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CONSTRUCTION OF NEW MULTIPLE KNOT
B-SPLINE WAVELETS

MARYAM ESMAEILI AND ALI TAVAKOLI

ABSTRACT. This paper deals with construction of non-
uniform multiple knot B-spline wavelet basis functions (with
minimal support). These wavelets are semi-orthogonal on a
bounded interval. A large family of multiple knot B-spline
wavelets is presented that gives a variety of basis functions
with explicit formulas and locally compact supports. More-
over, the structure of this wavelet is conceptually simple and
easy to implement. Finally, some examples of multiple knot
B-spline wavelets are also presented.

1. Introduction. Wavelets play a crucial role in many areas of
mathematics and engineering such as speech, image and signal process-
ing, approximation theory and numerical solution of partial differential
equations. Enormous progress has been made in the construction and
analysis of wavelet methods in recent years. Construction of wavelets
is usually based on the determination of filter coefficients of the scaling
functions.

The main goal is of course to find a possibly simple construction
from a technical point of view. Therefore, in order to minimize compu-
tational effort, construction of compactly supported wavelets is promi-
nent. A typical class of these wavelets are spline wavelets which are
constructed by B-spline functions. Some decomposition and reconstruc-
tion algorithms for spline wavelet packets on a closed interval are given
in [12]. B-splines are defined based on the knot points. An impor-
tant class of B-splines are multiple knot B-spline functions which are
defined based on multiple knot points. Construction of multiple knot
B-spline wavelets (MKBSWs) which are notable in mathematics and
engineering, has become a powerful mathematical tool. A generalized
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multiresolution of multiplicity r generated by r linearly independent
spline functions with multiple knots is introduced in [10].

Chui and Quak [2] investigated scaling function spaces of polynomial
splines of order m which, for a given level j ∈ N, are defined on a knot
set tj of equidistant knots of spacing 2−j (j denotes the level) and
knots of multiplicity m at both endpoints of the interval [0, 1]. For
some applications, this wavelet or a modification of it can work well.
A modification of Chui and Quak’s multiple knot B-spline wavelet for
solving (partially) Dirichlet boundary value problem is given in [11].

In [2], only the endpoint knots are multiple and the midpoint knots
are single. However, in many applications, we need multiple knot B-
spline wavelets (MKBSWs) whose knot points are multiple not only in
the endpoints but also in the middle knots. For example, hydroelastic
analysis of fully nonlinear water waves with the floating elastic plate is
a difficult task. When the water wave encounters the plate, the wave
function would not be smooth enough at the edge of the plate compared
to the other points. Hence, to numerically analyze the behavior of the
wave, the solution space should include basis functions that are not
smooth enough at the edge of plate [9].

Lyche et al. [6] constructed the mutually orthogonal spline wavelet
spaces on non-uniform partitions of a bounded interval with multiple
knots on the interval. In this paper, we follow another methodology
for constructing MKBSWs on a non-uniform partition of a bounded
interval. Our structure has the following advantages:

• the wavelet is expressed explicitly in terms of polynomials that
are conceptually simple and easy to implement;

• a large family of MKBSWs is presented that gives a variety
of basis functions with explicit formulas and locally compact
supports;

• MKBSWs may be found with minimal support;
• the algorithm is readily implemented with a variety in the order
of B-splines;

• multiple knot wavelets are constructed on non-uniform parti-
tions from a bounded interval.

In [1], a flexible and efficient single knot wavelet construction is
proposed for non-uniform B-spline curves and surfaces. Because of
multiplicity of the knots and presentation of an explicit formula for
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the wavelet, the wavelet introduced in this paper is more efficient than
that of [1]. Hence, this paper fulfills the construction of wavelets on
the single and multiple knot B-splines.

The structure of the paper is as follows. In Section 2, some prelim-
inaries of multiresolution analysis (MRA) and wavelets are presented.
The definition of multiple knot B-splines with their properties are given
in detail in Section 3. The main body of the paper is presented in Sec-
tion 4 where the construction of MKBSW is detailed. A variety of
MKBSW examples that support our theoretical results are given in
Section 5. The conclusion of the paper is presented in Section 6.

2. Preliminaries. It is well known that wavelets can be constructed
from a multiresolution analysis (MRA). In this section, we first recall
the definition of MRA that was already introduced by Mallat [7] and
Meyer [8] as follows:

Definition 2.1. Amultiresolution analysis (MRA) is a nested sequence
of closed subspaces Vj ∈ L2(R) that satisfy:

(i) · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ;
(ii) closL2(∪j∈ZVj) = L2(R);
(iii)

∩
j∈Z Vj = {0};

(iv) f ∈ Vj ⇔ f(·+ 2−j) ∈ Vj ⇔ f(2·) ∈ Vj+1, j ∈ Z; and
(v) there exists a function ϕ ∈ V0 that {ϕ(· − k)}k∈Z forms a Riesz

basis for V0, i.e., there are constants A and B, with 0 < A ≤
B <∞ such that

A∥{ck}∥2ℓ2 ≤
∥∥∥∥ ∞∑

k=−∞

ckϕ(· − k)

∥∥∥∥2
2

≤ B∥{ck}∥2ℓ2

for all sequences {ck} for which

∥{ck}∥2ℓ2 =

∞∑
k=−∞

|ck|2 <∞.

The function ϕ that satisfies the above conditions is called a scaling
function.
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Since Vj ⊂ Vj+1, one can write Vj+1 = Vj
⊕
Wj that Wj is a

complementary orthogonal subspace for Vj in Vj+1. Moreover, one
can show that [4]

L2(R) =
⊕
j∈Z

Wj .

Let ψ ∈ V1 and Wj = closL2{ψ(2j . − k) : j ∈ Z, k ∈ Z}. Then the
function ψ is called a wavelet.

Let us denote V
[0,1]
j instead of the subspace Vj when dealing with a

bounded interval [0, 1] and take V
[0,1]
j merely for j ≥ 0 in the concept

of a multi-resolution analysis. Then we have V
[0,1]
0 ⊂ V

[0,1]
1 ⊂ · · · and

closL2[0,1](∪j∈Z+Vj) = L2[0, 1].

Furthermore, the complementary orthogonal subspaces W
[0,1]
j satisfy

the following relations,

V
[0,1]
j+1 = V

[0,1]
j

⊕
W

[0,1]
j , j ∈ Z+,

and the orthogonal decomposition of L2[0, 1], namely,

L2[0, 1] = V
[0,1]
0

⊕
j∈Z+

W
[0,1]
j .

