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RATIONAL CONVOLUTION ROOTS
OF ISOBARIC POLYNOMIALS

HUILAN LI, TRUEMAN MACHENRY AND AURA CONCI

ABSTRACT. In this paper, we exhibit two matrix repre-
sentations of the rational roots of generalized Fibonacci poly-
nomials (GFPs) under the convolution product, in terms of
determinants and permanents, respectively. The underlying
root formulas for GFPs and for weighted isobaric polynomi-
als (WIPs), which appeared in an earlier paper by MacHenry
and Tudose, make use of two types of operators. These op-
erators are derived from the generating functions for Stirling
numbers of the first and second kind. Hence, we call them
Stirling operators. In order to construct matrix representa-
tions of the roots of GFPs, we use Stirling operators of the
first kind. We give explicit examples to show how Stirling
operators of the second kind appear in low degree cases for
the WIP-roots. As a consequence of the matrix construction
we have matrix representations of multiplicative arithmetic
functions under the Dirichlet product into its divisible clo-
sure.

1. Introduction. In 1975, Carroll and Gioia [2] gave a direct con-
struction for an adjoining qth roots, q ∈ Q, to the group of multi-
plicative arithmetic functions (MF) under the Dirichlet product. In
2000, MacHenry [5] gave a somewhat more general proof of the same
result. In 2005, MacHenry and Tudose [6] constructed the injective
hull of generalized Fibonacci polynomials (GFPs) and extended this
construction to the injective hull of the WIP-module, that is, the Z-
module of all sequences of weighted isobaric polynomials (WIPs) with
the convolution product. Isobaric polynomials are the symmetric poly-
nomials over the elementary symmetric polynomial (ESP) basis; the
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isobaric ring is isomorphic to the ring of symmetric polynomials. In
2012, MacHenry and Wong [9] showed that GFPs, together with the
convolution product, give a faithful representation of the group of MF
under the Dirichlet product, which in turn induces the embedding of
the MF group into its injective hull, that is, adjoins a qth root to each
multiplicative arithmetic function for all non-zero rational numbers q
in Q.

In 2013, Li and MacHenry [4] gave two matrix representations of
WIPs in terms of Hessenberg matrices; they showed that the determi-
nant of one matrix is the permanent of the other, and the determinant
and permanent is an element in the WIP-module.

In this paper, we use Hessenberg matrices to give matrix represen-
tations of the qth, q ∈ Q, convolution roots of GFPs, both in terms of
determinants and in terms of permanents. The main result of this pa-
per is Theorem 4.1 in Section 4. We introduce Bj = q(q+1) · · · (q+ j)
and B−j = q(q − 1) · · · (q − j), the Stirling operators of first kind and
second kind, respectively. Then we obtain Corollary 4.3:

F q
k,n is the determinant of the following matrix:

B0t1 −1 0 0 · · · 0
B0t2

1
2
B1

B0
t1 −1 0 · · · 0

B0t3
1
3 (2

B1

B0
− 1)t2

1
3
B2

B1
t1 −1 · · · 0

...
...

...
...

. . .
...

sn,n sn,n−1 sn,n−2 sn,n−3 · · · sn,1

 ,

i.e., the recursion coefficients are

sn,j =
1

n

(
j

Bn−j

Bn−j−1
− (n− j)(j − 1)

)
tj ,

for j = 1, . . . , n − 1, and sn,n = B0tn. We call these representations
Hessenberg-Stirling representations.

In order to produce the convolution roots of GFPs and WIPs, we
use the Stirling operators of the first and second kind. Currently, we
know of no such applications using Stirling generating functions. We
would like to point out the unexpected usefulness of Stirling operators.
They provide a complete answer to the construction of rational roots
of the group of multiplicative arithmetic functions under the Dirichlet
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product [2], which is a concern in arithmetic number theory. We
describe how GFPs are used to produce an isomorphism from the
group generated by GFPs under the convolution product to the group
of multiplicative arithmetic functions under the Dirichlet product [3].
The usefulness of Stirling operators in this case suggests that adjoining
roots (and powers) to other algebraic structures may also be achieved
by using them. Also, Stirling operators may have wider applications,
say, to other groups.

