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ON THE STRUCTURE OF MULTIPLIER ALGEBRAS
CHANGGUO WEI AND SHUDONG LIU

ABSTRACT. This note gives a characterization of matrix
structures for multipliers of a stable C*-algebra A ® K
with any C*-algebra A. We represent elements in (A ®
K)', QM(A® K) and M(A ® K) as infinite matrices over
certain C*-algebras, respectively. These results generalize
the related work of Brown, Lin and Zhang in this area.

1. Introduction and preliminaries. Multiplier algebras play a
crucial role in the theory of C*-algebras and their extensions. In
some early work, semicontinuity was used to give characterizations of
multipliers, [1, 2, 3, 4]. In the early 1980s, Brown [5] took another
approach to reveal the structures of quasi-multiplier algebra of a stable
C*-algebra. He represented quasi-multipliers of AQ as certain infinite
matrices in the setting of A being a unital C*-algebra and proved a
necessary and sufficient condition for

QM(A®K) = LM(A®K)+ RM(A®K).

Brown’s idea and work on this topic were adopted and developed by Lin
and Zhang. In [12], Zhang gave a representation of multipliers of A® K
in the case where A ® K is stably unital. Lin [7] constructed matrix
structures of multipliers of A when A is o-unital, and subsequently,
he provided an in-depth series of research on quasi-multipliers and
multipliers, see [8, 9, 10].

Inspired by the above work, this note is engaged in characterizing
the matrix structure of multiplier algebras of stable C*-algebras. In
contrast with previous work we do not require that A be unital or
o-unital. This is an essential difference because A ® K is no longer
o-unital. As a result, we represent elements in (A ® K)”, QM (A ® K)
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and M(A ® K) as infinite matrices over certain C*-algebras for any
C*-algebra A, respectively.

Suppose that A is a C*-algebra and A” is its enveloping von Neu-
mann algebra. An element z in A” is called a multiplier of A if
za,ax € A for any a € A. Similarly, = is a left multiplier if za € A
for any a € A, x is a right multiplier if ax € A for any a € A, and =
is a quasi-multiplier if axzb € A for all a,b € A. Denote the sets of
multipliers, left multipliers, right multipliers and quasi-multipliers by
M(A), LM(A), RM(A) and QM (A), respectively.

Recall that M(A) is the completion of A in the strict topology,
and LM(A), RM(A) and QM (A) are norm closed subspaces of A”.
Moreover,

LM(A)* = RM(A) and M(A) = LM(A) N RM(A).

Hence, M(A) is a C*-algebra.

Let D be a C*-algebra. Denote the set of infinite matrices over D
by
MOO(D) = {(mw) 1T € D, i1,7=1,2,.. }

2. Main results. Suppose that H and H; are two Hilbert spaces
such that H; is separable and infinite-dimensional. Let {e;, 3,...} be
an orthonormal basis for H; and X = K(H;) the compact operators
on Hi. Suppose that {e;; : 4,5 = 1,2,...} is the standard matrix unit
of K corresponding to {1, €3,...}. Then, there is an isomorphism

a:H®H1—>éH

i=1

such that a(z ® ¢;) = (0,...,0,2,0,...) for any x € H and i € N,
where z is on the ¢th entry. Under this isomorphism,

B(H  H,) %B<éH>.
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For every T' € B(®52, H), there is a unique matrix (7;;) with entries
in B(H) such that

&1

T¢ = (T;5) | *2 (ZTU%,ZTQJ-%--.),
j=1 j=1

where § = (21, %2,...) € &2, H.

In order to differentiate the relation between infinite matrices over
B(H) and bounded operators on &5°,H, we need the following two
propositions. Although they may be known to specialists, we provide
them here for the sake of completeness.

Proposition 2.1. Let (T;;) € M (B(H)). Then, the following are
equivalent:

(i) (T3j) represents an element in B(®2, H);

(i) sup{|[(Tij)1<ij<nller, m: n € N} < +oo;
(iti) {325 Tij ®eijnzy converges in the sot in B(H @ Hy) asn — oo.