In this paper, we will construct the wavelet on the interval [0, 1].

3. Multiple knot B-splines. In this section, we define multiple
knot B-splines and prove some related properties.

Definition 3.1. Let m > 1 be a fixed integer number. For j ∈ Z+ and

Nj ∈ N, consider the set {nk}
Nj

k=0 such that{
nk = m k = 0, Nj ,

1 ≤ nk ≤ m− 1 k = 1, 2, . . . , Nj − 1.

A general multiple knot set on [0, 1] is defined by t(j) := t
(j)
m =

{tk}S0

k=−m+1, where

S0 =

Nj∑
k=1

nk, 0 ≤ tjk < tjk+1 ≤ 1 for k = 0, 1, . . . , Nj − 1,
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with

t−m+1 = t−m+2 = · · · = t−m+n0 = 0 =: tj0,

t1 = t2 = · · · = tn1 =: tj1,

tn1+1 = tn1+2 = · · · = tn1+n2 =: tj2,

...
... . . .

...

tS2+1 = tS2+2 = · · · = tS2+nNj−1 =: tjNj−1,

tS1+1 = tS1+2 = · · · = tS1+nNj
= 1 =: tjNj

,

(3.1)

where

S2 =

Nj−2∑
k=1

nk and S1 =

Nj−1∑
k=1

nk.

For i = 0, 1 . . ., S =
∑Nj−1

k=0 nk, the B-spline basis functions of degree
m − 1 (the order of m) are recursively defined starting with piecewise
constants for m = 1:

Bi,0,j(x) =

{
1 ti ≤ x < ti+1, ti < ti+1,

0 otherwise.

For m = 2, 3, . . ., they are defined by

(3.2) Bi,m−1,j(x)

=


0 ti = ti+m−1, ti+1 = ti+m,

αiBi,m−2,j(x) ti < ti+m−1, ti+1 = ti+m,

βiBi+1,m−2,j(x) ti = ti+m−1, ti+1 < ti+m,

αiBi,m−2,j(x) + βiBi+1,m−2,j(x) ti < ti+m−1, ti+1 < ti+m,

where αi = (x− ti)/(ti+m−1 − ti) and βi = (ti+m − x)/(ti+m − ti+1).

It is well known that the number of B-splines Bi,m−1,j of order m

associated with t
(j)
m is S =

∑Nj−1
k=0 nk. Moreover, the number of B-

splines Bi,2m−1,j of order 2m on t
(j)
m is equal to S −m. For example,

if m = 3, j = 2 and n0 = 3, n1 = 1, n2 = n3 = 2, n4 = 3, then

t
(2)
3 = {0, 0, 0, 1/4, 1/2, 1/2, 3/4, 3/4, 1, 1, 1}.
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The multiple knot B-splines of orders 3 and 6 associated with t
(2)
3 are

{Bi,2,2}8i=1 and {Bi,5,2}5i=1, respectively.

We denote by Vm,tjm
the space generated by the multiple knot B-

spline basis functions of order m at level j on t
(j)
m , i.e., Vm,tjm

:=

span {Bi,m−1,j}Si=1. In a particular case where

n1 = n2 = · · · = nNj−1 = n, 1 ≤ n ≤ m− 1,

the space is denoted by V n
m,tjm

.

The next lemma gives an explicit rule of multiple knot B-splines in
V m−1

m,tjm
:

Lemma 3.2. Let the space V m−1

m,tjm
be defined as above. The following

two statements hold for MKBS basis functions in the space V m−1

m,tjm
:

(i) If ti < ti+1 = · · · = ti+m−1 < ti+m, then two real numbers A and
B exist such that

(3.3) Bi,m−1,j(x) =


A(x− ti)

m−1 ti ≤ x < ti+1,

B(ti+m − x)m−1 ti+1 ≤ x < ti+m,

0 otherwise.

(ii) If ti = ti+1 = · · · = ti+k < ti+k+1 = ti+k+2 = · · · = ti+m for
k = 0, 1, . . . ,m− 1, then a real number C exists such that

(3.4)

Bi,m−1,j(x) =

{
C
(
m−1
k

)
(ti+m − x)k(x− ti)

m−k−1 ti ≤ x < ti+m,

0 otherwise,

where
(
m−1
k

)
:= (m− 1)!/k!(m− k − 1)!.

Proof. First note that, for the knot vector {ti, ti+1, . . . , ti+m}, only
two cases (i) and (ii) occur. The proof proceeds by induction with
respect to m. For m = 1, there is nothing to prove.

Assume that the lemma is true for m− 1 ≥ 2. In order to prove (i),
by the recursive relation (3.2), we have:
(3.5)

Bi,m−1,j(x) =
x− ti

ti+m−1 − ti
Bi,m−2,j(x) +

ti+m − x

ti+m − ti+1
Bi+1,m−2,j(x).
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On the other hand, by the induction assumption,

(3.6) Bi,m−2,j(x) =

{
C1(x− ti)

m−2 ti ≤ x < ti+m−1,

0 otherwise.

and

(3.7) Bi+1,m−2,j(x) =

{
C2(ti+m − x)m−2, ti+1 ≤ x < ti+m,

0 otherwise,

hold. Now relation (i) is derived by substituting (3.6) and (3.7) in (3.5).

In order to prove (ii), by (3.2), we have:

Bi,m−1,j(x)

=


(x− ti)/(ti+m−1 − ti)Bi,m−2,j(x) k = 0,

(ti+m − x)/(ti+m − ti+1)Bi+1,m−2,j(x) k = m− 1,

(x− ti)/(ti+m−1 − ti)Bi,m−2,j(x)

+(ti+m − x)/(ti+m − ti+1)Bi+1,m−2,j(x) 1 ≤ k ≤ m− 2.

For cases k = 0 and k = m − 1, by the induction assumption, we
respectively have:

Bi,m−2,j(x) =

{
C1(x− ti)

m−2 ti ≤ x < ti+m−1,

0 otherwise,
(3.8)

and

Bi+1,m−2,j(x) =

{
C2(ti+m − x)m−2 ti+1 ≤ x < ti+m,

0 otherwise.
(3.9)

For 1 ≤ k ≤ m−2, first note that ti = ti+1 and ti+m−1 = ti+m. Second,
by the induction assumption, we have:

(3.10) Bi,m−2,j(x)

=

{
C1

(
m−2
k

)
(ti+m − x)k(x− ti)

m−k−2 ti ≤ x < ti+m,

0 otherwise,
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and

(3.11) Bi+1,m−2,j(x)

=

{
C2

(
m−2
k−1

)
(ti+m − x)k−1(x− ti)

m−k−1 ti ≤ x < ti+m,

0 otherwise.

