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EXISTENCE OF PERIODIC SOLUTIONS FOR
2nTH-ORDER NONLINEAR p-LAPLACIAN

DIFFERENCE EQUATIONS

HAIPING SHI, XIA LIU AND YUANBIAO ZHANG

ABSTRACT. By using the critical point theory, the ex-
istence of periodic solutions for 2nth-order nonlinear p-
Laplacian difference equations is obtained. The main ap-
proaches used in our paper are variational techniques and
the Saddle Point theorem. The problem is to solve the exis-
tence of periodic solutions for 2nth-order p-Laplacian differ-
ence equations. The results obtained successfully generalize
and complement the existing ones.

1. Introduction. In this paper, we consider the following 2nth-
order p-Laplacian difference equation
(1.1)

∆n (rk−nφp (∆
nuk−1)) + (−1)nqk∆φp (∆uk−1) = (−1)nf(k, uk),

n ∈ Z(1), k ∈ Z,

where ∆ is the forward difference operator ∆uk = uk+1 − uk, ∆
nuk =

∆(∆n−1uk), φp(s) is the p-Laplacian operator φp(s) = |s|p−2s, 1 < p <
∞, {rk} and {qk} are real sequences, f ∈ C(Z × R,R), T is a given
positive integer, rk+T = rk > 0, qk+T = qk ≥ 0, f(k + T, v) = f(k, v).

We may think of equation (1.1) as a discrete analogue of the following
2nth-order differential equation:
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(1.2)
dn

dtn

[
r(t)φp

(
dnu(t)

dtn

)]
+ (−1)nq(t)(φp(u

′(t)))′

= (−1)nf(t, u(t)), t ∈ R.

Existence of periodic solutions of higher-order differential equations has
been the subject of many investigations [8, 15, 16, 17, 32, 36, 37].
By using various methods and techniques, such as fixed point theory,
the Kaplan-Yorke method, critical point theory, coincidence degree
theory, bifurcation theory and dynamical system theory, etc., a series
of existence results for periodic solutions have been obtained in the
literature. Recently, the difference equations have widely occurred as
the mathematical models describing real life situations in probability
theory, matrix theory, electrical circuit analysis, combinatorial analysis,
queuing theory, number theory, psychology and sociology, etc. For
the general background of difference equations, one can refer to the
monographs [1, 2, 3, 28]. Since the last decade, there has been much
progress on the qualitative properties of difference equations, which
included results on stability and attractivity [18, 28, 31, 46] and
results on oscillation and other topics [1, 2, 3, 23, 24, 25, 31, 42,
43, 44, 45]. Only a few papers discuss the periodic solutions of higher-
order difference equations. Therefore, it is worthwhile to explore this
topic.

The widely used tools for the existence of periodic solutions of
difference equations are the various fixed point theorems in cones
[1, 2, 3, 28]. It is well known that critical point theory is a very
powerful tool that deals with the problems of differential equations
[8, 11, 14, 21, 22, 32, 38, 41]. Only since 2003, critical point
theory has been employed to establish sufficient conditions on the
existence of periodic solutions of difference equations. By using the
critical point theory, Guo and Yu [23, 24, 25] and Shi et al. [39]
established sufficient conditions on the existence of periodic solutions
of second-order nonlinear difference equations. Compared to first-
order or second-order difference equations, the study of higher-order
equations has received considerably less attention (see, for example,
[4, 5, 8, 12, 13, 19, 28, 33, 35] and the references contained therein).
Ahlbrandt and Peterson [4] in 1994 studied the 2nth-order difference
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equation of the form

(1.3)
n∑

i=0

∆i
(
ri(k − i)∆iu(k − i)

)
= 0

in the context of the discrete calculus of variations, and Peil and
Peterson [35] studied the asymptotic behavior of solutions of (1.3) with
ri(k) ≡ 0 for 1 ≤ i ≤ n− 1. In 1998, Anderson [5] considered (1.3) for
k ∈ Z(a) and obtained a formulation of generalized zeros and (n, n)-
disconjugacy for (1.3). Migda [33] in 2004 studied an mth-order linear
difference equation.