Proof.
(i) < (ii). This is from [6, 2.6.13].
(iii) = (ii). Since
‘ Y Ty ®ey
ij
by the uniformly bounded theorem,

sup {

(i) = (iil). Suppose that (T;;) represents an element 7" in B(®52, H).
Then, for any & = (x1,22,...) € ®2, H,

Tf = <ZT1J'£CJ',ZT2]‘ZL'J‘,. >
j=1 j=1

bl

= H (T35)
1<i<n
1<j<n

(T35)

1<i<n
1<j<n

:n €N < +oo.
®r_ H
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For every x € H and [ € N,
a(r®e)=1(0,...,0,2,0,...)

and, when n > [,

(ZTiﬁ@eij>($®5l) :ZTH®€Z'.
i -

It follows that

Toa(r®e) = (Tyz, Tyx,...)

n

= Jim oS rues)
K3

= nlgr;oa(ZT” X eij) ({,E ®El).

ij

By the above proof, the sequence ZZ T;; ®e;; is uniformly bounded
and
span{z Qe;:x € H, i=1,2,...} = H® H;.

Hence,

n

sot —
E T ®ejj — « Lo Toa, asn— . O
ij

Proposition 2.2. Suppose that D is a C*-subalgebra of B(H) and
(Tij) € Moo(B(H)). Then, (Ti;) represents an element T in D ® I if
and only if every T;; € D and

ZTij ® €ij M) T.
ij

Proof. Suppose that (T;;) represents T in D ® K. We note that
eij(e1) = djig; , where §;; is the Kronecker symbol. Then, (1®e;)T(1®
ej;) =Tij ®e;5. Since T' € D ® K, we have

Tij ®eij € (1®ei)(D@K)(1®ej;) =D @ ey
Hence, T;; € D.
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Note that

n

n n
Y Tii@e;=> (1@e)T(1®@ej;) = (Zl®€u) (Zl®€jj>7
i 1

j

and {D"7 1 ®e;; 152, is an approximate unit of D ® K (which may not
be contained in D ® K). It follows that 377 Ti; ® e;; converges to 7' in
the norm in D ® K.

Conversely, since Tj; € D and Z Ti; ® e;5 — T in the norm,
then T € D ® K. By Proposition 2. 1 (T3;) represents the bounded
operator T O

Let A be a C*-algebra. Suppose that @ : A — B(H,) is the
universal representation of A and A” is the universal enveloping von
Neumann algebra of A. Let H be a separable, infinite-dimensional
Hilbert space and K = K(H) the compact operators on H. Then, we
get a representation of A ® IC,

p=1®t: A®K — B(H,® H),

where ¢ is the inclusion map from K into B(H).

Let A”®@B(H) be the von Neumann tensor product of A” and B(H).
Then, (A®K)" =2 A"®@B(H) as C*-algebras. Since 7 and ¢ are faithful
and non-degenerate, then so is ¢. If we identify A ® K with its images
under these homomorphisms, then we have the following relation of the
above algebras:

A®K C (A®K)" = A"®B(H) C B(H, ® H).

Let M(A) be the multiplier algebra of A and 1;7(4) the unit of
M(A). Suppose that {e1, €q,...} is an orthonormal basis of H and
{e;j 14,7 =1,2,...} is the standard matrix unit of K corresponding to
{e1, €2,...}. Set p,, = >_7 €;;. Then {p,,} is an approximate unit of K.

Recall that the strict topology (st) on B(H, ® H) is induced by
A ® K, which is induced by the family of semi-norms of:

pa(@) = |wal + |2%al, @€ ARK, =€ B(H,® H).
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Hence, z, % 2 in B(H, ® H) if and only if, for every a in A ® K,
axq M ax and T,a U za. Set P, = 1pr(4)®pyn. Then, P, = 1BH, 0H)
in B(H, ® H).

Next, we try to establish the connection of B(H, ® H) and infinite
matrices over B(H,) and specialize this connection for several impor-
tant C*-subalgebras of B(H, ® H).

Theorem 2.3. Suppose A is a C*-algebra. Let H, and B(H, ® H) be
as above.

(i) There is an injection ® from B(H, ® H) into M (B(Hy))
with ®(z) = (xij), such that z;; ® e;; = (1 ® e)x(l ® ej;). Now,
{ZZ x;j @ e;;} converges to x in the strong operator topology (sot).

Conversely, if (z;;) € Moo(B(Hy)) such that {Z?J xij ® e;;} con-
verges to some x € B(H, ® H) in the sot, then the matriz (x;;) repre-
sents = in the above correspondence, i.e., ®(x) = (x;5).

