A NOTE ON THE RANK OF $Bext^1_A(G, A)$

ULRICH ALBRECHT

ABSTRACT. The goal of this paper is to compare ranks of the divisible groups $\operatorname{Ext}(G, A)$ and $\operatorname{Bext}^1_A(G, A)$ whenever G is a countable torsion-free A-solvable group and A has a right hereditary endomorphism ring.

Every Abelian group A induces functors $H_A(\cdot) = \text{Hom}(A, \cdot)$ and $T_A(\cdot) = \cdot \otimes_E A$ between the category of Abelian groups and the category of right E-modules where E = E(A) denotes the endomorphism ring of A. These functors induce natural maps $\theta_G : T_A H_A(G) \to G$ and $\phi_M : M \to H_A T_A(M)$ defined by $\theta_G(\alpha \otimes a) = \alpha(a)$ and $[\phi_M(x)](a) =$ $x \otimes a$ for all $\alpha \in H_A(G), x \in M$ and $a \in A$. A group G is Agenerated if $S_A(G) = G$ where $S_A(G) = \text{im}(\theta_G)$, and it is A-solvable if θ_G is an isomorphism. A group P is (finitely) A-projective if it is a direct summand of $\oplus_I A$ for some (finite) index-set I. If A is a torsionfree group of finite rank, then all A-projective groups are A-solvable. Finally, $G^* = \text{Hom}(G, A)$ for all Abelian groups G.

One of the central problems in the theory of Abelian groups is to determine the structure of the divisible group $\operatorname{Ext}(A, B)$ in the case where A and B are torsion-free. However, properties of an Abelian group A are often better described by considering subgroups of Ext, as can be seen in the discussion of Butler groups. Similarly, the group $\operatorname{Ext}(G, A)$ is not the right tool for studying homological properties of A-solvable groups. These are better described by the subgroup $\operatorname{Bext}^1_A(G, H)$ of $\operatorname{Ext}(G, H)$. It consists of the equivalence classes of sequences

$$0 \longrightarrow H \longrightarrow X \longrightarrow G \longrightarrow 0$$

with G and H A-solvable, with respect to which A is projective [3].

DOI:10.1216/RMJ-2017-47-5-1405 Copyright ©2017 Rocky Mountain Mathematics Consortium

²⁰¹⁰ AMS Mathematics subject classification. Primary 20K20, 20K35, 20K40.

 $Keywords\ and\ phrases.$ Endomorphism ring, torsion-free Abelian groups, rank of Ext.

Received by the editors on October 14, 2015, and in revised form on December 10, 2015.

ULRICH ALBRECHT

Since $Bext_A^1(G, H) \cong Ext_E^1(H_A(G), H_A(H))$, we obtain that $Bext_A^1$ is a right exact functor if E is right hereditary. Standard homological arguments show that in this case $Bext_A^1(G, A)$ is a divisible group for a torsion-free A-solvable group G whose structure is determined by its torsion-free and its p-ranks, where the p-rank of a divisible group D is defined as $r_p(D) = \dim_{\mathbb{Z}/p\mathbb{Z}} D[p]$. On the other hand, $r_p(G) = \dim_{\mathbb{Z}/p\mathbb{Z}} G/pG$ is the p-rank of a torsion-free group G [4]. Naturally, the question arises of how the ranks of Ext(G, A) and $Bext_A^1(G, A)$ are related if G is A-solvable. Since

$$2^{\aleph_0} = r_0(\text{Ext}(P, A)) > r_0(B\text{ext}_A^1(P, A)) = 0,$$

for a countable A-projective group P unless Ext(A, A) = 0, these two ranks need not coincide in general.