Now, by substituting (3.10) and (3.11) in (3.5) and using Pascal’s
binomial theorem(

m− 2

k − 1

)
+

(
m− 2

k

)
=

(
m− 1

k

)
,

statement (ii) is established. �

The next lemma identifies the properties of the space Vm,tjm
.

Lemma 3.3. Let S and Vm,tjm
be given as before. Then,

(i) {Bi,m−1,j}Si=1 is linearly independent and
(ii) Vm,tjm

= {f : [0, 1] → R|f |[tjk,tjk+1]
∈ Πm−1, k = 0, 1, . . . , Nj − 1

and f
(L)
− (tjk) = f

(L)
+ (tjk) for L = 0, 1, . . . ,m − nk − 1 and k =

1, 2, . . . , Nj − 1}, in which f
(L)
− and f

(L)
+ show the left and right

Lth derivatives of f , respectively.

L = 0 is defined by f
(0)
± (tjk) = limt→tj±k

f(t). Also, Πm−1 denotes the

set of polynomials with degree not exceeding m− 1.

A proof of this lemma may be found in some standard textbooks
on spline theory, see for example, [13, Theorems 4.14, 4.18]. An
immediate result of Lemma 3.3 is as follows:

Corollary 3.4. Let V m−1

m,tjm
and Vm,tjm

be given as before. Then,

(i) for any set {njk}
Nj

k=0 where njk ≤ m, the space Vm,tjm
is a subspace

of V m−1

m,tjm
, i.e.,

Vm,tjm
⊆ V m−1

m,tjm
;
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(ii) for the knot sequences tjm and tj+1
m ,

Vm,tjm
⊂ Vm,tj+1

m
,

holds.

Case (ii) follows from the fact that Nj < Nj+1 and tjm ⊂ tj+1
m with

the multiplicities {njk}
Nj

k=0 and {nj+1
k }Nj+1

k=0 , such that {(tjk, n
j
k)}

Nj

k=0 ⊂
{(tj+1

k , nj+1
k )}Nj+1

k=0 . Since Vm,tjm
and Vm,tj+1

m
are two closed subspaces,

there exists a subspace Wm,tjm
so that Vm,tj+1

m
= Vm,tjm

⊕ Wm,tjm
.

Hereafter, when there is no ambiguity, Vm,tjm
, Vm,tj+1

m
and Wm,tjm

will

be denoted by Vj , Vj+1 and Wj , respectively.

By Lemma 3.3 and Corollary 3.4, it turns out that

dimVj+1 =

Nj+1−1∑
k=0

nj+1
k , dimVj =

Nj−1∑
k=0

njk.

Hence,

dimWj =

Nj+1−1∑
k=0

nj+1
k −

Nj−1∑
k=0

njk,

since dimWj = dimVj+1 − dimVj . Also, it may be seen that a change
on the knot points can be made to have the same dimension for Wj

and Vj .

Remark 3.5. Note that {Vj}j≥0 does not satisfy concept (iv) of Def-

inition 2.1. For instance, consider the knot set t
(1)
2 = {0, 0, 1/2, 1, 1},

t
(2)
2 = {0, 0, 1/4, 1/2, 1, 1}, and assume that the function f is defined

on t
(1)
2 by

(3.12) f(x) =


x− 1/2 if 0 ≤ x < 1/2,

1/2− x if 1/2 ≤ x < 1,

0 otherwise.

By Lemma 3.3, it is clear that f ∈ V 1
2,t12

; however, f(2·) does not belong
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0 10.2 0.7

multiplicity m
multiplicity m−1

multiplicity m
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0 0.2 0.7 1
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(a)

(b)

(c)

Figure 1. An illustration of knot vector on (a) level 1 or j = 0, (b) level 2
or j = 1 and (c) level 3 or j = 2.

to V 1
2,t22

, since

(3.13) f(2x) =


2x− 1/2 if 0 ≤ x < 1/4,

1/2− 2x if 1/4 ≤ x < 1/2,

0 otherwise,

that is not continuous in 1/2.

Now we are ready to determine the nature of the space Wj . This is
the subject of next section.

4. Construction of MKBSW. In this section, we present the
construction of MKBSW. For this purpose, we introduce the following
subspace:

Sm,tj+1 = {s ∈ V2m,tj+1
m

| s(L)(tjk) = 0,

L = 0, 1, . . . , nj
k − 1, k = 1, . . . , Nj − 1},

in which s(L) shows the Lth derivative of s. It is obvious that the zero
function belongs to Sm,tj+1 which implies Sm,tj+1 ̸= ∅. An illustration
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of the knot vector from j = 0 to j = 2 is shown in Figure 1.

Now, we can state the following theorem:

Theorem 4.1. Let m = 2, 3, . . . and j ∈ N. Then the mth order
differential operator Dm maps the space Sm,tj+1 one-to-one onto the
space Wj.

Proof. Firstly, we prove that, for s ∈ Sm,tj+1 ,

Dms = s(m) ∈Wj .

To this end, we show that

(a) s(m) ∈ Vm,tj+1
m

and (b) s(m) ⊥ Vm,tjm
.

Next, s(m) ∈ Vm,tj+1
m

is followed from a characterization of Vm,tj+1
m

given

in Lemma 3.3 (b). In order to prove (b), we must show that for, each
B ∈ Vm,tjm

, ∫ 1

0

B(x)s(m)(x) dx = 0.

If 1 ≤ k ≤ Nj − 1, then 1 ≤ njk ≤ m− 1 yields 0 ≤ m−njk − 1 ≤ m− 2.

Now, define Bj := {m − njk − 1 | 1 ≤ k ≤ Nj − 1}. We can order the
elements of Bj as Bj = {bi}ri=1 such that

b1 < b2 < · · · < br.

Let ∆j
c := {tjk | 0 ≤ k ≤ Nj and m−njk − 1 ≤ bc} where c = 1, 2, . . . , r.

