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NON-MONOGENITY IN A FAMILY OF OCTIC FIELDS

ISTVÁN GAÁL AND LÁSZLÓ REMETE

ABSTRACT. Let m be a square-free integer, m ≡ 2, 3
(mod 4). We show that the number field K = Q(i, 4

√
m) is

non-monogene, that is, it does not admit any power integral
bases of type {1, α, . . . , α7}. In this infinite parametric
family of Galois octic fields we construct an integral basis
and show non-monogenity using congruence considerations
only.

Our method yields a new approach to consider monogenity
or to prove non-monogenity in algebraic number fields which
is applicable for parametric families of number fields. We
calculate the index of elements as polynomials dependent
upon the parameter, factor these polynomials, and consider
systems of congruences according to the factors.

1. Introduction. Let K be a number field of degree n with a ring
of integers ZK . It is called monogene if there is an α ∈ ZK such that
ZK = Z[α], that is, {1, α, . . . , αn−1} is an integral basis of K. Such an
integral basis is called a power integral basis. Monogenity of number
fields and calculation of generators of power integral bases is a classical
topic of algebraic number theory, cf., [8, 18]. There are efficient
algorithms for calculating the monogenity of lower degree number fields
and the generators of power integral bases [1, 9, 11, 14]. However, we
only have partial results for higher degree fields [6, 7, 10, 19]. The
problem is particularly challenging if we try to answer this question in
an infinite parametric family of number fields, cf., e.g., [12, 15].

Chang [2] studied the fields L = Q(ω, 3
√
m), where ω = e2πi/3 and m

is a square-free integer. He calculated the relative index of an element
of L, cf., [8]. He did not determine the elements of relative index 1 but
used this relation for further calculations of the index. He showed that
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there are no power integral bases in L. This field L is Galois, which
simplified some calculations.

This result prompted the immediate consideration of the octic family
of fields of type K = Q(i, 4

√
m). The analogous method failed when

calculating the relative index in our quartic case because it is much
more complex than the cubic case. We followed a direct method of
calculating the index of elements of K, explicitly calculating the index
form and its factors. Using only congruence considerations, we showed:

Theorem 1.1. Letting m be a square-free integer m ≡ 2, 3 (mod 4),
the field K = Q(i, 4

√
m) is not monogene.

Our proof involves calculations performed with Maple and a total of
eight parameters using complicated formulas dependent on m and the
coefficients of the elements in the integral basis. In order to perform
these calculations we only considered the cases m ≡ 2, 3 (mod 4). Note
that, for m ≡ 2, 3 (mod 4), the elements {1, ϑ, ϑ2, ϑ3} form an integral
basis in L = Q(ϑ) (with ϑ = 4

√
m), see [16]. The integral basis of L

is also known for other values of m, [5, 17], but, in those cases, the
integral basis of L also depends upon other parameters; m is written in
the formm = ab2c3 where a, b and c are square-free and pairwise prime.
This would make the integral basis of K, and also all of our formulas,
much more complicated, for which our method is nearly impossible to
perform.

Previously, we determined the generators of relative power integral
bases of K over L and considered one or two additional equations to
calculate the generators of power integral bases of K, cf., sextic and
octic fields with quadratic subfields [8].

The novelty of our present method is that we do not explicitly
calculate the generators of relative integral bases of K over L. Further,
instead of two or three factors of the index form, here we use as many
factors as possible, a total of six. We calculate the index of elements as
polynomials depending upon the parameter, factor these polynomials
and consider a system of congruences according to the factors.

The straightforward method of our calculations may also be useful
in other parametric families of number fields.
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2. An integral basis of K. In parametric families, especially in
higher degree number fields, say, for degrees > 4, it is difficult to
determine an integral basis in a parametric form. Sometimes we succeed
in constructing an integral basis, cf., e.g., [12]; if not, the problem
remains interesting for an order of the field, cf., e.g., [10, 15]. In the
present case, we have:

Theorem 2.1. Let m be a square-free integer, ϑ = 4
√
m, and let

K = Q(i, ϑ). If m ≡ 2 (mod 4), then an integral basis of K is

(2.1)

{
1, ϑ, ϑ2, ϑ3, i,

(1 + i)ϑ+ ϑ3

2
,
(1 + i)ϑ2

2
,
(1 + i)ϑ3

2

}
,

and the discriminant of K is

DK = 218m6.