If qk ≡ 0, p = 2 and n = 2, and replacing f(k, uk) with −f(k, uk),
(1.1) reduces to the following equation:

(1.4) ∆2
(
rk−2∆

2uk−2

)
+ f(k, uk) = 0, k ∈ Z.

In 2005, Cai, Yu and Guo [10] obtained some criteria for the existence
of periodic solutions of the fourth-order difference equation for (1.4).

Recently, Cai and Yu [9] obtained some criteria for the existence of
periodic solutions of the following 2nth-order difference equation

(1.5) ∆n (rk−n∆
nuk−n) + f(k, uk) = 0, n ∈ Z(3), k ∈ Z,

for the case where f grows superlinearly at both 0 and ∞.

A great deal of work has also been done on the study of the existence
of solutions to discrete boundary value problems with the p-Laplacian
operator. Because of potential applications in many fields, we refer
the reader to the monograph by Agarwal, et al., and some recent
contributions [6, 7, 8, 26, 27, 29, 30, 40]. However, to the best of our
knowledge, the results on periodic solutions of higher-order nonlinear
difference equations with p-Laplacian are very scarce in the literature.

The main intention of this paper is to give some sufficient conditions
for the existence and multiplicity of periodic and subharmonic solutions
for 2nth-order nonlinear p-Laplacian difference equations. The proof is
based on the Saddle Point theorem in combination with the variational
technique. In particular, our results generalize and complement the
results in the literature [9, 10]. In fact, one can see the following
Remark 1.4 for details. The motivation for the present work stems
from the recent papers [13, 20].
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Let

r = min
k∈Z(1,T )

{rk}, r = max
k∈ Z(1,T )

{rk},

q = min
k∈Z(1,T )

{qk}, q = max
k∈ Z(1,T )

{qk}.

Now we state the main results of this paper.

Theorem 1.1. Assume that the following hypotheses are satisfied :

(F1) there exists a functional F (k, v) ∈ C1(Z×R,R),

∂F (k, v)

∂v
= f(k, v)

such that
F (k + T, v) = F (k, v);

(F2) there exists a constant M0 > 0 for all (k, v) ∈ Z×R such that
|f(k, v)| ≤M0;

(F3) F (k, v) → +∞ uniformly for k ∈ Z as |v| → +∞.

Then, for any given positive integer m > 0, equation (1.1) has at least
one mT -periodic solution.

Remark 1.2. Assumption (F2) implies that there exists a constant
M1 > 0 such that

(F ′
2) |F (k, v)| ≤M1 +M0|v|, for all (k, v) ∈ Z×R.

Theorem 1.3. Assume that (F1) holds; further,

(F4) there exist constants R1 > 0 and α, 1 < α < 2, such that, for
k ∈ Z and |v| ≥ R1,

0 < f(k, v)v ≤ α

2
pF (k, v);

(F5) there exist constants a1 > 0, a2 > 0 and γ, 1 < γ ≤ α such that

F (k, v) ≥ a1|v|(γ/2)p − a2, for all (k, v) ∈ Z×R.

Then, for any given positive integer m > 0, equation (1.1) has at least
one mT -periodic solution.
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Remark 1.4. Assumption (F4) implies that, for each k ∈ Z, there
exist constants a3 > 0 and a4 > 0 such that

(F ′
4) F (k, v) ≤ a3|v|(α/2)p + a4, for all (k, v) ∈ Z×R.

Remark 1.5. The results of Theorems 1.1 and 1.3 ensure that equa-
tion (1.1) has at least one mT -periodic solution. However, in some
cases, we are interested in the existence of nontrivial periodic solutions
for equation (1.1).

In this case, we have

Theorem 1.6. Assume that (F1) holds; further,

(F6) F (k, 0) = 0, f(k, v) = 0 if and only if v = 0, for all k ∈ Z;

(F7) there exists a constant α, 1 < α < 2, such that, for k ∈ Z,

0 < f(k, v)v ≤ α

2
pF (k, v), for all v ̸= 0;

(F8) there exist constants a5 > 0 and γ, 1 < γ ≤ α, such that

F (k, v) ≥ a5|v|(γ/2)p, for all (k, v) ∈ Z×R.

