidistributed mod m on B(z). Likewise, by
Lemma 2.6, the nops function is equidistributed mod m on f−1

m,n(b).
Finally, Lemma 2.2 implies that the nops function is equidistributed
mod m on Nm(n). �

Let n = (n0, n1, . . . , nk)m. Then, according to Theorem 1.2,
Nm(n) = m · q, where q is the number of non-simple m-ary parti-
tions with the number of parts divisible by m. However, it is clear
that there is a bijection between simple m-ary partitions of n and the
integers equivalent to n mod m that are m-dominated by n:

[ℓ0, b1, b2, . . . , bk]m ←→ (n0, b1, b2, . . . , bk)m.

As previously mentioned, there are
∏k

i=1(ni +1) integers equivalent to
n mod m that are m-dominated by n (see [4] and use the fact that b is
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equivalent to n mod m if and only if b0 = n0). Thus, we see that

bm(n) = |Nm(n)|+ |Sm(n)| = m · q +
k∏

i=1

(ni + 1);

therefore, Corollary 1.3 holds.

Understanding the nops function on Nm(n) allows us to characterize
when the nops function is equidistributed modm on the entire set of
m-ary partitions, Pm(n).

Corollary 3.1. The nops function is equidistributed modulom on
Pm(n) if and only if nops is equidistributed modulom on the simple
m-ary partitions, Sm(n).

Proof. This follows from Theorem 1.2 since Pm(n) is the disjoint
union of Nm(n) and Sm(n). �

Theorem 3.2. Let m ≥ 2, and let n = (n0, n1, . . . , nk)m be the
base-m representation of n. Then, the nops function is equidistributed
modulom on Pm(n) if and only if the set {n1, n2, . . . , nk} contains
m− 1.

Proof. First, suppose that ni = m − 1 for some i ≥ 1. Due to
Corollary 3.1, we need to show that the nops function is equidistributed
on Sm(n). Now, for each w ∈ {0, 1, . . . ,m− 1}, let

Aw = {ℓ ∈ Sm(n) | ℓi = w}.

Then, it is clear that {Aw | w ∈ {0, 1, . . . ,m−1}} forms a set partition
of Sm(n). Furthermore, since all the m-ary partitions in Aw are simple,
there is a bijection gw,w′ : Aw → Aw′ given by

gw,w′((ℓ0, ℓ1, . . . , w, . . . , ℓk)) := (ℓ0 + (w − w′) ·mi, ℓ1, . . . , w
′, . . . , ℓk)

such that |Aw| = |Aw′ | for all w,w′ ∈ {0, 1, . . . ,m − 1}. Finally, let
ℓ ∈ A0. Then, for each w ∈ {0, 1, . . . ,m− 1}, we have nops(g0,w(ℓ)) ≡
nops(ℓ) + w (mod m). Thus, the nops function is equidistributed
modm on Sm(n).

Conversely, suppose that m − 1 ̸∈ {n1, . . . , nk}. First, assume that
the only nonzero base-m digits are n0 and nk so that, by assumption,
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nk ≤ m−2. Then, there are only nk+1 ≤ m−1 simple partitions, and
thus, the nops function cannot be equidistributed modm on Sm(n).
Next, assume that 0 < nj ≤ m− 2 for some 1 ≤ j < k. Similar to the
previous paragraph, for each w ∈ {0, 1, . . . , nj}, let

Aw = {ℓ ∈ Sm(n) | ℓj = w}.

As before, |Aw| = |Aw′ | for all w,w′ ∈ {0, 1, . . . , nj} and, for each
ℓ ∈ A0 and each w ∈ {0, 1, . . ., nj}, we have nops(g0,w(ℓ))≡ nops(ℓ)+w
(mod m). Since nj ≤ m− 2, the nops function will be equidistributed
modm on Sm(n) if and only if the nops function is equidistributed
modm on A0. However, we see that there is a bijection h : A0 →
Sm(n− nj ·mj) given by

h((ℓ0, ℓ1, . . . , 0, . . . , ℓk)) := (ℓ0 − nj ·mj , ℓ1, . . . , 0, . . . , ℓk).