This paper is organized as follows. In Section 2, we review basic facts
about isobaric polynomials. In Section 3, we review the Hessenberg rep-
resentations of WIPs. In Section 4, we construct matrix representations
of roots of GFPs using Stirling operators. In Section 5, we review the
isomorphism from the group generated by GFPs to the group of mul-
tiplicative arithmetic functions. We thus have matrix representations
of elements in the divisible closure of MF under the Dirichlet product.

2. Isobaric polynomials. An isobaric polynomial in k variables
{t1, . . . , tk} of degree n is of the form

Pk,n =
∑
α⊢n

Cαt
α1
1 tα2

2 · · · tαk

k ,

where Cα ∈ Z and α = (α1, α2, . . . , αk) ⊢ n means that (1α1 , 2α2 , . . . ,
kαk) is a partition of n with

k∑
j=1

jαj = n.

An isobaric polynomial may be thought of as a symmetric polynomial
written on the elementary symmetric polynomial (ESP) basis.

A sequence of weighted isobaric polynomials of weight ω = (ω1, ω2,
. . . , ωj , . . .) with ωj ∈ Z is defined by

Pω,k,n =
∑
α⊢n

(
|α|

α1, . . . , αk

) ∑
αiωi

|α|
tα1
1 tα2

2 · · · tαk

k ,

where |α| = α1 +α2 + · · ·+αk. The union of elements of all sequences
of weighted isobaric polynomials is the set of all isobaric polynomials.
The index set {n} for these polynomials is the set of integers, positive,
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negative and zero, i.e., n ∈ Z, in particular, Pω,k,0 = ωk, k > 1, and
Pω,k,0 = 1, k = 0 [3].

Note that the monomials are indexed by partitions (1α1 , 2α2 , . . . ,
kαk) with parts no larger than k. Moreover, the elements in a sequence
of weighted isobaric polynomials occur in linear recursions

Pω,k,n = t1Pω,k,n−1 + t2Pω,k,n−2 + · · ·+ tjPω,k,n−j + · · ·+ tkPω,k,n−k,

with respect to the recursion parameters [t1, . . . , tk].

Two important sequences are the generalized Fibonacci polynomials
(GFPs)

Fk,n =
∑
α⊢n

(
|α|

α1, . . . , αk

)
tα1
1 tα2

2 · · · tαk

k ,

where the weight vector is ω = (1, 1, . . . , 1 . . .) with Fk,0 = 1 and the
generalized Lucas polynomials (GLPs)

Gk,n =
∑
α⊢n

(
|α|

α1, . . . , αk

)
n

|α|
tα1
1 tα2

2 · · · tαk

k ,

where the weight vector is ω = (1, 2, . . . , j, . . .) and Gk,0 = k.

Remark 2.1. GFPs are complete symmetric polynomials written on
the ESP basis, and GLPs are power sum symmetric polynomials written
on the ESP basis; each of these sequences of polynomials is a basis for
the ring of symmetric polynomials.

Remark 2.2. WIPs, in general, have special significance in the ring
of symmetric polynomials. In order to see how this comes about, it is
convenient to consider the notation [t1, . . . , tk] used above to indicate
recursion parameters. More generally, we also use [t1, . . . , tk] to indicate
the monic polynomial C(X) = Xk − t1X

k−1 − · · · − tk, that is,

[t1, . . . , tk] = Xk − t1X
k−1 − · · · − tk.

When we consider tjs as variables, we often refer to C(X) as the generic
core, and, when we evaluate tjs over the ring of integers, the term
numerical core will be used.

Remark 2.3. It is trivial to verify that, when k = 2, GFPs are general-
izations of the classical “generalized Fibonacci polynomials,” and GLPs
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are generalizations of the classical “generalized Lucas polynomials” [1];
when t1 = t2 = 1, GFPs and GLPs become the classical Fibonacci and
Lucas sequences. It is surprising that these older terms persist in the
current literature in competition with the true generalizations.

Next, we consider the companion matrix of [t1, . . . , tk] = Xk −
t1X

k−1 − · · · − tk, namely, the k × k-matrix:

Ak =


0 1 0 0 0
0 0 1 0 0
...

...
. . .

...
...

0 0 · · · 0 1
tk tk−1 · · · t2 t1

 .