Then, for any given positive integer m > 0, equation (1.1) has at least
one nontrivial mT -periodic solution.

Theorem 1.7. Assume that (F1)–(F3) and (F6) hold ; further,

(F9) there exist constants a6 > 0 and θ, 0 < θ < 2, such that

F (k, v) ≥ a6|v|(θ/2)p, for all (k, v) ∈ Z×R.

Then, for any given positive integer m > 0, equation (1.1) has at least
one nontrivial mT -periodic solution.

If qk ≡ 0, p = 2 and n = 2, replacing f(k, uk) with (−1)n+1f(k, uk),
equation (1.1) reduces to equation (1.5). Then, we have the following
results.

Theorem 1.8. Assume that (F1) holds; further,

(F10) F (k, 0) = 0, for all k ∈ Z;
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(F11) there exists a constant α, 1 < α < 2, such that, for k ∈ Z,

αF (k, v) ≤ vf(k, v) < 0, for all |v| ̸= 0;

(F12) there exist constants a7 > 0 and γ, 1 < γ ≤ α, such that

F (k, v) ≤ −a7|v|γ , for all (k, v) ∈ Z×R.

Then, for any given positive integer m > 0, equation (1.5) has at least
one nontrivial mT -periodic solution.

Theorem 1.9. Assume that (F1), (F2) and (F6) hold ; further,

(F13) F (k, v) → −∞ uniformly for k ∈ Z as v → +∞;

(F14) there exist constants a8 > 0 and θ, 0 < θ < 2, such that

F (k, v) ≤ −a8|v|θ, for all (k, v) ∈ Z×R.

Then, for any given positive integer m > 0, equation (1.5) has at least
one nontrivial mT -periodic solution.

Remark 1.10. When β > 2, Cai, Yu and Guo [10, Theorem 1.1] have
obtained some criteria for the existence of periodic solutions of (1.4)
and Cai and Yu [9, Theorem 1.1] have obtained some criteria for the
existence of periodic solutions of (1.5). When β < 2, we can still find
the periodic solutions of equations (1.4) and (1.5). Hence, Theorems
1.6–1.9 generalize and complement the existing ones.

The rest of the paper is organized as follows. First, in Section 2,
we shall establish the variational framework associated with (1.1) and
transfer the problem of the existence of periodic solutions of (1.1) into
that of the existence of critical points of the corresponding functional.
Some related fundamental results will also be recalled. Then, in
Section 3, we shall complete the proof of the results by using the critical
point method. Finally, in Section 4, we shall give two examples to
illustrate the main results.

Regarding the basis for variational methods, we refer the reader to
[32, 34, 38].

2. Variational structure and some lemmas. In order to apply
the critical point theory, we shall establish the corresponding varia-
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tional framework for (1.1) and give some lemmas which will be of fun-
damental importance in proving our main results. We start with some
basic notation.

Let S be the set of sequences

u = (. . . , u−k, . . . , u−1, u0, u1, . . . , uk, . . .) = {uk}+∞
k=−∞,

that is,
S = {{uk} | uk ∈ R, k ∈ Z}.

For any u, v ∈ S, a, b ∈ R, au+ bv is defined by

au+ bv = {auk + bvk}+∞
k=−∞.

Then S is a vector space.

For any given positive integers m and T , EmT is defined as a
subspace of S by

EmT = {u ∈ S | uk+mT = uk, for all k ∈ Z}.

Clearly, EmT is isomorphic to RmT . EmT can be equipped with the
inner product

(2.1) ⟨u, v⟩ =
mT∑
j=1

ujvj , for all u, v ∈ EmT ,

by which the norm ∥ · ∥ can be induced by

(2.2) ∥u∥ =

( mT∑
j=1

u2j

)1/2

, for all u ∈ EmT .

It is obvious that EmT with the inner product (2.1) is a finite-

dimensional Hilbert space and linearly homeomorphic to RmT .