Note that ∆j
c ̸= ∅, for each c, since at least 0, 1 and {tjk | 1 ≤ k ≤

Nj − 1 and m − njk − 1 = bc} belong to ∆j
c. Moreover, ∆j

c can be
denoted by ∆j

c =: {tθc
i
}κc
i=1 with

tjθc
1
< tjθc

2
< · · · < tjθc

κc
,

where κc denotes the cardinal number of ∆j
c. Also, note that ∆j

c ⊂
∆j

c+1, ∆
j
r = tjm and κr = Nj + 1. The most multiplicity of tj+1

k in

tj+1
m is m due to endpoints 0 and 1. Therefore, by Lemma 3.3, it
turns out that s ∈ Cm−1(R), which implies s(L)(0) = s(L)(1) = 0 for
L = 0, 1, . . . ,m− 1. Furthermore, we have B ∈ Cb1([0, 1]). By (b1 +1)
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times integration by parts, it follows that

∫ 1

0

B(x)s(m)(x) dx = (−1)b1+1

∫ 1

0

B(b1+1)(x)s(m−b1−1)(x) dx

(4.1)

= (−1)b1+1
κ1−1∑
i=1

∫ tj
θ1
i+1

tj
θ1
i

B(b1+1)(x)s(m−b1−1)(x) dx.

By Lemma 3.3 and the definition of ∆j
c, we have B ∈ Cb2([tj

θ1
i
, tj

θ1
i+1

])

for i = 1, 2, . . . , κ1−1. On the other hand, m−njk−1 ≤ b1 for tjk ∈ ∆j
1,

and thus, m− b1 − 2 ≤ njk − 1 implies

s(L)(tj
θ1
i
) = 0, L = 0, 1, . . . ,m− b1 − 2, i = 1, 2, . . . , κ1,

by the definition of Sm,tj+1 . Thus, b2 − b1 times integration by parts
gives

(4.2)

∫ tj
θ1
i+1

tj
θ1
i

B(b1+1)(x)s(m−b1−1)(x) dx

= (−1)b2−b1

∫ tj
θ1
i+1

tj
θ1
i

B(b2+1)(x)s(m−b2−1)(x) dx.

Continuing this process b2−b1, b3−b2, . . . and br−br−1 times integration
we have

(4.3)

∫ 1

0

B(x)s(m)(x) dx

= (−1)br+1

Nj∑
i=1

∫ tj
θr
i+1

tj
θr
i

B(br+1)(x)s(m−br−1)(x) dx.

In the case where br = m− 2, by (4.3), we have:

(4.4)

∫ 1

0

B(x)s(m)(x) dx = (−1)m−1

Nj∑
i=1

∫ tj
θr
i+1

tj
θr
i

B(m−1)(x)s′(x) dx.
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If br < m− 2, applying m− br − 2 times integration by parts,

∫ 1

0

B(x)s(m)(x) dx = (−1)br+1

Nj∑
i=1

∫ tj
θr
i+1

tj
θr
i

B(br+1)(x)s(m−br−1)(x) dx

(4.5)

= (−1)m−1

Nj∑
i=1

∫ tj
θr
i+1

tj
θr
i

B(m−1)(x)s′(x) dx,

which is the same as (4.4). In addition, B(m−1) is a piecewise constant
polynomial, i.e.,

B(m−1) ≡ ci in [tjθr
i
, tjθr

i+1
],

for i = 1, 2, . . . , Nj where ci is a real constant. Also, s vanishes at the

endpoints of [tjθr
i
, tjθr

i+1
]. Then, for i = 1, 2, . . . , Nj , it follows that∫ tj

θr
i+1

tj
θr
i

B(m−1)(x)s′(x) dx = ci

∫ tj
θr
i+1

tj
θr
i

s′(x) dx(4.6)

= ci[s(t
j
θr
i
)− s(tjθr

i+1
)] = 0.

Consequently, ∫ 1

0

B(x)s(m)(x) dx = 0

establishes (b).

Next, we show that Dm is an injection operator. Let s(m) = 0. Then

s|[tj+1
k ,tj+1

k+1]
∈ Πm−1, k = 0, 1, . . . , Nj − 1.

We know that s(L)(0) = 0 for L = 0, 1, . . . ,m− 1. Thus,

s|[0,tj+1
1 ] = 0.

Furthermore s ∈ Cm−1(R) that gives s(L)(tj+1
1 ) = 0 for L = 0, 1, . . . ,

m− 1. Therefore,
s|[tj+1

1 ,tj+1
2 ] = 0.

Continuing this process for k = 2, 3, . . . , Nj − 1, we can conclude that
s = 0. Thus, Dm is an injective mapping.



1476 MARYAM ESMAEILI AND ALI TAVAKOLI

Now, as previously mentioned,

dimV2m,tj+1
m

=

Nj+1−1∑
k=0

nj+1
k .

Also, the conditions

s(L)(tjk) = 0, L = 0, 1, . . . , nj
k − 1, k = 1, 2, . . . , Nj − 1,

are independent, which yields

(4.7) dimSm,tj+1
m

=

Nj+1−1∑
k=0

nj+1
k −

Nj−1∑
k=0

njk.

On the other hand,

dimWj =

Nj+1−1∑
k=0

nj+1
k −

Nj−1∑
k=0

njk,

which yields the mapping is onto. This completes the proof. �

Now, the fundamental question is: by Theorem 4.1, for any ψ
belonging to Wj , there exists an s ∈ Sm,tj+1

m
such that Dms = ψ.

The question is then how to explicitly identify the members of Wj?

By the definition of Sm,tj+1
m

and Corollary 3.4 (i), we have Sm,tj+1
m

⊂
V 2m−1

2m,tj+1
m

. Then, by Lemma 3.3 (ii), we have

s |[tj+1
k ,tj+1

k+1]
∈ Π2m−1,

for k = 0, 1, . . . , Nj+1 − 1. We assume that

s |[tj+1
2k ,tj+1

2k+1]
= Pk, s |[tj+1

2k+1,t
j+1
2k+2]

= Qk, k = 0, 1, . . . , Nj − 1.