We use Ak to construct the next infinite matrix by appending the orbit
of the row vectors generated by letting Ak act on the right of the last
row vector in Ak, and repeating the process on the successive last row
vectors. Noting that Ak is non-singular exactly when tk ̸= 0 and adding
this as an assumption, we can perform the analogous operation on the
first row vector of Ak, extending the rows northward, yielding a doubly
infinite matrix with k columns. We call this the infinite companion
matrix and denote it by A∞

k , or simply as A∞ when the k is clear. Since
it is completely determined by the polynomial C(X) = [t1, . . . , tk], we
call C(X) the core polynomial.

A∞
k =



...
. . .

...
...

(−1)k−1S(−2,1(k−1)) · · · −S(−2,1) S(−2)

(−1)k−1S(−1,1(k−1)) · · · −S(−1,1) S(−1)

(−1)k−1S(0,1(k−1))) · · · −S(0,1) S(0)

(−1)k−1S(1,1(k−1)) · · · −S(1,1) S(1)

(−1)k−1S(2,1(k−1)) · · · −S(2,1) S(2)

(−1)k−1S(3,1(k−1)) · · · −S(3,1) S(3)

(−1)k−1S(4,1(k−1)) · · · −S(4,1) S(4)

...
. . .

...
...


=((−1)k−jS(n,1k−j)).

As pointed out in a number of previous papers, e.g., [3], the matrix
A∞

k has the following remarkable properties:
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• the k× k contiguous blocks of A∞ are the successive powers in
the free abelian group generated by the companion matrix Ak.

• The rows of A∞ give a vector representation of the successive
powers of the zeros of the core polynomial. Essentially, this is
a consequence of the Hamilton-Cayley theorem.

• The right hand column of A∞ is merely the GFPs.
• The traces of the k × k contiguous blocks give the GLPs in
succession.

• The k columns of A∞ are linearly recursive with respect to the
coefficients of the core polynomial as recursion parameters.

• The columns of A∞ are sequences of weighted isobaric polyno-
mials with weights ±(0, . . . , 0, 1, 1, . . . , 1, . . .).

• The elements of A∞ are Schur-hook polynomials S(n,1r) of arm-
length n− 1 and leg length r, in particular, Fk,n = S(n).

• The sequences of WIPs form a free Z-module. The columns of
A∞ form a basis of this module.

Moreover, there is a second matrix that is induced by the core
polynomial [3]. Consider the derivative of the core polynomial

C′(X) = kXk−1 − t1X
k−2 − · · · − tk−1,

from which we manufacture the vector (−tk−1, . . . ,−t1, k). Again,
letting the companion matrix Ak act on this vector on the right and
appending the resulting orbit as additional row vectors, we get a k×k-
matrix, which we call the different matrix, denoted by D. From D,
we construct an infinite matrix D∞ as we do for A∞. We call D∞

the infinite different matrix. It, too, has some useful and remarkable
properties [3]:

• the determinant detD = ∆, the discriminant of the core
polynomial.

• The right hand column of D∞ is the sequence GLPs.
• There is a bijection L from A∞ to D∞ which takes the element
ai,j in A∞ to di,j in D∞, which has the properties of a
logarithm on elements, and which implies that L(Fk,n) = Gk,n.

• The columns of D∞ are linear recursions with recursion pa-
rameters {t1, . . . , tk}.

Next, we would like to point out how the sequences discussed here
are important. In a series of papers [3, 4, 6, 7, 8, 9] it has been shown
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that subgroups of the ring of arithmetic functions, namely, the Dirichlet
group of multiplicative arithmetic functions, and the additive group of
additive arithmetical functions have faithful representations using the
GFP and the GLP sequences; they also show up in the character theory
of symmetric groups and Pólya’s theory of counting [3, 11]. In the
following section, we will recall the matrix representations of the GFP,
the GLP and, in general, the WIP sequences [4], which give an explicit
algorithm for computing these sequences and are useful for calculation.

First, however, it is convenient to introduce the convolution product
of weighted isobaric polynomials.

Definition 2.4 ([3]). Let Pω,k,n and Pυ,k,n be weighted isobaric
polynomials of isobaric degree n. Define the convolution product of
Pω,k,n and Pυ,k,n by

Pω,k,n ∗ Pυ,k,n =

n∑
j=0

Pω,k,jPυ,k,n−j .