On the other hand, we define the norm ∥ · ∥s on EmT as follows:

(2.3) ∥u∥s =
( mT∑

j=1

|uj |s
)1/s

,

for all u ∈ EmT and s > 1.
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Since ∥u∥s and ∥u∥2 are equivalent, there exist constants c1, c2 such
that c2 ≥ c1 > 0, and

(2.4) c1∥u∥2 ≤ ∥u∥s ≤ c2∥u∥2, for all u ∈ EmT .

Clearly, ∥u∥ = ∥u∥2. For all u ∈ EmT , define the functional J on
EmT as follows:
(2.5)

J(u) = −1

p

mT∑
k=1

rk−1 |∆nuk−1|p −
1

p

mT∑
k=1

qk |∆uk|p +
mT∑
k=1

F (k, uk)

:= −H(u) +

mT∑
k=1

F (k, uk),

where

H(u) =
1

p

mT∑
k=1

rk−1 |∆nuk−1|p+
1

p

mT∑
k=1

qk |∆uk|p ,
∂F (k, v)

∂v
= f(k, v).

It is evident that J ∈ C1(EmT ,R) and, for any u = {uk}k∈Z ∈ EmT ,
by using u0 = umT and u1 = umT+1, we can compute the partial
derivative as

∂J

∂uk
= −(−1)n∆n (rk−nφp (∆

nuk−1))− qk∆φp (∆uk−1) + f(k, uk).

Thus, u is a critical point of J on EmT if and only if

∆n (rk−nφp (∆
nuk−1)) + (−1)nqk∆φp (∆uk−1)

= (−1)nf(k, uk), for all k ∈ Z(1,mT ).

Due to the periodicity of u = {uk}k∈Z ∈ EmT and f(k, v) in the first
variable k, we reduce the existence of periodic solutions of (1.1) to the
existence of critical points of J on EmT , that is, the functional J is just
the variational framework of (1.1).
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Let

P =


2 −1 0 · · · 0 −1
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 2 −1
−1 0 0 · · · −1 2


be an mT ×mT matrix. By matrix theory, we see that the eigenvalues
of P are

(2.6) λj = 2

(
1− cos

2j

mT
π

)
, j = 0, 1, 2, . . . ,mT − 1.

Thus, λ0 = 0, λ1 > 0, λ2 > 0, . . . , λmT−1 > 0. Therefore,

(2.7)

{
λmin = min{λ1, λ2, . . . , λmT−1} = 2

(
1− cos 2

mT π
)

λmax = max{λ1, λ2, . . . , λmT−1}

=

{
4 when mT is even,

2
(
1 + cos 1

mT π
)

when mT is odd.

Let
W = kerP = {u ∈ EmT | Pu = 0 ∈ RmT }.

Then
W = {u ∈ EmT | u = {c}, c ∈ R}.

Let V be the direct orthogonal complement of EmT to W , i.e.,
EmT = V ⊕ W . For convenience, we identify u ∈ EmT with u =
(u1, u2, · · · , umT )

∗.

Let E be a real Banach space, J ∈ C1(E,R), i.e., J is a continuously
Fréchet-differentiable functional defined on E. J is said to satisfy
the Palais-Smale condition (abbreviated PS condition) if any sequence
{u(i)} ⊂ E for which {J(u(i))} is bounded and J ′(u(i)) → 0 (i → ∞)
possesses a convergent subsequence in E.

Let Bρ denote the open ball in E about 0 of radius ρ, and let ∂Bρ

denote its boundary.
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Lemma 2.1 (Saddle Point theorem [32, 38]). Let E be a real Banach
space, E = E1⊕E2, where E1 ̸= {0} and is finite-dimensional. Suppose
that J ∈ C1(E,R) satisfies the PS condition and

(J1) there exist constants σ, ρ > 0 such that J |∂Bρ∩E1 ≤ σ;

(J2) there exists e ∈ Bρ ∩E1 and a constant ω ≥ σ such that Je+E2

≥ ω.

Then J possesses a critical value c ≥ ω, where

c = inf
h∈Γ

max
u∈Bρ∩E1

J(h(u)), Γ = {h ∈ C(Bρ∩E1, E) | h|∂Bρ∩E1 = id}

and id denotes the identity operator.

Lemma 2.2. Assume that (F1)–(F3) are satisfied. Then J satisfies
the PS condition.