(ii) Let (xi;) € Moo(B(Hz)). Then, there ezists an x € (A® K)”
such that ®(z) = (xi;) if and only if xi; € A" and 377 45 ® ey .

Proof.

(i) Let x € B(H, ® H). Since H = &32,C¢;, we have

H,® H=H,®e;) =P H,.
i=1 i=1

Set @, = (1® es)x(1 ®ej;) € B(H, ® H). Note that 1 ® e;; and

1 ® ej; are the projections of H, ® ¢; and H, ® €;, respectively.

Hence, zgj can be identified with its restriction on H; ® €;. Then,

x;j € B(H; ® ¢, Hr ®¢;). Since e;;(g;) = ¢;, we have
B(Hﬂ (24 5j7 H7|- (24 51‘) = B(Hﬂ—) X eij.
Thus, there is a unique z;; € B(H,) such that xgj = 24 ® e;y; for all
1,7 € N.
Define a map ® from B(H, ® H) into M (B(Hx)) by ®(z) = (z4;),
where x;; is obtained from the preceding proof.

Note that the sequence {P, } is bounded and the representation
0:A®K — B(H, ® H)



ON THE STRUCTURE OF MULTIPLIER ALGEBRAS 1003

is non-degenerate. Since {P,} converges to 1 in the strict topology, it
converges to 1 in the sot in B(H,®H). Thus, P,z P, — x in the sot asn

tends to infinity. Since P,zP, = ZZ T;j ® €;;, then ZZ Tij ® e .
Let y € B(H, ® H) and y # x. Suppose (y;;) represents y. Then

(xi5) # (yi;). This is equivalent to saying that there are 4, j such that
xij 7# Yij. Otherwise, if x;; = y;; for all 4, j, then

P,zP, = Ziﬁzj ® e = Zyij ® e = PoyPp.

i i

By the above proof, we have P,zP, — x and P,yP, — vy, and
hence, = y. This is a contradiction. Therefore, the map = — (z;;) is
injective.

Conversely, suppose that (z;;) € Mo (B(H)) such that ZZ Zij®eq;
converges to some = € B(H, ® H) in the sot. Fix k,l € N. Then

(1 (039 ell)<2:1:ij (%9 eij> (1 X ekk) S—Ot> (1 (9 6”)1‘(1 X ekk)
iJ

as n — co. When n > max{k, [}, we have

(1 (%9 6”) ( inj & Bij> (1 ® Bkk) =X Q ek
ij
Hence, (1 ® e;)z(1 ® exr) = z1 ® eg. Therefore, (x;;) represents .

(ii) Suppose that z is in (A ® K)”. By the Kaplansky density
theorem, there is a bounded net {z,} C A®K such that {x,} converges
to = as a tends to ag in the weak operator topology (wot).

Note that (A ® K)” = A"®B(H). Since x-isomorphisms between
von Neumann algebras are continuous with respect to the o-wot, and
it is also known that o-wot is identified with wot on bounded subsets,

we have z, *$  in A”®B(H). Then
(1® e za(l® ej;) “5 (1@ eg)(1@ ej5)
in A”®B(H).
By the fact that 2, € AQ K C A” ® B(H), then
(1 X eii)ma(l X ij) cAR® €ij C A" X €ij-
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Since A” ® e;; is closed in the wot, then (1® e;)z(l ®ej;) € A” ® e;5.
Therefore, there is an z;; € A” such that z;; ®e;; = (1®e;)x(1®ej;).
Since Moo (A”) C Moo (B(H)) and @ is injective, we have ®(x) = (z;;)
and ZZ Tij Q e o .

On the other hand, since z;; € A”, we have

T Qe € A" K C (A® K)N.

Since Z Tij @ ey %, zij € (A®K)”. By (i), ®(z) = (zi;). O

Using Theorem 2.3, we can build a C*-construction on the set of
infinite matrices which represent bounded operators such that & is
a C*-algebra isomorphism. Obviously, M., (B(H,)) can be equipped
with an addition, a scalar-multiplication and an involution, as usual,
which make it a linear space with an involution. However, the usual
multiplication of matrix algebras dose not exist on infinite matrices, in
general.

Let E = {(zi;) € Moo(B(Hy)) : sup{|| ZZ T ® e :n € N} <
+00}. Then E is a self-adjoint linear subspace of My (B(H)). We

can check that the function
me ®eij|| :n € N}

il = sup {
transforms F into a linear normed space with ||(z:;)*|| = ||(z:;)]-

Next, we define multiplication on E as follows.