Note that the product is also a weighted isobaric polynomial of
isobaric degree n. In the case where we have two integer evaluations
of Pω,k,n and Pυ,k,n, we denote them as, respectively, P ′ and P ′′, and
their numerical convolution product is

P ′
ω,k,n ∗ P ′′

υ,k,n =

n∑
j=0

P ′
ω,k,jP

′′
υ,k,n−j .

It is with respect to this product and the ordinary addition of polyno-
mials that the logarithm operator L is defined, see [3].

3. Permanent and determinant representations. A formula
was given for elements of the divisible closure of the WIP-module [6],
i.e., each element in WIP-module was given a qth root for all q ∈ Q,
where these roots are unique up to sign. Two interesting representa-
tions of the elements of WIP-module were given in terms of determi-
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nants and permanents of the following Hessenberg matrices [4]:

H+(ω,k,n) =


t1 1 0 · · · 0
t2 t1 1 · · · 0
...

...
...

. . .
...

tn−1 tn−2 tn−3 · · · 1
ωntn ωn−1tn−1 ωn−2tn−2 · · · ω1t1

 ,

and

H−(ω,k,n) =


t1 −1 0 · · · 0
t2 t1 −1 · · · 0
...

...
...

. . .
...

tn−1 tn−2 tn−3 · · · −1
ωntn ωn−1tn−1 ωn−2tn−2 · · · ω1t1

 .

The principal results are:

permH+(ω,k,n) = Pω,k,n = detH−(ω,k,n).

For example, we look at the following matrix when n = 4,
t1 1 0 0
t2 t1 1 0
t3 t2 t1 1

ω4t4 ω3t3 ω2t2 ω1t1

 ,

whose permanent is easily seen to be

ω1t
4
1 + (2ω1 + ω2)t

2
1t2 + ω2t

2
2 + (ω1 + ω3)t1t3 + ω4t4 = Pω,4,4.

Moreover, it is easy to see that there is a nesting of the Hessenberg
matrices from the lower right hand corner to the upper left. We call
these representations Hessenberg representations. It turns out that we
can use these to go further and give two useful representations of the
qth convolution roots of generalized Fibonacci polynomials in terms of
Hessenberg matrices.

4. Convolution roots. MacHenry and Tudose [6, Theorems 5.1,
5.7] gave a general expression for the qth, q ∈ Q, convolution roots of
GFPs and a more general expression for the qth convolution roots of
WIPs.
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The formula for qth roots of polynomials in the GFP is given by

F q
k,n =

∑
α⊢n

1

|α|!
B|α|−1

(
|α|

α1, . . . , αk

)
tα1
1 tα2

2 · · · tαk

k .

For n = 3 and n = 4, we have the following determinantal representa-
tions:

F q
k,3 = det

qt1 −1 0
qt2

1
2 (q + 1)t1 −1

qt3
1
3 (2q + 1)t2

1
3 (q + 2)t1


and

F q
k,4 = det


qt1 −1 0 0

qt2
1
2 (q + 1)t1 −1 0

qt3
1
3 (2q + 1)t2

1
3 (q + 2)t1 −1

qt4
1
4 (3q + 1)t3

1
4 (2q + 2)t2

1
4 (q + 3)t1

 ,

where Bj is the polynomial generating function for Stirling numbers
of the first kind evaluated at q. (B−j , the analogue, is determined by
the polynomial generating function for Stirling numbers of the second
kind), namely,

Bj = q(q + 1) · · · (q + j) and B−j = q(q − 1) · · · (q − j).

We call Bj and B−j Stirling operators of the first kind and second kind,
respectively.

The main theorem of this paper is a generalization to arbitrary n of
the two matrices which appear above. The first five such roots, starting
with F q

k,0 for an arbitrary q, are as follows:

F q
k,0 = 1,

(4.1)