If m ≡ 3 (mod 4), then an integral basis of K is

(2.2)

{
1, ϑ, ϑ2, ϑ3,

i+ ϑ2

2
,
iϑ+ ϑ3

2
,
1 + iϑ2

2
,
ϑ+ iϑ3

2

}
,

and the discriminant of K is

DK = 216m6.

Proof of Theorem 2.1. Set M = Q(i) and L = Q(ϑ). For m ≡
2, 3 (mod 4), {1, ϑ, ϑ2, ϑ3} is an integral basis in L, see [16], with
discriminant DL = −256m3. The relative discriminant of K over L
is denoted by DK/L. We have

(2.3) DK = NL/Q(DK/L)D
2
L,

which implies that DK is divisible by 216m6.

There are several classical methods for calculating the integral basis
of number fields which work for specific fields but not necessarily for
parametric families of fields. In order to construct the integral basis we
used the algorithm described by Cook [4]. We began with the initial
basis

{b1 = 1, b2 = ϑ, b3 = ϑ2, b4 = ϑ3, b5 = i, b6 = iϑ, b7 = iϑ2, b8 = iϑ3},
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and calculated the discriminant of this basis as D = 224m6. Comparing
it with (2.3), we can see that

DK = 2hm6,

with 16 ≤ h ≤ 24.

According to the algorithm of [4], we began exchanging the original
basis elements with new candidates of basis elements. Our purpose was
to diminish D = 224m6 by a power of 2; thus, only 2 may appear in
the denominator. The numerator is a linear combination of the basis
elements with coefficients 0 or 1, that is, we constructed elements of
the type

(2.4) b =
λ1b1 + · · ·+ λ8b8

2
,

with λi ∈ {0, 1}.
The parameter m is either 4n + 2 or 4n + 3. We selected those

coefficient tuples (λ1, . . . , λ8) which were appropriate for a new basis
element in the following way. We let n run through all residues
modulo 64 to check whether the norm of λ1b1+ · · ·+λ8b8 is divisible by
28 = 256. Elements b are sufficient such that this was satisfied for all
residues of n modulo 64. Then, we calculated the defining polynomial
of b in a parametric form to verify that it is indeed an algebraic
integer. Finally, we replaced a basis element by b and calculated
the discriminant of the new basis, which must be smaller than the
discriminant of the previous basis.

In the case m = 4n+2, the procedure terminated with the observa-
tion that no coefficient tuples (λ1, . . . , λ8) were suitable (the norm of
λ1b1 + · · ·+ λ8b8 divisible by 28 = 256) for any residues n modulo 64.

In the case m = 4n + 3, the discriminant of our basis reached the
lower bound 216m6. �

3. Calculating the index of elements.

Proof of Theorem 1.1. Letting ω = i, we have ϑ = 4
√
m. Set

ω(1,k) = i, ω(2,k) = −i, 1 ≤ k ≤ 4, and let ϑ(j,k) = ik−1 4
√
m for

j = 1, 2, 1 ≤ k ≤ 4. Let {b1 = 1, b2, . . . , b8} be the integral basis
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of Theorem 2.1. We represent α in the form

α = x1 + x2b2 + · · ·x8b8,

with x1, . . . , x8 ∈ Z. Let α(j,k) be the conjugate of any α ∈ K
corresponding to ϑ(j,k). This may be calculated by using the conjugates
of ω and ϑ and the explicit form of b2, . . . , b8.

For any primitive element α ∈ ZK , the index of α, cf., [8], is

(3.1) I(α) = (Z+
K : Z[α]+) =

√
|D(α)|
|DK |

,

where D(α) is the discriminant of α. We split D(α) into several factors.
Let

S1=NM/Q((α
(j,1)−α(j,2))(α(j,2)−α(j,3))(α(j,3)−α(j,4))(α(j,4)−α(j,1))),

S2=NM/Q((α
(j,1) − α(j,3))(α(j,2) − α(j,4))),

S3=(α(1,1) − α(2,1))(α(1,2) − α(2,2))(α(1,3) − α(2,3))(α(1,4) − α(2,4)),

S4=(α(1,1) − α(2,4))(α(1,2) − α(2,1))(α(1,3) − α(2,2))(α(1,4) − α(2,3)),

S5=(α(1,1) − α(2,3))(α(1,2) − α(2,4))(α(1,3) − α(2,1))(α(1,4) − α(2,2)),

S6=(α(1,1) − α(2,2))(α(1,2) − α(2,3))(α(1,3) − α(2,4))(α(1,4) − α(2,1)).