Moreover, we note that nops(h(ℓ)) ≡ nops(ℓ)(mod m) such that
nops is equidistributed modm on A0 if and only if nops is equidis-
tributed modm on Sm(n−nj ·mj), which implies that nops is equidis-
tributed modm on Sm(n) if and only if nops is equidistributed modm
on Sm(n−nj ·mj). Since the digit sets of n and n−nj ·mj are identical
except in position j, we can use this argument to deduce that nops is
equidistributed modm on Sm(n) if and only if nops is equidistributed

modm on Sm(n−
∑k−1

i=1 ni ·mi). However,

n−
k−1∑
i=1

ni ·mi = (n0, 0, . . . , 0, nk)

and nk ≤ m − 2; in this case, we have already shown that nops

is not equidistributed modm on Sm(n −
∑k−1

i=1 ni · mi). The result
follows. �
4. Detailed example. We illustrate the results of the previous

two sections with an example. Let m = 3, and consider n = 60 =
(0, 2, 0, 2)3. Then, the total number of 3-ary partitions of 60 is 117,
i.e., b3(60) = 117. Of these 117, there are 9 simple partitions listed in
Figure 1.

In Figures 2–7, we list the remaining 108 non-simple partitions, those
in N3(60), using the results in Section 2. The numbers 3-dominated
by 60 are

0, 3, 6, 27, 30, 33, 54, 57, 60.
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..[0, 2, 0, 2], [3, 1, 0, 2], [6, 0, 0, 2], [27, 2, 0, 1], [30, 1, 0, 1], [33, 0, 0, 1], [54, 2, 0, 0], [57, 1, 0, 0],
[60, 0, 0, 0]

.

S3(60)

Figure 1.

..
..
..[6, 0, 6, 0], [15, 0, 5, 0], [24, 0, 4, 0] ,[33, 0, 3, 0], [42, 0, 2, 0], [51, 0, 1, 0].

[∗, ∗, ∗, 0]

.

B(2)

.

f−1(0); 0 = (0, 0, 0, 0)3

Figure 2.

Let f represent f3,60. It turns out that f
−1(54), f−1(57) and f−1(60)

are all empty. There are 6 partitions in f−1(0) and f−1(3); there are 69
partitions in f−1(6); there are 3 partitions in f−1(27) and f−1(30); and
there are 21 partitions in f−1(33). All of the nonempty inverse images
are listed in Figures 2–7. The subsets correspond to the nonempty
sets B(z) for 1 ≤ z ≤ 3, and then, the subsets of B(z) correspond
to the partition given by ≃b,z guaranteed by Lemma 2.7. The most
representative example is that of f−1(6) as it contains both B(1) and
B(2) (B(3) = ∅) and B(1) is further partitioned into six equivalence
classes for ≃6,1.

We can then check that the cardinality of each of the equivalence
classes of≃b,z is a multiple of 3, and the nops function is equidistributed
mod3 on these smallest parts (see the proof of Theorem 1.2), thus
showing that the nops function is equidistributed on N3(60).
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..
..
..[3, 1, 6, 0], [12, 1, 5, 0] ,[21, 1, 4, 0], [30, 1, 3, 0], [39, 1, 2, 0], [48, 1, 1, 0].

[∗, ∗, ∗, 0]

.

B(2)

.

f−1(3); 3 = (0, 1, 0, 0)3

Figure 3.

..
..
..[6, 0, 3, 1], [15, 0, 2, 1], [24, 0, 1, 1] .

[∗, ∗, ∗, 1]

.

B(2)

.

f−1(27); 27 = (0, 0, 0, 1)3

Figure 4.

..
..
..[3, 1, 3, 1], [12, 1, 2, 1], [21, 1, 1, 1] .

[∗, ∗, ∗, 1]

.

B(2)

.

f−1(30); 30 = (0, 1, 0, 1)3

Figure 5.
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..

..

..[0, 11, 0, 1], [3, 10, 0, 1], [6, 9, 0, 1], [9, 8, 0, 1], [12, 7, 0, 1], [15, 6, 0, 1], [18, 5, 0, 1],
[21, 4, 0, 1], [24, 3, 0, 1]

.