Theorem 0.1. Let A be a countable reduced torsion-free Abelian group whose endomorphism ring is a hereditary subring of a finitedimensional \mathbb{Q} -algebra. If G is a countable torsion-free A-solvable group which is not A-projective, then

$$r_0(Bext^1_A(G,A)) = 2^{\aleph_0} = r_0(Ext(G,A)).$$

Proof. Since E is a hereditary subring of a finite-dimensional \mathbb{Q} -algbera, E is a semi-prime right and left Noetherian ring and $\mathbb{Q}E$ is semi-simple Artinian by [8]. In particular, a right E-module M is non-singular, see [7], if and only if its additive group is torsion-free. Moreover, A is faithfully flat as an E-module by [1]. Consequently, A-generated subgroups of A-solvable groups are A-solvable by [3]; and every exact sequence $G \to P \to 0$ such that G is A-generated and P is A-projective splits [1].

Let F be a finitely A-projective subgroup of a torsion-free A-solvable group G. We consider the induced sequence

$$0 \longrightarrow H_A(F) \longrightarrow H_A(G),$$

and select a submodule U of $H_A(G)$ such that $H_A(G)/U$ is torsion-free and $U/H_A(F)$ is torsion. Then, $T_A(U)/T_AH_A(F)$ is torsion. Since A is flat as an E-module,

$$T_A H_A(G)/T_A(U) \cong T_A(H_A(G)/U)$$

1406

is torsion-free. Therefore, the purification F_* of F in G is isomorphic to $T_A(U)$ since G is A-solvable. In particular, F_* is A-solvable by the remarks in the last paragraph.

Suppose that F_* is A-projective for all finitely A-projective subgroups F of a countable A-solvable group G. Then, $H_A(F_*)$ is a projective right E-module which contains the finitely generated projective module $H_A(F)$ as an essential submodule. By Sandomierski's theorem [5], $H_A(F_*)$ is finitely generated, and $F_* \cong T_A H_A(F_*)$ is finitely A-projective. Thus, G is the union of an ascending chain $\{U_n \mid n < \omega\}$ of pure finitely A-projective subgroups. For each $n < \omega$, we obtain the exact sequence

$$0 \longrightarrow H_A(U_n) \longrightarrow H_A(U_{n+1}) \longrightarrow H_A(U_{n+1}/U_n)$$

which yields that $H_A(U_{n+1})/H_A(U_n)$ is a finitely generated nonsingular right *E*-module. Since $\mathbb{Q}E$ is semi-simple Artinian, this module is projective by [7], and $H_A(U_n)$ is a direct summand of $H_A(U_{n+1})$. Hence, we obtain the commutative diagram

whose top row splits. Thus, the same holds for the bottom row. Consequently, G is A-projective, a contradiction.

Therefore, G contains a finitely A-projective subgroup F and a pure subgroup U containing F such that U/F is torsion, but U is not A-projective. Since E is right hereditary, $\operatorname{Ext}^1_E(H_A(U), E) \cong$ $\operatorname{Bext}^1_A(U, A)$ is an epimorphic image of

$$\operatorname{Ext}^{1}_{E}(H_{A}(G), E) \cong \operatorname{Bext}^{1}_{A}(G, A).$$

Because $|\text{Ext}(G, A)| \leq 2^{\aleph_0}$, it suffices to show that $Bext^1_A(U, A)$ has torsion-free rank at least 2^{\aleph_0} .

Hence, we may assume that G contains a finitely A-projective subgroup F such that G/F is torsion and consider the induced sequence

$$0 \longrightarrow H_A(F) \longrightarrow H_A(G) \stackrel{H_A(\pi)}{\longrightarrow} M \longrightarrow 0$$

where $\pi : G \to G/F$ is the projection and $M = \operatorname{im} H_A(\pi)$. The last sequence induces

$$\operatorname{Hom}_E(H_A(F), E) \longrightarrow \operatorname{Ext}^1_E(M, E) \longrightarrow \operatorname{Ext}^1_E(H_A(G), E) \longrightarrow 0.$$

Since $\operatorname{Hom}_E(H_A(F), E)$ is countable and

$$Bext^1_A(G, A) \cong Ext^1_E(H_A(G), E)$$

by [3], it remains to show that $\operatorname{Ext}^1_E(M, E)$ has torsion-free rank at least 2^{\aleph_0} .