We consider the particular case that, for any tjk, k = 1, 2, . . . , Nj − 1,

there exists a tj+1
k′ such that tjk < tj+1

k′ = (tjk + tjk+1)/2 < tjk+1. Now,

noting that nj+1
2k = njk and Nj+1 = 2Nj , we have:

s(L)(tj+1
2k ) = 0, L = 0, 1, . . . , n2k − 1, k = 1, 2, . . . , Nj − 1.
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Then, by Lemmas 3.2 and 3.3 (i) for k = 0, 1, . . . , Nj − 1, there exist

two sets {αk,i}2m−n2k−1
i=0 and {βk,i}

2m−n2k+2−1
i=0 such that

Pk(x) =

2m−n2k−1∑
i=0

αk,i(x− tj+1
2k )2m−i−1(tj+1

2k+1 − x)i,(4.8)

and

Qk(x) =

2m−n2k+2−1∑
i=0

βk,i(t
j+1
2k+2 − x)2m−i−1(x− tj+1

2k+1)
i(4.9)

hold. Then, we have

Nj−1∑
k=0

(4m− n2k − n2k+2)

unknowns which should be identified. In order to form the correspond-
ing equations, we first note that

s
(L)
− (tj+1

k ) = s
(L)
+ (tj+1

k ) for L = 0, 1, . . . , 2m− nk − 1,

and k = 1, 2, . . . , Nj+1 − 1. Thus, we have the following equations:

P
(L)
k (tj+1

2k+1) = Q
(L)
k (tj+1

2k+1),(4.10)

L = 0, 1, . . . , 2m− n2k+1 − 1, k = 0, 1, . . . , Nj − 1,

Q
(L)
k (tj+1

2k+2) = P
(L)
k+1(t

j+1
2k+2),(4.11)

L = 0, 1, . . . , 2m− n2k+2 − 1, k = 0, 1, . . . , Nj − 2.

On the other hand, for k = 0, 1, . . . , Nj − 2,

Q
(L)
k (tj+1

2k+2) = P
(L)
k+1(t

j+1
2k+2) = 0, L = 0, 1, . . . , n2k+2 − 1.

Then, the second relation of (4.10) reduces as:

Q
(L)
k (tj+1

2k+2) = P
(L)
k+1(t

j+1
2k+2)

L = n2k+2, n2k+2 + 1, . . . , 2m− n2k+2 − 1,

k = 0, 1, . . . , Nj − 2.
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Consequently, we obtain a system with

Nj−1∑
k=0

(4m− n2k − n2k+2)

unknowns and

Nj−1∑
k=0

(2m− n2k+1) +

Nj−2∑
k=0

(2m− 2n2k+2)

equations. Since

Nj−1∑
k=0

(n2k + n2k+2) = n0 + 2

Nj−2∑
k=0

n2k+2 + nNj+1 = 2m+ 2

Nj−2∑
k=0

n2k+2,

then there exist
∑Nj−1

k=0 n2k+1 degrees of freedom. We can form more
explicitly the system of equations. For this, we note the following simple
proposition:

Proposition 4.2. Let g(x) = ax + c and h(x) = bx + d be two linear
functions in which a and b are equal to 1 or −1 and c and d are arbitrary
real numbers. Setting f = gmhn for m,n ∈ Z+, the Lth derivative of
f satisfies the following :

(4.12) f (L)(x) = (L!)
L∑

i=0

aibL−i

(
m

i

)(
n

L− i

)
gm−i(x)hn−L+i(x),

where gq = 0 and hq = 0 if q < 0.

Now, by Proposition 4.2, for k = 0, 1, . . . , Nj − 1, we have:
(4.13)

P
(L)
k (x) = L!

2m−n2k−1∑
i=0

L∑
q=0

(−1)L−q

(
2m− i− 1

q

)(
i

L− q

)
αk,ip(x),

Q
(L)
k (x) = L!

2m−n2k+2−1∑
i=0

L∑
q=0

(−1)q
(
2m− i− 1

q

)(
i

L− q

)
βk,iq(x),

where

p(x) = (x− tj+1
2k )2m−i−q−1(tj+1

2k+1 − x)i+q−L,
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and

q(x) = (tj+1
2k+2 − x)2m−i−q−1(x− tj+1

2k+1)
i+q−L.

We define the index sets of the wavelet by

J (1)
j := {(k, i)| 0 ≤ k ≤ Nj − 1, 0 ≤ i ≤ 2m− n2k − 1}

and

J (2)
j := {(k, i)| 0 ≤ k ≤ Nj − 1, 0 ≤ i ≤ 2m− n2k+2 − 1}.

Now by (4.10) and (4.13), we can write:

(4.14) (τ j2k)
2m−L−1

ξk∑
i=0

(−1)i
(
2m− i− 1

L− i

)
αk,i

=

ξk+1∑
i=0

(−1)L−i

(
2m− i− 1

L− i

)
βk,i,

for 0 ≤ L ≤ 2m − n2k+1 − 1, 0 ≤ k ≤ Nj − 1, where ξk =

min{2m− n2k − 1, L}, τ jk = (tj+1
k+1 − tj+1

k )/(tj+1
k+2 − tj+1

k+1) and

(4.15)

2m−n2k+2−1∑
i=2m−L−1

(
i

L− 2m+ i+ 1

)
× ((−1)i(τ j2k+1)

2m−L−1βk,i + (−1)L−iαk+1,i) = 0,

for n2k+2 ≤ L ≤ 2m−n2k+2−1, 0 ≤ k ≤ Nj −2, where {αk,i}(k,i)∈J (1)
j

and {βk,i}(k,i)∈J (2)
j

are unknown values. We know that the maximum

value of n2k is m and n2k+1 ≤ m − 1 for k = 0, 1, . . . , Nj − 1. Then
n2k+1 − 1 < 2m− n2k − 1.

On one hand, by Theorem 4.1, for any ψ ∈ Wj , there exists an
s ∈ Sm,tj+1

m
. Conversely, the coefficients αk,i and βk,i are handled to

form the function s. Therefore, the existence of the solution for the
system comprised by (4.14) and (4.15) is guaranteed.

Now, we find a solution for the system given by (4.14) and (4.15)
with a free selection of {αk,i}k,i for k = 0, 1, . . . , Nj − 1 and i =
0, 1, . . . , n2k+1−1. For k∗ = 0, 1, . . . , Nj−1 and i∗ = 0, 1, . . . , n2k+1−1,
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we define the set Λk∗,i∗ as

Λk∗,i∗ := {δk,k∗δi,i∗}0≤k≤Nj−1,0≤i≤n2k+1−1

in which δ is the Kronecker delta defined by

δi,j =

{
1 i = j,

0 i ̸= j.