For any (i), (yi;) € E, let

(xi5)(yij) = (zi5) where z;; = (sot) inkyk]—
k=1

fori,j=1,2,....

Proposition 2.4. The above map is indeed a multiplication on E, and
thus, E constitutes a C*-algebra which is isomorphic to B(H, ® H).

Proof. Firstly, we need to show that the definition is well defined.
For (x;;), (yi;) € E, suppose that x and y are the elements in
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B(H, ® H) which correspond to (z;;) and (y;;), respectively. Then,
®(z) = (x;5) and ®(y) = (yi;). Hence,

T ® ey = (1 ®ei)z(1 @ ejy)
and

Yij ®eij = (1@ ei)y(1 @ ejy)-

Let z = xy, and set ®(z) = (z;;). Since 1 = (sot) > ;o ;1 ® ek,
and the multiplication in B(H, ® H) is jointly continuous on bounded
subsets in the sot, then

(sot) lim ( (1®ey)x (Z 1® ekk>) ((Z 1® ekk> (1® e“)>
= (1 ®ei)zy(l ® €j5) = 2ij ® €45

Note that
n n n
(e = (Yo en)(Sw o o)
k=1

< ® ;)T <Z 1® ekk>><<§1 ® ekk)x(l ® ejj))

n
sot,
(Z JJik?ka) Q eij — 2ij @ €45

k=1

Hence,

as n — oo. Furthermore, (sot) Y r | zixyr; = 2 for 4,5 = 1,2,....
Therefore, ®(xy) = ®(z)P(y).

Secondly, by Proposition 2.1 and Theorem 2.3, ® is a surjective *-
isometry. It follows that E is a C*-algebra with the operations defined
above, and ® is an isomorphism between B(H, ® H) and E. O
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Theorem 2.5. Let (z;;) be in Mo (A”). Then:

(i) there is an x € QM(A® K) such that ®(x) = (x;;) if and only if
every x;; € QM(A) and 377 x5 @ ey .

(i) Suppose that every x;; € LM(A),

sot,

n
E T Q€5 — @,
ij

and there is an increasing sequence {nx} such that {3 je,. Tij @
eij 1ol converges in the norm in AQ K. Thenx € LM(A®K), where

on = {(i,7) : there exists k > 1, such thatn > ng > 1> ng_1,
n>n >j>mn_1}.

(ili) There is an v € A ® K such that ®(x) = (x;5) if and only if
every T;; € A and

Z" [
Tij X €ij — L.
iJ

Proof.

(i) Let z € QM (A®K) with ®(z) = (z;5). By the proof of Theorem
2.3 (i), we have z;; ® ¢;; = (1®e;)x(1®ej;) € A" ®e;;. Suppose that
{en} is an approximate unit of A. Since e, *1in M (A), then

st
€a @€y —r 1 ® ey

in A” ® e;;, where the strict topology on A” ® e;; is inherited from that
on B(H, ® H). Similarly, e, ® ej; f1® ej; in A” ® e;;. Hence, for
any a,b € A,

(0. ® €ii)(ea @ es)(ca ® ej) (@ e55) 1 (a ® ei)a(b @ e7).

Since x € QM(A®K), then (a ® e;;)(eq ® e5)x(eq @ e;;)(b®ej;) €
A ® K. Note that
(az;ib) ® ei; = (a @ €i;)(wij ® €45)(b® ej;)
= (a (24 eii)(l X eii)x(l (24 ejj)(b X ejj)
= (a [ 6“,):17([) X ejj).
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Hence, (ax;;b) ® e;; € A® K. Furthermore,
(awijb) ® eij = (1@ eq)((azi;b) @ €i5)(1 @ e55)
€(1®e)(A0K)(1®e);)
= A ® 67;j .
Therefore, az;jb € A and z;; € QM (A).
By Theorem 2.3 (i), it follows that Y7 2;; ® e;; % .
Conversely, suppose that (z;;) is in Mo (QM (A)) such that ZZ Zi;®

eij % 2 for some z € B(H, ® H). For any a,b € A and [, k,s,t € N,
we have

(a®e) (Zx” ® eij> (b® est) sot, (a®er)r(b® est)
ij

as n — 0o. Set N = max{k, s}. Then, when n > N,

n N

(a &® €lk> ( Z Tij ® eij) (bR es) = (a ® elk) ( inj ® eij> (b® est).
ij ij

Hence, when n > N,

N
(a@ep)r(b®es) = Z azijb @ epejess € A® K.
ij
Since span{a ® ej : a € A;l, k € N} is dense in the norm in A ® K, it
follows that (A ® K)z(A® K) C A® K. Therefore, x € QM (A ® K).
By Theorem 2.3, ®(x) = (z;;).