Observe that $T_A(M) \cong G/F$ is torsion due to the commutative diagram

On the other hand, $T_A(M/tM)$ is torsion-free since A is E-flat. Consequently, $T_A(M/tM) = 0$, from which we obtain

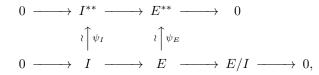
$$M = tM = \oplus_p M_p$$

because A is faithfully flat as a left E-module by [2], and $\operatorname{Ext}^1_E(M, E) \cong \prod_p \operatorname{Ext}^1_E(M_p, E)$. Moreover, $(G/F)_p \neq 0$ if and only if $M_p \neq 0$, since multiplication by an integer relatively prime to p is an automorphism of M_p .

In order to see that $\operatorname{Ext}_{E}^{1}(N, E) \neq 0$ whenever N is a non-zero right *E*-module whose additive group is torsion, consider an essential right ideal I of E such that $E/I \neq 0$ is isomorphic to a submodule of N. Since E is hereditary, $\operatorname{Ext}_{E}^{1}(E/I, E) = 0$ if $\operatorname{Ext}_{E}^{1}(N, E) = 0$. Thus, we obtain the exact sequence

$$0 = E/I^* \longrightarrow E^* \longrightarrow I^* \longrightarrow \operatorname{Ext}^1_E(E/I, E) = 0.$$

in which $(E/I)^* = 0$ because E/I is singular and E is non-singular. Since I is finitely generated and projective, we have the commutative diagram



where $M^* = \operatorname{Hom}_E(M, E)$ for all right (left) *E*-modules *M*, and the natural map $\psi_M : M \to M^{**}$ is an isomorphism whenever *M* is a finitely generated projective module [9]. Therefore, E/I = 0, a contradiction.

If $(G/F)_p \neq 0$ for infinitely many primes, then $\operatorname{Ext}(M_p, E) \neq 0$ for infinitely many primes by the last paragraph, and $\operatorname{Ext}^1_E(M, E) \cong \prod_p \operatorname{Ext}^1_E(M_p, E)$ has torsion-free rank 2^{\aleph_0} .

Hence, it remains to consider the case where $(G/F)_p \neq 0$ for only finitely many primes p. In this case, M_p cannot be bounded as an Abelian group for all primes p since this would yield $kH_A(G) \subseteq H_A(F)$ for some non-zero integer k. Therefore, $G \cong T_A H_A(G)$ would be Aprojective since E is right hereditary.

In order to see that $\operatorname{Ext}(M_p, E)$ has torsion-free rank at least 2^{\aleph_0} whenever M_p is unbounded as an Abelian group, choose submodules V_n of $H_A(G)$ containing $H_A(F)$ such that $V_n/H_A(F) = M[p^n] \subseteq M_p$. Since $V_{n+1}/V_n \cong M[p^{n+1}]/M[p^n] \neq 0$ by the last paragraph and $pV_{n+1} \subseteq V_n$, we have $\operatorname{Ext}_E^1(V_{n+1}/V_n, E) \neq 0$ by what has already been shown. By [8], there is an epimorphism

$$\operatorname{Ext}^{1}_{E}(M_{p}, E) \longrightarrow \varprojlim \operatorname{Ext}^{1}_{E}(V_{n}/H_{A}(F), E)$$

since

$$M = \bigcup_{n < \omega} V_n / H_A(F).$$

However, the latter Ext-group is torsion-free of at least rank 2^{\aleph_0} as in [8], since the sequences

$$0 \longrightarrow \operatorname{Ext}_{E}^{1}(V_{n+1}/V_{n}, E) \longrightarrow \operatorname{Ext}_{E}^{1}(V_{n+1}/H_{A}(F), E)$$
$$\longrightarrow \operatorname{Ext}_{E}^{1}(V_{n}/H_{A}(F), A) \longrightarrow 0$$

are exact since $\operatorname{Hom}((V_n/H_A(F)), E) = 0$ for all $n < \omega$.