F q
k,1 = qt1,

F q
k,2 =

1

2
q(q + 1)t21 + qt2,

F q
k,3 =

1

3!
q(q + 1)(q + 2)t31 + q(q + 1)t1t2 + qt3,

F q
k,4 =

1

4!
q(q + 1)(q + 2)(q + 3)t41 +

1

2
q(q + 1)(q + 2)t21t2
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+
1

2
q(q + 1)t22 + q(q + 1)t1t3 + qt4,

F q
k,5 =

1

5!
q(q + 1)(q + 2)(q + 3)(q + 4)t51

+
1

6
q(q + 1)(q + 2)(q + 3)t31t2 +

1

2
q(q + 1)(q + 2)t1t

2
2

+
1

2
q(q + 1)(q + 2)t21t3 + q(q + 1)t2t3 + q(q + 1)t1t4 + qt5

and, in the Stirling operator notation, these translate into:

F q
k,0 = 1,(4.2)

F q
k,1 = B0t1,

F q
k,2 =

1

2!
B1t

2
1 +B0t2,

F q
k,3 =

1

3!
B2t

3
1 +

1

2!
2B1t1t2 +B0t3,

F q
k,4 =

1

4!
B3t

4
1 +

1

3!
3B2t

2
1t2 +

1

2!
B1t

2
2 +

1

2!
2B1t1t3 +B0t4,

F q
k,5 =

1

5!
B4t

5
1 +

1

4!
4B3t

3
1t2 +

1

3!
3B2t1t

2
2 +

1

3!
3B2t

2
1t3

+
1

2!
2B1t2t3 +

1

2!
2B1t1t4 +B0t5.

A rule of thumb for writing the qth convolution roots is as follows:
first, write the polynomial Fn as a function of tj , j = 1, . . . , k. Then,
observing the exponent sum |α|, monomial-by-monomial, enter the
fraction 1/|α|! and the Stirling operators B|α|−1. There will usually
be some cancellations among the fractions for the most economical
expression.

For example,
Fk,3 = t31 + 2t1t2 + t3,

and

F q
k,3 =

1

3!
B2t

3
1 +

1

2!
2B1t1t2 +B0t3.
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Theorem 4.1. F q
k,n is the determinant of

qt1 −1 0 ··· 0

qt2
1
2 (q+1)t1 −1 ··· 0

...
...

...
...

...
qtn−1

1
n−1 ((n−2)q+1)tn−2

1
n−1 ((n−3)q+2)tn−3 ··· −1

qtn
1
n ((n−1)q+1)tn−1

1
n ((n−2)q+2)tn−2 ··· 1

n (q+(n−1))t1


and the permanent of

qt1 −1 0 ··· 0

qt2
1
2 (q+1)t1 1 ··· 0

...
...

...
...

...
qtn−1

1
n−1 ((n−2)q+1)tn−2

1
n−1 ((n−3)q+2)tn−3 ··· 1

qtn
1
n ((n−1)q+1)tn−1

1
n ((n−2)q+2)tn−2 ··· 1

n (q+(n−1))t1


Proof. Note that the determinants and permanents are nested, that

is, F q
k,j is the j × j principal minor in the upper left hand corner of

the matrices. This allows us to use induction in the proof. We shall
carry out computations for the determinant case. The proof for the
permanent case is similar. �

Lemma 4.2. The F q
k,n satisfies the recursive formula:

F q
k,n = sn,1F

q
k,n−1+sn,2F

q
n−2+sn,3F

q
k,n−3+ · · ·+sn,n−1F

q
k,1+sn,nF

q
k,0,

where the recursion parameters are sn,j = (1/n)(jq + n− j)tj.

Proof. The nesting of the matrices, and hence of the determinants
and permanents, implies the recursion. Let Mn be the determinant of

qt1 −1 0 ··· 0

qt2
1
2 (q+1)t1 −1 ··· 0

...
...

...
. . .

...
qtn−1

1
n−1 ((n−2)q+1)tn−2

1
n−1 ((n−3)q+2)tn−3 ··· −1

qtn
1
n ((n−1)q+1)tn−1

1
n ((n−2)q+2)tn−2 ··· 1

n (q+(n−1))t1


M0 = 1 and mi,j the (i, j)th entry in the matrix. In order to prove the
recursive formula is equivalent to proving

Mn = mn,nMn−1 +mn,n−1Mn−2 + · · ·+mn,2M1 +mn,1M0.
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We compute the cofactor expansion along the last column from bottom
to top, and we obtain:

Mn = mn,nMn−1 + det


m1,1 −1 0 · · · 0
m2,1 m2,2 −1 · · · 0
...

...
...