Proof. Let {u(i)} ⊂ EmT be such that {J(u(i))} is bounded and
J ′(u(i)) → 0 as i→ ∞. Then there exists a positive constant M2 such
that |J(u(i))| ≤M2.

Let u(i) = v(i) + w(i) ∈ V +W . For i large enough, since

−∥u∥2 ≤ ⟨J ′(u(i)), u⟩ = −⟨H ′(u(i)), u⟩+
mT∑
k=1

f(k, u
(i)
k )uk,

and combining with (F2) and (F3), we have

⟨H ′(u(i)), v(i)⟩ ≤
mT∑
k=1

f(k, u
(i)
k )v

(i)
k + ∥v(i)∥2

≤M0

mT∑
k=1

|v(i)k |+ ∥v(i)∥2

≤
(
M0

√
mT + 1

)
∥v(i)∥2.

On the other hand, we know that

⟨H ′(u(i)), v(i)⟩ =
mT∑
k=1

rk|∆nv
(i)
k |p +

mT∑
k=1

qk|∆v(i)k |p = pH(v(i)).
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Since

H(v(i)) ≥ r

p
cp1[(x

(i))∗P (x(i))]p/2 +
q

p
cp1[(v

(i))∗P (v(i))]p/2

≥ r

p
cp1λ

p/2
min∥x

(i)∥p2 +
q

p
cp1λ

p/2
min∥v

(i)∥p2,

H(v(i)) ≤ r

p
cp2[(x

(i))∗P (x(i))]p/2 +
q

p
cp2[(v

(i))∗P (v(i))]p/2

≤ r

p
cp2λ

p/2
max∥x(i)∥

p
2 +

q

p
cp2λ

p/2
max∥v(i)∥

p
2,

and

λ
(n−1)p/2
min ∥v(i)∥p2 ≤ ∥x(i)∥p2 =

mT∑
k=1

(∆n−2v
(i)
k+1 −∆n−2v

(i)
k )p

≤ λp/2max

mT∑
k=1

(∆n−2v
(i)
k )p ≤ λ(n−1)p/2

max ∥v(i)∥p2,

where x(i) = (∆n−1v
(i)
1 ,∆n−1v

(i)
2 , . . . ,∆n−1v

(i)
mT )

∗, we get
(2.8)
r

p
cp1λ

np/2
min ∥v(i)∥p2 +

q

p
cp1λ

p/2
min∥v

(i)∥p2 ≤ H(v(i))

≤ r

p
cp2λ

np/2
max ∥v(i)∥

p
2+

q

p
cp2λ

p/2
max∥v(i)∥

p
2.

Thus, we have

rcp1λ
(np)/2
min ∥v(i)∥p2 +

q

p
cp1λ

p/2
min∥v

(i)∥p2 ≤ (M0

√
mT + 1)∥v(i)∥2.

The above inequality implies that {v(i)} is bounded.

Next, we shall prove that {w(i)} is bounded. Since

M2 ≥ J(u(i))

= −H(u(i)) +

mT∑
k=1

F (k, u
(i)
k )

= −H(v(i)) +

mT∑
k=1

[F (k, u
(i)
k )− F (k,w

(i)
k )] +

mT∑
k=1

F (k,w
(i)
k ),
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combining with (2.8), we get

mT∑
k=1

F (k,w
(i)
k ) ≤M2 +H(v(i)) +

mT∑
k=1

|F (k, u(i)k )− F (k,w
(i)
k )|

≤M2 +

(
r

p
cp2λ

(np)/2
max +

q

p
cp2λ

p/2
max

)
∥v(i)∥p2

+

mT∑
k=1

|f(k,w(i)
k + θv

(i)
k )v

(i)
k |

≤M2+

(
r

p
cp2λ

(np)/2
max +

q

p
cp2λ

p/2
max

)
∥v(i)∥p2+M0

√
mT∥v(i)∥2,

where θ ∈ (0, 1). It is not difficult to see that{ mT∑
k=1

F (k,w
(i)
k )

}
is bounded.