Let us fix k∗ and i∗. By defining

J ∗
j := {(k, i) | 0 ≤ k ≤ Nj − 1, 0 ≤ i ≤ n2k+1 − 1},

and setting {αk,i}(k,i)∈J ∗
j
:= Λk∗,i∗ , a full system in terms of

{αk,i}0≤k≤Nj−1,n2k+1≤i≤2m−n2k−1 and {βk,i}(k,i)∈J (2)
j

is obtained from which a unique solution is derived. We represent this

solution by the sets {αΛk∗,i∗

k,i }
(k,i)∈J (1)

j

and {βΛk∗,i∗

k,i }
(k,i)∈J (2)

j

. Hence,

for each selection of k∗ and i∗, a solution is determined.

The set {sΛk∗,i∗}(k∗,i∗)∈J ∗
j
may be thought of as a set of polynomials

specified by substituting {αΛk∗,i∗

k,i }
(k,i)∈J (1)

j

and {βΛk∗,i∗

k,i }
(k,i)∈J (2)

j

in

the relations (4.8) and (4.9), respectively. Now, we will show that the
set of {sΛk∗,i∗}(k∗,i∗)∈J ∗

j
is independent. For this, assume that there

exists an {Ak∗,i∗}(k∗,i∗)∈J ∗
j
such that

(4.16) S(x) =
∑

(k∗,i∗)∈J ∗
j

Ak∗,i∗s
Λk∗,i∗ (x) ≡ 0.

By (4.8) and (4.9), the polynomials of degree 2m − 1, P
Λk∗,i∗

k and

Q
Λk∗,i∗

k can be considered such that

sΛk∗,i∗ |[tj+1
2k ,tj+1

2k+1]
= P

Λk∗,i∗

k ,

sΛk∗,i∗ |[tj+1
2k+1,t

j+1
2k+2]

= Q
Λk∗,i∗

k , k = 0, 1, . . . , Nj − 1.

Setting θ := tj+1
2k+1, for k = 0, 1, . . . , Nj − 1, we have

lim
x→θ−

S(x) = 0,
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which yields

lim
x→θ−

∑
(k∗,i∗)∈J ∗

j

Ak∗,i∗P
Λk∗,i∗

k = 0, k = 0, 1, . . . , Nj − 1.

Then,

lim
x→θ−

∑
(k∗,i∗)∈J ∗

j

Ak∗,i∗

2m−n2k−1∑
i=0

α
Λk∗,i∗

k,i (x− tj+1
2k )2m−i−1(tj+1

2k+1 − x)i = 0,

for k = 0, 1, . . . , Nj − 1. Thus,

(4.17)
∑

(k∗,i∗)∈J ∗
j

Ak∗,i∗α
Λk∗,i∗

k,0 = 0, k = 0, 1, . . . , Nj − 1.

Since α
Λk∗,i∗

k,0 = δk,k∗δ0,i∗ , relation (4.17) implies that Ak,0 = 0 for
k = 0, 1, . . . , Nj − 1.

On the other hand, by differentiation of (4.16), we have

(4.18)
dS(x)

dx
=

∑
(k∗,i∗)∈J ∗

j

Ak∗,i∗
dsΛk∗,i∗ (x)

dx
≡ 0.

Now, similar to the above operation, for [dsΛk∗,i∗ (x)]/dx, (4.18) clearly
gives Ak,1 = 0, for k = 0, 1, . . . , Nj − 1, if n2k+1 > 1. Apply-
ing the consecutive derivatives and continuing this process for i =
2, 3, . . . , n2k+1 − 1, implies that

Ak∗,i∗ = 0, (k∗, i∗) ∈ J ∗
j ;

hence, {sΛk∗,i∗}(k∗,i∗)∈J ∗
j
is linearly independent. Thus, we proved the

next theorem:

Theorem 4.3. Let j≥0 be an integer number. For any {(k∗, i∗)}(k∗,i∗)∈J ∗
j
,

there exist two sets {αΛk∗,i∗

k,i }(k,i)∈J ∗
j

and {βΛk∗,i∗

k,i }(k,i)∈J ∗
j

such that
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{ψ(k∗,i∗),j}(k∗,i∗)∈J ∗
j
, defined by

ψ(k∗,i∗),j(x) =



2m−n2k−1∑
i=0

m∑
q=0

α
Λk∗,i∗

k,i F k,j
i,q (x) tj+1

2k ≤ x < tj+1
2k+1,

2m−n2k+2−1∑
i=0

m∑
q=0

β
Λk∗,i∗

k,i Gk,j
i,q (x) tj+1

2k+1 ≤ x < tj+1
2k+2,

for k = 0, 1, . . . , Nj − 1, constitutes a basis for the wavelet space Wj,
where

F k,j
i,q (x) = (−1)m−q

(
2m− i− 1

q

)(
i

m− q

)
(x− tj+1

2k )2m−i−q−1(tj+1
2k+1 − x)i+q−m,

and

Gk,j
i,q (x) = (−1)q

(
2m− i− 1

q

)(
i

m− q

)
(tj+1

2k+2 − x)2m−i−q−1(x− tj+1
2k+1)

i+q−m.

Theorem 4.3 can be stated in a simpler form: Let j ≥ 0 and m ≥ 1 be

integer numbers, and let {nk}
Nj

k=0 be given as before. For h = 1, 2, . . . , N
such that

N =

Nj−1∑
k=0

n2k+1,

there exist two sets {αh
k,i}

m−1
i=0 and {βh

k,i}
m−1
i=0 such that {ψh}Nh=1, de-

fined by
(4.19)

ψh(x) =

Nj−1∑
k=0

m−1∑
i=0

(αh
k,iFk,i(x)χ[tj+1

2k ,tj+1
2k+1)

+ βh
k,iGk,i(x)χ[tj+1

2k+1,t
j+1
2k+2)

)

constitutes a basis for the wavelet space Wj, where

Fk,i(x) = (x− tj+1
2k )m−i−1(tj+1

2k+1 − x)i,(4.20)
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and

Gk,i(x) = (tj+1
2k+2 − x)m−1(x− tj+1

2k+1)
i.(4.21)

4.1. Minimal support. The MKBSW defined by Theorem 4.3 can
be constructed with minimal support. In fact, in order to have the
wavelet ψh with minimal support, we solve the following optimization
problem:

(4.22)

max p− q

s.t. System (4.14),

System (4.15),∫ p

0

|ψh|+
∫ 1

q

|ψh| = 0,

0 ≤ p ≤ q ≤ 1.