We now turn to the *p*-rank of $Bext^1_A(G, A)$.

Theorem 0.2. Let A be a torsion-free Abelian group A of finite rank.

- (a) The following conditions are equivalent for a prime p:
 - (i) $r_p(E) = [r_p(A)]^2$.
 - (ii) $t_p \operatorname{Ext}(G, A) = t_p \operatorname{Bext}_A^1(G, A)$ for all torsion-free A-solvable groups G.
 - (iii) $[\text{Ext}(G, A)/B\text{ext}_A^1(G, A)][p] = 0$ for all torsion-free A-solvable groups G.
- (b) If $r_p(E) = [r_p(A)]^2$ for some prime p, then $r_p(\text{Bext}^1_A(G, A))$ is either finite or 2^{\aleph_0} whenever G is an A-solvable group.

Proof.

(a) (i) \Rightarrow (iii). By Warfield's result [10], (i) yields

$$r_p(\text{Ext}(A, A)) = [r_p(A)]^2 - r_p(E) = 0$$

and $\operatorname{Ext}(A, A)[p] = 0$. For an A-solvable group G, there is an exact sequence

$$0 \longrightarrow U \longrightarrow F \longrightarrow G \longrightarrow 0$$

such that F is a direct sum of copies of A with respect to which A is projective. Since $Bext^1_A(F, A) \cong Ext^1_E(H_B(F), E) = 0$ by [3], it induces

$$0 \longrightarrow G^* \longrightarrow F^* \longrightarrow U^* \stackrel{\delta}{\longrightarrow} Bext^1_A(G, A) \longrightarrow 0.$$

Combining this with the regular Cartan-Eilenberg sequence yields the exact sequence

$$0 \longrightarrow \frac{\operatorname{Ext}(G, A)}{\operatorname{Bext}^1_A(G, A)} \longrightarrow \operatorname{Ext}(F, A) \longrightarrow \operatorname{Ext}(U, A) \longrightarrow 0$$

which splits since $\operatorname{Ext}(G, A)$ is divisible. Since $\operatorname{Ext}(A, A)[p] = 0$, the same holds for $\operatorname{Ext}(G, A)/\operatorname{Bext}^1_A(G, A)[p]$.

(iii) \Rightarrow (ii). Due to the fact that $[\text{Ext}(G, A)/B\text{ext}^1_A(G, A)][p] = 0$, we obtain an exact sequence

$$0 \longrightarrow Bext^1_A(G, A)[p] \longrightarrow Ext(G, A)[p] \longrightarrow 0$$

which yields that $t_p \text{Bext}^1_A(G, A)$ is an essential subgroup of $t_p \text{Ext}(G, A)$. Since $\text{Bext}^1_A(G, A) \cong \text{Ext}^1_E(H_A(G), E)$ is divisible, $t_p \text{Bext}^1_A(G, A)$ is a direct summand of $t_p \text{Ext}(G, A)$, which is only possible if $t_p \text{Ext}(G, A) = t_p \text{Bext}^1_A(G, A)$.

(ii) \Rightarrow (i). If (i) fails, then $r_p(\text{Ext}(A, A)) = [r_p(A)]^2 - r_p(E) > 0$ by [10], and there exists an exact sequence

 $0 \longrightarrow A \longrightarrow X \longrightarrow A \longrightarrow 0,$

which represents an element of order p in Ext(A, A). By (ii), this sequence belongs to $\text{Bext}_A^1(A, A) \cong \text{Ext}_E^1(E, E) = 0$, a contradiction.