By (F3), {w(i)} is bounded. Otherwise, assume that ∥w(i)∥2 → +∞
as i → ∞. Since there exist z(i) ∈ R, i ∈ N, such that w(i) =
(z(i), z(i), . . . , z(i))∗ ∈ EmT , then

∥w(i)∥2 =

( mT∑
k=1

|w(i)
k |2

)1/2

=

( mT∑
k=1

|z(i)|2
)1/2

=
√
mT |z(i)| → +∞

as i → ∞. Since F (k,w
(i)
k ) = F (k, z(i)), then F (k,w

(i)
k ) → +∞ as

i → ∞. This contradicts the fact that {
∑mT

k=1 F (k,w
(i)
k )} is bounded.

Thus the PS condition is verified. �

Lemma 2.3. Assume that (F1), (F4) and (F5) are satisfied. Then J
satisfies the PS condition.

Proof. Let {u(i)} ⊂ EmT be such that {J(u(i))} is bounded and
J ′(u(i)) → 0 as i→ ∞. Then there exists a positive constant M3 such
that |J(u(i))| ≤M3.

For i large enough, we have

|⟨J ′(u(i)), u(i)⟩| ≤ ∥u(i)∥2.
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So

M3 +
1

p
∥u(i)∥2 ≥ J(u(i))− 1

p
⟨J ′(u(i)), u(i)⟩

=
mT∑
k=1

F (k, u
(i)
k )− 1

p

mT∑
k=1

f(k, u
(i)
k )u

(i)
k .

Take

I1 = {k ∈ Z(1,mT ) | |u(i)k | ≥ R1},

I2 = {k ∈ Z(1,mT ) | |u(i)k | < R1}.

By (F4), we have

M3+
1

p
∥u(i)∥2 ≥

mT∑
k=1

F (k, u
(i)
k )− 1

p

∑
k∈I1

f(k, u
(i)
k )u

(i)
k − 1

p

∑
k∈I2

f(k, u
(i)
k )u

(i)
k

≥
mT∑
k=1

F (k, u
(i)
k )−α

2

∑
k∈I1

F (k, u
(i)
k )− 1

p

∑
k∈I2

f(k, u
(i)
k )u

(i)
k

=

(
1− α

2

) mT∑
k=1

F (k, u
(i)
k )

+
1

p

∑
k∈I2

[
α

2
pF (k, u

(i)
k )−f(k, u(i)k )u

(i)
k

]
.

The continuity of (α/2)pF (k, v)−f(k, v)v with respect to the second
variable implies that there exists a constant M4 > 0 such that

α

2
pF (k, v)− f(k, v)v ≥ −M6,

for k ∈ Z(1,mT ) and |v| ≤ R1. Therefore,

M3 +
1

p
∥u(i)∥2 ≥

(
1− α

2

) mT∑
k=1

F (k, u
(i)
k )− 1

p
mTM4.

By (F5), we get

M3+
1

p
∥u(i)∥2≥

(
1−α

2

)
a1

mT∑
k=1

|u(i)k |(γ/2)p −
(
1−α

2

)
a2mT − 1

p
mTM4
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≥
(
1− α

2

)
a1

mT∑
k=1

|u(i)k |(γ/2)p −M5,

where M5 = (1− (α/2))a2mT + (1/p)mTM4.

Combining with (2.4), we have

M3 +
1

p
∥u(i)∥2 ≥

(
1− α

2

)
a1c

(γ/2)p
1 ∥u(i)∥(γ/2)p2 −M5.

Thus, (
1− α

2

)
a1c

(γ/2)p
1 ∥u(i)∥(γ/2)p2 − 1

p
∥u(i)∥2 ≤M3 +M5.

This implies that {∥u(i)∥2} is bounded on the finite-dimensional space
EmT . As a consequence, it has a convergent subsequence. �

3. Proof of the main results. In this section, we shall prove our
main results by using the critical point method.

Proof of Theorem 1.1. By Lemma 2.2, we know that J satisfies the
PS condition. In order to prove Theorem 1.1 by using the Saddle
theorem, we shall prove conditions (J1) and (J2).