[∗, ∗, 0, 1]

..[0, 8, 1, 1], [3, 7, 1, 1], [6, 6, 1, 1], [9, 5, 1, 1], [12, 4, 1, 1], [15, 3, 1, 1].

[∗, ∗, 1, 1]

..[0, 5, 2, 1], [3, 4, 2, 1], [6, 3, 2, 1] .

[∗, ∗, 2, 1]

.

B(1)

..
..[0, 2, 3, 1], [9, 2, 2, 1], [18, 2, 1, 1] .

[∗, ∗, ∗, 1]

.

B(2)

.

f−1(33); 33 = (0, 2, 0, 1)3

Figure 6.

5. Extensions. In this section, we briefly discuss a possible way of
extending these results to other congruence relations. We note that the
set of non-simple m-ary partitions Nm(n) can be defined as

Nm(n) = {ℓ ∈ Pm(n) | ℓj > nj for some j ≥ 1},

where n = (n0, . . . , nk)m is the base-m representation of n. Consider
the following generalizations. For any c ≥ 1, we let

Nm,c = {ℓ ∈ Pm(n) |
ℓj > nj , ℓj+1 = nj+1, . . . , ℓj+c = nj+c for some j ≥ 1},
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..

..

..

[0, 20, 0, 0], [3, 19, 0, 0], [6, 18, 0, 0], [9, 17, 0, 0], [12, 16, 0, 0],
[15, 15, 0, 0], [18, 14, 0, 0], [21, 13, 0, 0], [24, 12, 0, 0], [27, 11, 0, 0], [30, 10, 0, 0],
[33, 9, 0, 0], [36, 8, 0, 0], [39, 7, 0, 0], [42, 6, 0, 0],
[45, 5, 0, 0], [48, 4, 0, 0], [51, 3, 0, 0]

.

[∗, ∗, 0, 0]

..
[0, 17, 1, 0], [3, 16, 1, 0], [6, 15, 1, 0], [9, 14, 1, 0], [12, 13, 1, 0],
[15, 12, 1, 0], [18, 11, 1, 0], [21, 10, 1, 0], [24, 9, 1, 0], [27, 8, 1, 0],
[30, 7, 1, 0], [33, 6, 1, 0], [36, 5, 1, 0], [39, 4, 1, 0], [42, 3, 1, 0]

.

[∗, ∗, 1, 0]

..
[0, 14, 2, 0], [3, 13, 2, 0], [6, 12, 2, 0], [9, 11, 2, 0], [12, 10, 2, 0],
[15, 9, 2, 0], [18, 8, 2, 0], [21, 7, 2, 0], [24, 6, 2, 0], [27, 5, 2, 0],
[30, 4, 2, 0], [33, 3, 2, 0]

.

[∗, ∗, 2, 0]

..[0, 11, 3, 0], [3, 10, 3, 0], [6, 9, 3, 0], [9, 8, 3, 0], [12, 7, 3, 0],
[15, 6, 3, 0], [18, 5, 3, 0], [21, 4, 3, 0], [24, 3, 3, 0]

.

[∗, ∗, 3, 0]

..[0, 8, 4, 0], [3, 7, 4, 0], [6, 6, 4, 0], [9, 5, 4, 0], [12, 4, 4, 0], [15, 3, 4, 0].

[∗, ∗, 4, 0]

..[0, 5, 5, 0], [3, 4, 5, 0], [6, 3, 5, 0] .

[∗, ∗, 5, 0]

.

B(1)

..
..[0, 2, 6, 0], [9, 2, 5, 0], [18, 2, 4, 0], [27, 2, 3, 0], [36, 2, 2, 0], [45, 2, 1, 0].

[∗, ∗, ∗, 0]

.

B(2)

.

f−1(6); 6 = (0, 2, 0, 0)3

Figure 7.
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where we note that Nm(n) can be interpreted as Nm,0. Then, we prove
an analogous result to Lemma 2.4 that shows |Nm,c| ≡ 0(mod mc+1).
Therefore, if we can determine the size of the set

Sm,c(n) := Pm(n) \Nm,c(n)

using mere knowledge of n (possibly the base-m representation of n),
then we obtain interesting congruence properties for bm(n) mod mc+1

for any c.
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