. . .
...

mn−2,1 mn−2,2 mn−2,3 · · · −1
mn,1 mn,2 mn,3 · · · mn,n−1


= mn,nMn−1 +mn,n−1Mn−2

+ det


m1,1 −1 0 · · · 0
m2,1 m2,2 −1 · · · 0
...

...
...

. . .
...

mn−3,1 mn−3,2 mn−3,3 · · · −1
mn,1 mn,2 mn,3 · · · mn,n−2


...

= mn,nMn−1 +mn,n−1Mn−2 + · · ·+mn,2M1 +mn,1M0.

Let sn,j = mn,n−j+1. We then have

Mn = sn,1Mn−1 + sn,2Mn−2 + · · ·+ sn,n−1M1 + sn,nM0.

Putting F q
k,n−j = Mn−j , we assume inductively that Mn−j = F q

k,n−j ,
j = 0, 1, . . . , n− 1. We have

Mn = sn,1F
q
k,n−1 + sn,2F

q
k,n−2 + · · ·+ sn,n−1F

q
k,1 + sn,nF

q
k,0.

Now, we only need to show that Mn = F q
k,n.

Recall that α = (α1, α2, . . . , αk) ⊢ n means α1+2α2+ · · ·+kαk = n
and |α| = α1 + α2 + · · ·+ αk.

In order to prove

F q
k,n =

∑
α⊢n

1

|α|!
B|α|−1

(
|α|

α1, . . . , αk

)
tα1
1 tα2

2 · · · tαk

k

=
∑
α⊢n

B|α|−1

α1!α2! · · ·αk!
tα1
1 tα2

2 · · · tαk

k

is the determinant or permanent of the matrices in Theorem 4.1,
we only need to show that F q

k,n satisfies the recursive formula in
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Lemma 4.2, which is equivalent to showing that

B|α|−1

α1!α2! · · ·αk!
=

k∑
i=1

1

n
(iq + n− i)

B|α|−2

α1!α2! · · · (αi − 1)! · · ·αk!
.

k∑
i=1

1

n
(iq + n− i)

B|α|−2

α1!α2! · · · (αi − 1)! · · ·αk!

=
(q + n− 1)B|α|−2

n(α1 − 1)!α2! · · ·αk!
+

(2q + n− 2)B|α|−2

nα1!(α2 − 1)! · · ·αk!
+ · · ·

+
(kq + n− k)B|α|−2

nα1!α2! · · · (αk − 1)!

=
B|α|−2

nα1!α2! · · ·αk!
[α1(q + n− 1) + α2(2q + n− 2) + · · ·

+ αk(kq + n− k)]

=
B|α|−2

nα1!α2! · · ·αk!
[α1q + nα1 − α1 + 2α2q + nα2 − 2α2 + · · ·

+ kαkq + nαk − kαk]

=
B|α|−2

nα1!α2! · · ·αk!
[(α1+2α2 + · · ·+ kαk)q+n(α1+α2 + · · ·+ αk)

− (α1 + 2α2 + · · ·+ kαk)]

=
B|α|−2

nα1!α2! · · ·αk!
(nq + n|α| − n) =

B|α|−2(q + |α| − 1)

α1!α2! · · ·αk!

=
B|α|−1

α1!α2! · · ·αk!
�

It is of interest to see the matrix which represents the convolution
roots in a form which explicitly displays the Stirling operators Bj ,
which we now do in:
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Corollary 4.3. F q
k,n is the determinant of the following matrix :

B0t1 −1 0 0 · · · 0
B0t2

1
2
B1

B0
t1 −1 0 · · · 0

B0t3
1
3 (2

B1

B0
− 1)t2

1
3
B2

B1
t1 −1 · · · 0

...
...

...
...

. . .
...

sn,n sn,n−1 sn,n−2 sn,n−3 · · · sn,1


where the recursion coefficients are

sn,j =
1

n

(
j

Bn−j

Bn−j−1
− (n− j)(j − 1)

)
tj

for j = 1, . . . , n− 1, and sn,n = B0tn. �

We call these the Hessenberg-Stirling representations. The Stirling
part is due to the role that the Stirling operators play in the construc-
tion of the roots of the GFPs.

The root formula for the WIPs is a generalization of the root formula
for the GFP and is a bit more complicated.

Theorem 4.4 ([6]).