(b) Let

$$R_A(G) = \cap \{ \ker \alpha \mid \alpha \in G^* \}.$$

Then $G/R_A(G)$ is isomorphic to an A-generated subgroup of A^I for some index-set I. However, all countable A-generated subgroups of A^I are A-projective by [1]. Hence,

$$G = R_A(G) \oplus P$$

for some A-projective group P by the remarks of the first paragraph of the proof of Theorem 0.1. Since $Bext_A^1(P, A) = 0$ and $R_A(G)^* = 0$, we may assume that $G^* = 0$. Then,

$$\operatorname{Hom}_E(H_A(G), E) \cong G^* = 0$$

by the adjoint functor theorem. Observe that

$$Bext^1_A(G, A) \cong Ext^1_E(H_A(G), E),$$

and consider the exact sequence

$$0 \longrightarrow \operatorname{Hom}_{E}(H_{A}(G), E/pE) \longrightarrow \operatorname{Ext}^{1}_{E}(H_{A}(G), E) \xrightarrow{\cdot p} \operatorname{Ext}^{1}_{E}(H_{A}(G), E),$$

because of which we need to show that $r_p(\operatorname{Hom}_E(H_A(G), E/pE))$ is either finite or 2^{\aleph_0} . However,

$$\operatorname{Hom}_{E}(H_{A}(G), E/pE) \cong \operatorname{Hom}_{E}\left(\frac{H_{A}(G)}{pH_{A}(G)}, E/pE\right).$$

Since $r_p(E) = [r_p(A)]^2$, the ring E/pE is simple, and $E/pE \cong S^n$ for some simple *E*-module *S* and some $n < \omega$. Therefore,

$$\frac{H_A(G)}{pH_A(G)} \cong \oplus_I S$$

for some index-set I, and the conclusion immediately follows.

A torsion-free Abelian group A of finite rank is a *finitely faithful* S-group if $r_p(E) = [r_p(B)]^2$ for all primes p.

Corollary 0.3. The following are equivalent for a torsion-free Abelian group A of finite rank with a hereditary endomorphism ring:

- (a) A is a finitely faithful S-group.
- (b) $tExt(G, A) = tBext^{1}_{A}(G, A)$ whenever G is a torsion-free A-solvable group.
- (c) $\operatorname{Ext}(G, A)/\operatorname{Bext}^1_A(G, A)$ is torsion-free divisible whenever G is a torsion-free A-solvable group.

In particular, $\operatorname{Ext}(G, A)$ and $\operatorname{Bext}^1_A(G, A)$ are isomorphic whenever A is a finitely faithful S-group and G is a countable torsion-free A-solvable group which is not A-projective.

Finally, we remark that the results of this paper can be extended to uncountable A-solvable groups by combining the arguments used in the proofs of Theorems 0.1 and 0.2 with the set-theoretic tools of [6]. However, we will not discuss this extension here since the algebraic, rather than the set-theoretic, tools needed for the investigation of $Bext_{A}^{1}$ are the focus of this paper.

REFERENCES

 U. Albrecht, Baer's lemma and Fuchs' problem 84a, Trans. Amer. Math. Soc. 293 (1986), 565–582.

2. _____, Endomorphism rings and a generalization of torsion-freeness and purity, Comm. Alg. **17** (1989), 1101–1135.

3. _____, Extension functors on the category of A-solvable groups, Czechoslovak J. Math. **41** (1991), 685–694.

4. D.M. Arnold, *Finite rank torsion free Abelian groups and rings*, Lect. Notes Math. **931**, Springer-Verlag, Berlin, 1982.

5. A.W. Chatters and C.R. Hajarnavis, *Rings with chain conditions*, Pitman, New York, 1980.

6. P.C. Eklof and A.H. Mekler, *Almost free modules*, North Holland Mathematical Library 46, Amsterdam, 1990.

7. K. Goodearl, *Non-singular rings and modules*, Marcel Dekker, New York, 1976.

8. M. Huber and R.B. Warfield, *Homomorphisms between Cartesian powers of an Abelian group*, Springer Lect. Notes Math. 874, Springer-Verlag, Berlin, 1981.

9. J. Jans, Rings and homology, Holt, Rinehart and Winston, New York, 1964.

10. R.B. Warfield, Jr., Homomorphisms and duality for torsion-free groups, Math. Z. 107 (1968), 189–200.

Auburn University, Department of Mathematics, Auburn, AL 36849 Email address: albreuf@mail.auburn.edu