(ii) Suppose that Z(i,j)Gan Tij ® eij M) xq for some xg in AR K as

n — oo. Let y =2 — xp. Then y € (A® K)"”. Set

A ={(i,) 6,5 =1,2,...,n}\om,  yn= D @i ®ei;.
(6,5)€An

Then, y, sof .

Forany a € Aand I,k € N, y,(a®ep) ¥ y(a@ey). Note that y, is
the upper triangular part. Hence, when n > I, y,(a®ei) = yi(a®@eyp).
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By the assumption that x;; € LM (A), it follows that
yla@ey)=yla®ey) € A K.

Therefore, y(A®RK) C A®K and y € LM (A®K). Finally, by y = x—x,
we have z € LM(A® K).

(iii) This follows from Proposition 2.2. O

Theorem 2.6. Let z € (A® K)"” and (z;;) € Moo(A”) satisfy ®(z)
= (x;;). Consider the statements:

(i) z € M(A® K);
(i) 2i; € M(A) for any i, j such that 377 xi;@e; = 2 in M(A®K);
(iil) z;; € M(A) for any i,j such that EZ Tij © ey 2 in (A

®K)", and there are increasing subsequences {ny} and {m;} such that
{Z(i,j)eon Ti; @ ejj}ee, and {Z(i,j)eén Tij ® €192 converge in the
norm in A ® IC, where
on ={(i,7) : there exists k > 1, such thatn > ng > > ng_1,
n>n>j>n-1},

0n = {(i,7) : there exists k <1, such that n > my >1i > my_1,
n>m;>j>m_1}.

Then (i) < (ii) and (iii) = (i).
Proof.

(i) = (ii). Let z € M(A ® K). For any r > 0, the closure of
subset {a € A® K : ||a|| < r} in the strict topology is equal to subset
{y € M(A®K) : |ly|| < r}. Then, there is a bounded net {z,} C AQK

such that z, =% z in M(A® K). Furthermore,
(18 eii)wa(1® ej5) = (1@ ei)a(1 @ e55)
in M(A®K).

Since 24 € A®K, then (1®e;)za(1®ej;) € AR e;;. Hence, there
is an 7% € A such that (1 ® e;;)zq(1 ®ej;) = 2% @ e;5. It follows that
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T ® e L 1@en)e(l® ej;), and hence,
Jifyj R e;j W—Ot> (1 ® €ii).13(1 ® €jj)
since % @ e;; is bounded. Note that the net {z% @e;;} is contained in
A" ®e;;, which is a closed subspace in the wot. Thus, (1®e;;)z(1®e;;) €
A”(X)e,-j, and there is an Tij € A" such that T Qe;; = (1®62‘i)1’(1®6]’j)
for any 4,57 € N.
For every a € A,

ij [I-11
(zd ®eij)(a®ej;) — (xij ® e5)(a @ ej;).

Then, N N
zda — zijal = [[(zd a — zija) @ eij|| — 0.
Thus, z;ja € A for all a € A and z;;A C A. Similarly, we have
Az;; C A. Therefore, x;; € M(A).
Finally, note that
n n
Z Tij Q€5 = Z(l (24 eii)x(l X €jj) = P,zP,,
ij ij
where P, = >~ 1®e;; € M(A®K) and P, = 1in M(A®K). It follows

that P,z P, 5% 2. Since the representation ¢ : A K — B(H, ® H)
is faithful and non-degenerate, the strict topology is stronger than
the sot on bounded subsets of B(H, ® H). Hence, x;; € A” and

doi Tij @ €ij % 2. Therefore, by (i), we have ®(z) = (zy;).

(i) = (i). Let 2y € M(A) with Y0 2 ® eg; =5 = in M(A® K).
Since ZZ zij®e;; € M(A)QK C M(A®K) and M(A®K) is complete
in the strict topology, then x in M(A ® K).