P q
ω,k,n =

∑
α⊢n

Lk,n,ω(α)t
α1
1 · · · tαk

k ,

where

Lω,k,n(α) =

|α|−1∑
j=0

1

(Πk
i=1αi)!

(
|α| − 1

j

)
B−jD|α|−j−1(ω

α1
1 · · ·ωαk

k )

and Dj(ω
α) = Dj(ω

α1
1 · · ·ωαk

k ) is the total derivative of the expression
j times.

The total differential operator Dj is inductively defined by Dj =
D1(Dj−1) with

D1(ω
α1
1 · · ·ωαk

k ) =
k∑

i=1

∂i(ω
α1
1 · · ·ωαk

k ) =
k∑

i=1

αi(ω
α1
1 · · ·ωαi−1

i · · ·ωαk

k ).
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For example, D2(ω
3
1ω

2
2) = 6ω1ω

2
2 + 12ω2

1ω2 + 2ω3
1 .

Here, we give some low-dimensional examples for the qth roots of
weighted isobaric polynomials:

P q
ω,k,0 = 1,

P q
ω,k,1 = qω1t1,

P q
ω,k,2 = [qω1 +

1

2
q(q − 1)ω2

1 ]t
2
1 + qω2t2,

P q
ω,k,3 = [qω1 + q(q − 1)ω2

1 +
1

3!
q(q − 1)(q − 2)ω3

1 ]t
3
1

+ [q(ω1 + ω2) + q(q − 1)ω1ω2]t1t2 + qω3t3,

and, in the Stirling operator notation, these translate into:

P q
ω,k,0 = 1,

P q
ω,k,1 = B0ω1t1,

P q
ω,k,2 = [B0ω1 +

1

2
B−1ω

2
1 ]t

2
1 +B0ω2t2,

P q
ω,k,3 = [B0ω1 +B−1ω

2
1 +

1

3!
B−2ω

3
1 ]t

3
1

+ [B0(ω1 + ω2) +B−1ω1ω2]t1t2 +B0ω3t3.

Remark 4.5. A more precise notation for the roots is P ∗q, with the
emphasis that this root is to be taken with respect to the convolution
product, that is, to retrieve the original function after having taken the
qth root, one must take the convolution product 1/q times. We shall
use the shorter form P q with the meaning P q = P ∗q.

In the next section, we describe how GFPs are used to produce
an isomorphism from the WIP-module for the group of multiplicative
arithmetic functions [3].

5. Multiplicative arithmetic functions. The ring (UFD) of arith-
metic functions consists of the functions α : Z → Q. The Dirichlet
product of two arithmetic functions α and β is given by

α ∗ β(n) =
∑
d

α(d)β

(
n

d

)
,

where d | n [10].
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The multiplicative arithmetic functions (MF) are those functions α
such that

α(mn) = α(m)α(n),

whenever (m,n) = 1. This is equivalent to saying that a multiplicative
function is completely determined by its values at the primes. We shall
say that such functions are determined locally, so that we are interested
in the products

α ∗ β(pn) =
n∑

i=0

α(pi)β(pn−i).

If we consider the group generated by GFPs under the convolution
product as multiplication, then we also obtain an abelian group. And,
if we consider all of the evaluations of the variables tj over the integers,
we produce a group that is locally isomorphic to the MF group1 [3, 8].
It was shown that this induces a mapping from the divisible closure of
the group generated by GFPs to the divisible closure of MF, and this
mapping is a local isomorphism [6].

Thus, the matrix representations of F q
k,n carry over to matrix repre-

sentations of the divisible closure of MF.

ENDNOTES

1. There are analogous results for the additive group GLPs and the
group of additive arithmetic functions.
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und chemische Verbindungen, Acta Math. 68 (1937), 145–254.

Shandong Normal University, School of Mathematics and Statistics, Ji’nan,
Shandong, 250358 P.R. China

Email address: huilan.li@gmail.com

York University, Department of Mathematics and Statistics, 4700 Keele

Street, Toronto ON, M3J 1P3 Canada
Email address: machenry@mathstat.yorku.ca

Universidade Federal Fluminense, Department of Computer Science, Nite-

roi, Rio de Janeiro, 24210-346 Brasil
Email address: aconci@ic.uff.br