The polynomials S1, . . . , S6 have integer coefficients, which depend
on m, x2, . . . , x8, but are independent from x1.

Case 1: m = 4n+2. We substitute m = 4n+2 into S1, . . . , S6. We
factor the products and find

S1 = 16(2n+ 1)2Q1,

S2 = 16(2n+ 1)Q2,

S3 = 2Q3,

S4 = 2Q4,

S5 = 2Q5,

S6 = 2Q6,

where Q1, . . . , Q6 are also polynomials with integer coefficients. There-
fore, we have

S1 · · ·S6 = 29(4n+ 2)3Q1 · · ·Q6 =
√
|DK |Q1 · · ·Q6.
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Hence, by (3.1) and Theorem 2.1, we have I(α) = Q1 · · ·Q6; therefore,
I(α) = 1 is equivalent to

(3.2) Qi = Qi(x2, . . . , x8, n) = ±1, i = 1, . . . , 6.

We calculate
Q4 −Q6 +Q3 −Q5 mod 16,

and find that this is = 8 (independently from the variables). This is
impossible, since Qi mod 16 must be 1 or 15 for all i. This proves the
theorem in Case 1.

Case 2: m = 4n+3. Again, we substitutem = 4n+3 into S1, . . . , S6.
By factoring the products, we find

S1 = (4n+ 3)2Q1,

S2 = 16(4n+ 3)Q2,

S3 = Q3,

S4 = 4Q4,

S5 = Q5,

S6 = 4Q6,

where Q1, . . . , Q6 are also polynomials with integer coefficients. There-
fore, we have

S1 · · ·S6 = 28(4n+ 3)3Q1 · · ·Q6 =
√
|DK |Q1 · · ·Q6.

Hence, by (3.1) and Theorem 2.1, we have I(α) = Q1 . . . Q6; therefore,
I(α) = 1 is equivalent to

(3.3) Qi = Qi(x2, . . . , x8, n) = ±1, i = 1, . . . , 6.

We consider all possible cases according to whether x2, . . . , x8 and n
are even or odd, that is, we substitute

xi = 2ti, 2ti + 1, i = 2, . . . , 8, n = 2t9, 2t9 + 1,

into Q1, . . . , Q6, and in all 28 cases, we calculate their residues mod-
ulo 4. By (3.3), this must be 1 or 3. Further, Q1, Q3, Q5 mod 8 must
be 1 or 15 and Q6 −Q4 mod 8 must be 0, 2 or 6. Note that all of these
residues are independent from the parameters t2, . . . , t9, as this occurs
in all subsequent residues without further comment.
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For the cases that have passed this test, we further considered Q1

modulo 16. In all of the cases satisfying these conditions, we found that
x5 is even and x7 is odd, which made it possible to reduce the number
of possible cases.

For the remaining cases, we considered Q2, Q4, Q6 mod 4 (must be
1 or 3), Q1, Q3, Q5 mod 8 (must be 1 or 7), and Q6 −Q4 mod 8 (must
be 0, 2 or 6). In the suitable cases, we used Q3 − Q5 mod 16, which
must be 0, 2 or 14. The values obtained were 0 and 8, which implies
Q3 ≡ Q5 mod 16. In all four suitable cases, we used Q5 mod 16 and
always obtained

8t25 + 8t27 + 8t7 + 9 = 8t7(t7 + 1) + 8t25 + 9 ≡ 8t25 + 9 mod 16.

This implies that t5 is even but not divisible by 4, that is, t5 = 4t′5 +2.

In the cases satisfying all conditions, we found that we always
obtained x6 and x8 even. Using these additional conditions in the
remaining suitable cases, we printed Q5 −Q3 mod 32 (must be 0, 2 or
30) and Q4 − Q6 mod 16 (must be 0, 2 or 14). These residues were
again independent from the parameters and did not take acceptable
values in a parallel manner. This proves the theorem in Case 2. �

4. Computational aspects. All calculations were performed in
Maple [3]. The factors S1, . . . , S6 of the indices of elements were
extremely complicated and were only manageable with Maple. It took
1-3 minutes to simplify them using symmetric polynomials to obtain
integer coefficients. The modular tests took only a few seconds.
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