From (2.8) and (F ′
2), for any v ∈ V ,

J(v)=−H(v) +

mT∑
k=1

F (k, vk)

≤−
(
r

p
cp1λ

(np)/2
min +

q

p
cp1λ

p/2
min

)
∥v∥p2+mTM1+M0

mT∑
k=1

|vk|

≤−
(
r

p
cp1λ

(np)/2
min +

q

p
cp1λ

p/2
min

)
∥v∥p2+mTM1+M0

√
mT∥v∥2−→ −∞

as ∥v∥2 → +∞. Therefore, it is easy to see that condition (J1) is
satisfied.

In the following, we shall verify condition (J2). For any w ∈ W ,
w = (w1, w2, . . . , wmT )

∗, there exists a z ∈ R such that wk = z, for
all k ∈ Z(1,mT ). By (F3), we know that there exists a constant
R0 > 0 such that F (k, z) > 0 for k ∈ Z and |z| > R0. Let
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M6 = mink∈Z, |z|≤R0
F (k, z), M7 = min{0,M6}. Then

F (k, z) ≥M7, for all (k, z) ∈ Z×R.

So, we have

J(w) =
mT∑
k=1

F (k,wk) =
mT∑
k=1

F (k, z) ≥ mTM7, for all w ∈W.

The conditions of (J1) and (J2) are satisfied. �

Proof of Theorem 1.2. By Lemma 2.3, J satisfies the PS condition.
To apply the Saddle Point theorem, it suffices to prove that J satisfies
conditions (J1) and (J2).

For any w ∈W , since H(w) = 0, we have

J(w) =

mT∑
k=1

F (k,wk).

By (F5),

J(w) ≥ a1

mT∑
k=1

|wk|(γ/2)p − a2mT ≥ −a2mT.

Combining with (F ′
4), (2,4) and (2.8), for any v ∈ V , we get, as before,

J(v) ≤ −
(
r

p
cp1λ

(np)/2
min +

q

p
cp1λ

p/2
min

)
∥v∥p2 + a3

mT∑
k=1

|vk|(α/2)p + a4mT

≤ −
(
r

p
cp1λ

(np)/2
min +

q

p
cp1λ

p/2
min

)
∥v∥p2 + a3c

(α/2)p
2 ∥v∥(α/2)p2 + a4mT.

Let µ = −a2mT . Since 1 < α < 2, there exists a constant ρ > 0 large
enough such that

J(v) ≤ µ− 1 < µ, for all v ∈ V, ∥v∥2 = ρ.

Thus, by Lemma 2.1, equation (1.1) has at least one mT -periodic
solution. �

Proof of Theorem 1.3. Similarly to the proof of Lemma 2.3, we can
prove that J satisfies the PS condition. We shall prove this theorem
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by means of the Saddle Point theorem. Firstly, we verify the condition
(J1).

In fact, (F4) clearly implies (F ′
4). For any v ∈ V , by (F ′

4) and
equation (2.4), we again have J(v) → −∞ as ∥v∥2 → +∞.

Next, we show that J satisfies the condition (J2) for any given v0 ∈ V
and w ∈W . Let u = v0 + w. So

J(u) = −H(u) +
mT∑
k=1

F (k, uk)

= −H(v0) +

mT∑
k=1

F (k, (v0)k + wk)

≥ −
(
r

p
cp2λ

(np)/2
max +

q

p
cp2λ

p/2
max

)
∥v0∥p2 + a5

mT∑
k=1

|(v0)k + wk)|(γ/2)p

≥ −
(
r

p
cp2λ

(np)/2
max +

q

p
cp2λ

p/2
max

)
∥v0∥p2 + a5

mT∑
k=1

|(v0)k + wk|(γ/2)p

≥ −
(
r

p
cp2λ

(np)/2
max +

q

p
cp2λ

p/2
max

)
∥v0∥p2+a5c

(γ/2)p
1

[mT∑
k=1

|(v0)k+wk|2
](γ/4)p

= −
(
r

p
cp2λ

(np)/2
max +

q

p
cp2λ

p/2
max

)
∥v0∥p2+a5c

(γ/2)p
1

[
∥v0∥22+∥w∥22

](γ/4)p
≥ −

(
r

p
cp2λ

(np)/2
max +

q

p
cp2λ

p/2
max

)
∥v0∥p2 + a5c

(γ/2)p
1 ∥v0∥(γ/2)p2

+ a5c
(γ/2)p
1 ∥w∥(γ/2)p2 .