This problem yields the coefficients p, q, αh
k,i and β

h
k,i for k = 0, . . . , 2j−

1 and i = 0, . . . ,m − 1. The interval [p, q] would be the minimal
support of ψh. Many methods exist for solving this optimization
problem. For instance, an efficient heuristic method is the Particle
Swarm Optimization (PSO) that can be rapidly converged ([5]).

Taking the optimization problem (4.22) into account, an algorithm
for deriving the wavelet basis functions can be given as follows:

Algorithm 1. Construction of Multiple Knot B-Spline Wave-

let.

(1) INPUT: multiple knots, level j and order of B-spline

m.
(2) OUTPUT: The wavelet basis functions ψh.
(3) Solve 4.22;
(4) Compute ψh by (4.19).

4.2. Description and discussion. Theorem 4.3 presents new mul-
tiple knot B-spline wavelets on the interval [0, 1] that contain the fol-
lowing properties:



1484 MARYAM ESMAEILI AND ALI TAVAKOLI

(i) Let the degree of B-spline m, the level j and the knot set t
(j)
m

be fixed. Every selection of {Λk∗,i∗}(k∗,i∗)∈J ∗
j

gives a new wavelet

basis for Wj . For instance, we can take Λk∗,i∗ = {αk,i}(k,i)∈J ∗
j

with

αk,i = ck,iδk,k∗δi,i∗ in which {ck,i}k,i are arbitrary real numbers.

(ii) The free selection of multiplicities for the knot points makes it
the flexible and efficient wavelet in many applications.

(iii) The form of the basis functions is explicit and, in addition,
their derivatives of any order would be easily available. Moreover, the
structure of the wavelet is based upon polynomials; therefore, it is
conceptually simple and easy to implement.

(iv) Although the basis functions of the space W
[0,1]
j are not re-

finable, in the case of linear knots k2−j , they can be represented as
follows:

ψh = 2(−j−1)(m−1)
2j−1∑
k=0

m−1∑
i=0

(αh
k,iψ

1
m,i(2

j · −k) + βh
k,iψ

2
m,i(2

j · −k))

where

ψ1
m,i = (2·)m−1(1− 2·)iχ[0,1/2)(·),

and

ψ2
m,i = (2− 2·)m−1(2 · −1)iχ[1/2,1)(·).

(v) As the level j increases, the nonzero values of α
Λk∗,i∗

k,i and β
Λk∗,i∗

k,i

will decrease, see Section 5.

(vi) Boundary adapted and boundary symmetric are two important
features of the basis functions of a wavelet space that are noteworthy.
These are important, for example when we are solving a boundary
value problem. We recall a system of functions F := {f1, f2, . . . , fM},
fi : [0, 1] → R,

(a) boundary adapted, if

fi(0) ̸= 0 for i = 1, 2, . . . , k
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and

fi(1) ̸= 0 for i =M,M − 1 . . . ,M − k + 1;

(b) boundary symmetric, if

fi(0) = fM−i+1(1) for i = 1, 2, . . . ,M.

For more details, see [15]. The number of wavelet basis functions
which are nonzero on the endpoints 0 and 1 are at least n1 and
n2j+1−1, respectively. Furthermore, the wavelet bases generally are not
boundary symmetric. Neither are they boundary adapted except when
the multiplicities of the mid knots are equal. In addition, in general,
the bases also do not have any axis of symmetry. Moreover, in Figures
2, 3 and 4, in which the multiplicities of the middle knots are fixed and
equal to n, it appears that there exist n bases which the other bases
are a translation thereof, i.e., we have 2j − 1 translation from any n
basis functions.

5. Numerical examples. In this section, some numerical examples
are presented to show the graph of the basis constructed in the preced-
ing section. To this end, the different levels of j with different orders

of B-splines m along with a variety of knot set {t(j)m } are considered.

Figure 2 shows ψ(k∗,i∗),3 with m = 6 and the knot multiplicity of
{n0 = 6, n1 = 3, n2 = 4, n3 = 2, n4 = 5, n5 = 3, n6 = 5, n7 = 2, n8 =
6}, while Figures 3 and 4 show ψ(k∗,i∗),4 with m = 6 and the knot
multiplicity of

{n0 = 6, n1 = 5, n2 = 3, n3 = 2, n4 = 4, n5 = 1, n6 = 2,

n7 = 3, n8 = 5, n9 = 1, n10 = 3, n11 = 3,

n12 = 5, n13 = 4, n14 = 2, n15 = 4, n16 = 6}.

As expected, the lengths of the supports of ψ(k,i),4 for (k, i) ∈ J ∗
4

are shorter than those of ψ(k,i),3 for (k, i) ∈ J ∗
3 . Also, Figures 5,

6 and 7 show the wavelet basis functions of ψ(k,i),2 for (k, i) ∈ J ∗
2

on the spaces V 1
4,t24

, V 2
4,t24

and V 3
4,t24

, respectively. Figure 8 shows the

bases {ψ(k,i),2}(k,i)∈J ∗
2

on the space V 3
4,t24

for the different selections

of Λk∗,i∗ = {αk,i}(k,i)∈J ∗
2
, i.e., αk,i = ck∗,i∗δk,k∗δi,i∗ with {ck∗,i∗} =

{−1, 0.1, 2, 1, 5,−3, 2, 2.5,−0.75, 4, 9,−0.2}. Finally, Figure 9 shows
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Figure 2. ψ(k,i),3, 0 ≤ k ≤ 3, 0 ≤ i ≤ n2k+1 − 1 and m = 6.

ψ(k,i),j with m = 3, j = 2, first knots 0.4 and 0.87 the knot multiplicity
of {n0 = 3, n1 = 1, n2 = 1, n3 = 1, n4 = 2, n5 = 1, n6 = 1, n7 = 1, n8 =
2, n9 = 1, n10 = 1, n11 = 1, n12 = 3}, respectively. No symmetry
is observed in Figures 2, 3, 4 and 8. Figures 5, 6 and 7 show the
wavelet basis functions that are boundary adapted, but they do not
have boundary nor axis symmetry. Note that, for any f ∈ L2([0, 1]),
we have

f =
∑
k

⟨f, φj,k⟩φ̃j,k +
∑
j≥j0

∑
k

⟨f, ψj,k⟩ψ̃j,k,

where φ̃j,k and ψ̃j,k are dual scaling functions and dual wavelets,
respectively. Hence, when the wavelets ψj,k are of small magnitude,

the corresponding dual wavelet ψ̃j,k should be of large s magnitude to
approximate f well.
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Figure 3. Some basis functions of ψ(k,i),4, 0 ≤ k ≤ 7, 0 ≤ i ≤ n2k+1 − 1
and m = 6.