(i) = (i). Suppose that x;; € M(A) satisfies the conditions
in the assumption. Since M(A) C LM(A), by Theorem 2.5 (ii),
x € LM(A® K). Similarly, since M(A) C RM(A), by an analogue
of Theorem 2.5 (ii), z € RM(A ® K). Therefore,

€ LMAQK)NRM(AQK)=M(AQK). O

Remark 2.7. The assumption that = : A — B(H,) is the universal
representation of A is not necessary. In fact, since LM (A®K), RM(A
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®K), QM(A®K) and M(A® K) are isomorphic, respectively, for any
faithful and non-degenerate representations. Thus, if we replace the
universal representation m of A with any faithful non-degenerate rep-
resentation ¢ of A and replace the universal enveloping von Neumann
algebra A” with the closure of ¢(A) in the sot, all results given above
still hold.

Remark 2.8. In Theorem 2.6, condition (iii) is not necessary for
reMARK).

Let z;; € B(H,) fori,j =1,2,.... Set

z11 0 -+ 0

6 — i;i 8 e and Bn _ T91 O .0

| : ’ Inl 0 - 0
Then, )
i=1

Hence, ( represents an element in B(H, ® H) if and only if

n
sup E x x| < oo.
n i=1

Let A=K, and

Let 7 be the inclusion map from X into B(H). Then, the representation
T ® ¢ is the inclusion map from A ® K into B(H ® H). By the above
discussion, /3 represents an element « in B(H ® H) = M(A® K), that

iS, Z?:l €ii D e;1 Si; xX.

Note that ||z — Y1 ; e;; @ e;1]] = 1 for any n € N. Hence, for any
increasing subsequence {n;}, the sequence {3_; /o, €ii®ei1}pZy does
not converge in the norm in A ® K.
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The above example also illustrates that Theorem 2.5 (ii) is not
necessary for x € LM (A®K). However, when A is a unital C*-algebra,
these conditions are sufficient and necessary as Brown, Lin and Zhang
have proved.

Corollary 2.9 ([11, 5.1.9]). Suppose that A is a unital C*-algebra and
en =Y 1 1®ey forn =1,2,.... Then, an infinite matriz (a;;) with
a;j € A represents an element in M(A ® K) if and only if

(i) sup{[| >24; aij @ eij| : n € N} < +00; and

(ii) for any € > 0 and l € N, there is an N > 0 such that

[(entm —en)(aij)el <& and e(ai;)(entm —en)| <€

for allm € N and alln > N.

Proof.

=. Suppose that (a;;) represents z in M(A® K). By Theorem 2.5,
>oi i @ e %% 2. Therefore, sup{| > o5 aij @ eggl| 1 € N} < +oo.

Since {e,} is an approximate unit of A ® K, then e,ze; — xe; and
ejxe, — ez for any | € N as n — oco. Hence, (ii) holds.

<. By Theorem 2.6, we need to show that ZZ a;; ® ej; is a Cauchy
sequence in the strict topology in M (A ® K). Since {3_}; ai; ® e;;} is
a bounded sequence, it suffices to show that {(ZZ a;; @ e;j)er} and

{el(Z?j a;; @ e;;)} are Cauchy sequences for each e; in the norm in
A ® K. This is exactly the statement of condition (ii). O

Corollary 2.10 ([12, 1.6.1]). Suppose that A is a unital C*-algebra
and © € (A® K)" with ®(x) = (x;;). Let e, = .71 ® e for
n = 1,2,.... Then x € M(A ® K) if and only if there are two
subsequences {eyn, } and {em;} with e,, = em, = 0, such that

Z(em - eni—l)x(l - em+1)a Z(l — €m; )m(em]‘ - emj—l) cAQK.
i=1 j=1

Proof. The “if” part follows from Theorem 2.6 (iii). The “only if”
part follows from the fact that {e,} is contained in A ® K and is an
approximate unit for A @ . ]
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Corollary 2.11 ([5, 4.1.9 (ii)]). Let A be a unital C*-algebra and
(aij) € Mo (A”). Then, (a;;) represents an element of LM(A® K) if
and only if (ai;) is bounded, i.e., represents an element in (A ® K)”,
each (aij) € A and there is an increasing subsequence {ny} such that
{2265y co, Tig ® €3 )52y converges in the norm in A® K.
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