Since 1 < γ < 2, there exists a constant δ > 0 small enough such
that

J(v0+w) ≥ δ(γ/2)p
[
a5c

(γ/2)p
1 −

(
r

p
cp2λ

(np)/2
max +

q

p
cp2λ

p/2
max

)
δp−(γ/2)p

]
> 0,

for v0 ∈ V , ∥v0∥2 = δ and for any w ∈W .

Take

ν = δ(γ/2)p
[
a5c

(γ/2)p
1 −

(
r

p
cp2λ

(np)/2
max +

q

p
cp2λ

p/2
max

)
δp−(γ/2)p

]
.
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Then, for v0 ∈ V and for any w ∈ W , we get ∥v0∥2 = δ and
J(v0 + w) ≥ ν > 0.

By the Saddle Point theorem, a critical point u ∈ EmT exists which
corresponds to an mT -periodic solution of (1.1).

In the following, we shall prove that u is nontrivial, i.e., u /∈ W .
Otherwise, u ∈W . Since J ′(u) = 0, then

∆n (rk−nφp (∆
nuk−1)) + qk∆φp (∆uk−1) = (−1)nf(k, uk).

On the other hand, u ∈ W implies that there is a point z ∈ R such
that uk = z, for all k ∈ Z(1,mT ), that is,

u1 = u2 = · · · = uk = · · · = z.

Thus, f(k, uk) = f(k, z) = 0, for all k ∈ Z(1,mT ). From (F6), we
know that z = 0. Therefore, by (F6), we have

J(u) =
mT∑
k=1

F (k, uk) =
mT∑
k=1

F (k, 0) = 0.

This contradicts J(u) ≥ ν > 0. The proof of Theorem 1.6 is finished.
�

Remark 3.1. The techniques of the proof of Theorem 1.7 are exactly
the same as those carried out in the proof of Theorem 1.6. We do not
repeat them here.

Remark 3.2. Due to Theorems 1.6 and 1.7, the conclusion of Theo-
rems 1.8 and 1.9 is obviously true.

4. Examples. As an application of the main theorems, we give two
examples to illustrate our results.

Example 4.1. For all n ∈ Z(1) and k ∈ Z, assume that
(4.1)

∆n (rk−nφp (∆
nuk−1)) + (−1)nqk∆φp (∆uk−1) = (−1)nαpψ(k)uαp−1

k ,

where {rk} and {qk} are real sequences, ψ is continuously differentiable
and ψ(k) > 0, T is a given positive integer, rk+T = rk > 0, qk+T =
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qk ≥ 0, ψ(k + T ) = ψ(k), 1 < p <∞, 1 < α < 2. We have

f(k, v) = αpψ(k)vαp−1 and F (k, v) = ψ(k)vαp.

Then
∂F (k, v)

∂v
= αpψ(k)vαp−1.

It is easy to verify that all assumptions of Theorem 1.6 are satisfied.
Consequently, for any given positive integer m > 0, equation (4.1) has
at least one nontrivial mT -periodic solution.

Example 4.2. For all n ∈ Z(1) and k ∈ Z, assume that

(4.2) ∆n (rk−nφp (∆
nuk−1)) + (−1)nqk∆φp (∆uk−1)

= (−1)nθpuk

(
3 + cos2

kπ

T

)
uθp−1
k ,

where {rk} and {qk} are real sequences, rk+T = rk > 0, qk+T = qk ≥ 0,
1 < p <∞, 0 < θ < 2. We have

f(k, v) = θp

(
3 + cos2

kπ

T

)
vθp−1

and

F (k, v) =

(
3 + cos2

kπ

T

)
vθp.

Then

∂F (k, v)

∂v
= θp

(
3 + cos2

kπ

T

)
vθp−1.

It is easy to verify that all of the assumptions of Theorem 1.7 are satis-
fied. Consequently, for any given positive integer m > 0, equation (4.2)
has at least one nontrivial mT -periodic solution.
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