6. Adaptive approximation. We know that wavelet compression
allows us to obtain a sparse representation of a function f which is
smooth, except at some isolated singularities, in the sense that most
of the wavelet coefficients are small and hence can be neglected, see
[3]. The level j usually should be large enough to lay the functions
such as f in the multi-resolution space Vj . However, this is generally
not the case for the multi-resolution space generated by MKBS basis
functions, since it can contain the basis functions that are not smooth
in the singularities points. Hence, a better approximation of f is
expected when we use MKBS basis functions. In addition, f can be
approximated by keeping only a small number of wavelet coefficients
over the other wavelets and significantly reduce the complexity of the
description of f without affecting its accuracy.

In this section, we present two examples whose functions are
smooth, except at some isolated singularities, and are approximated
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Figure 4. The rest basis functions of ψ(k,i),4, 0 ≤ k ≤ 7, 0 ≤ i ≤ n2k+1 −1
and m = 6.
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Figure 5. ψ(0,0),2, ψ(1,0),2, ψ(2,0),2, ψ(3,0),2 in the space V 1
4,2.

by MKBSW and some other wavelets. The functions of both exam-
ples are approximated at the level j = 9. For each example, a table is
given that shows a comparison of errors (ϵ) and the number of zeros of
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Figure 6. ψ(k,i),j , 0 ≤ k ≤ 3, 0 ≤ i ≤ 1 in the space V 2
4,2.

detail coefficients in percent between MKBSW and the other wavelets
up to level j = 9. In the first column of the tables, dbN denotes the
Daubechies family wavelets, where N is the order, and db the “sur-
name” of the wavelet. Also, coif and bior show the coiflet wavelets
and biorthogonal spline wavelets, respectively. The error is taken by
∥.∥2.

Example 1. For the first example, we consider the function f : [0, 1] →
R, defined by

(6.1) f(x) =

{
x7 − 3x5 + 15x2 x ∈ [0, 1/2),

5x7 − 2x5 + x+ 3.1875 x ∈ [1/2, 1].

Figure 9 shows the function f that contains a singularity in x = 1/2.
Function f is only continuous at this point and there is no more
smoothness. Hence, the multiple knot function with multiplicity n = 7
is considered. Moreover, we use hard global thresholding thr = 0.001.
A comparison of the errors and the number of zeros in Table 1 is given.
As expected, the MKBSW has a lower error and more zeros for the
detail coefficients. The number of zeros in percent is few for Haar
and db2 while it is prolific for MKBSW and the other wavelets. Note
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Figure 7. ψ(k,i),j , 0 ≤ k ≤ 3, 0 ≤ i ≤ 2 in the space V 3
4,2.

that, by Lemma 3.3 (ii), function f belongs to the space V8,t98 in which

t98 = {k2−9}29k=0 with nj0 = nj29 = 9, nj
28 = 7, and njk = 1 for the

other nodal points. Hence, a good approximation solution is expected
even in the presence of thresholding. Furthermore, if there are more
singularity points in Figure 9, we may expect more difference in errors
between MKBSWs and the other wavelets.

Example 2. Consider the function f : [0, 1] → R, defined by

(6.2) f(x) =

{
3x2 − 1/2x+ 5 x ∈ [0, 1/2),

−3x2 + 4x+ 17/4 x ∈ [1/2, 1].

Figure 10 shows the function f and its approximated function by
MKBSW. It contains a singularity at x = 1/2. Note that the function
f lies in the space V3,t93 by Lemma 3.3 (ii) where V3,t93 in which

t93 = {k2−9}29k=0 with nj0 = nj29 = 9, nj28 = 7 and njk = 1 for the other
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Figure 8. The basis functions of ψ(k,i),j , 0 ≤ k ≤ 3, 0 ≤ i ≤ 2, with

Λk∗,i∗ := α
Λk∗,i∗
k∗,i∗ = {−1, 0.1, 2, 1, 5,−3, 2, 2.5,−0.75, 4, 9,−0.2} in the space

V 3
4,2.

Table 1. A comparison of errors and number of zeros in percent.

Number of

Method ϵ zeros

MKBSW 0.00004 91.01
Haar 0.0013 3.26
db2 0.0050 0.00
db3 0.0023 84.21

db4 0.0016 83.83
db5 0.0018 81.80
coif2 0.0020 79.17

bior2.2 0.0032 72.41

nodal points. Function f is only continuous at this point, and there
is no higher degree of continuity. Hence, the multiple knot function
with multiplicity n = 2 is considered. Moreover, we use hard global
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Figure 9. ψ(0,0), ψ(1,0), . . . , ψ(12,0).
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Figure 10. The function f defined by (6.1).
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Figure 11. The original function f (left) defined by (6.2) and an approxi-
mation of it (right).

Table 2. A comparison of errors and number of zeros in percent.

Number of

Method ϵ zeros

MKBSW 1.0012e− 015 99.61
Haar 1.4465e− 013 1.72
db2 7.7619e− 012 0.00
db3 5.2660e− 010 83.85

db4 2.3856e− 011 78.03
db5 4.9877e− 008 73.47
coif2 3.45382e− 009 70.58

bior2.2 2.0332e− 013 0.00

thresholding thr = 10−7. A comparison of the errors and number of
zeros is given in Table 2. In Table 2, we observe that MKBSW has less
error and more zeros over the other wavelets.

7. Conclusions and future work. In this paper, a new multiple
knot B-spline wavelet was introduced. In fact, this paper generalizes
the construction of multiple knot B-spline wavelet that was introduced
by Chui and Quak [2]. The MKBSW of Chui and Quak has been
constructed based on the knot vectors that are multiple only on the
endpoints, while the MKBSWs introduced in the present paper are
constructed based on the knot vectors that are multiple not only
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in the endpoints but also in the middle knots. This work fulfills
the construction of multiple knot B-spline wavelets on the interval.
Multiple knot B-spline wavelets are only semi-orthogonal wavelets and

thus, for future work, the bi-orthogonal wavelets {ψ̃(k,i),j}(k,i)∈J ∗
j
may

be built such that

(ψ̃(k,i),j , ψ(k′,i′),j′) = δk,k′δi,i′δj,j′ .

This is the subject of our upcoming work [14].
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