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POLYNOMIAL FIRST INTEGRALS FOR
WEIGHT-HOMOGENEOUS PLANAR POLYNOMIAL
DIFFERENTIAL SYSTEMS OF WEIGHT DEGREE 4

JAUME LLIBRE AND CLAUDIA VALLS

ABSTRACT. We classify all of the weight-homogeneous
planar polynomial differential systems of weight degree 4
having a polynomial first integral.

1. Introduction and statement of the main result. In this
paper, we deal with polynomial differential systems of the form:

(1.1)
dx

dt
= ẋ = P(x), x = (x, y) ∈ C2,

with P(x) = (P1(x), P2(x)) and Pi ∈ C[x, y] for i = 1, 2. As usual, Q+,
R and C will denote the sets of non-negative rational, real and complex
numbers, respectively, and C[x, y] denotes the polynomial ring over C
in the variables x, y. Here, t is real or complex.

System (1.1) is weight homogeneous or quasi-homogeneous if there
exist s = (s1, s2) ∈ N2 and d ∈ N such that, for arbitrary α ∈ R+ =
{a ∈ R, a > 0},

(1.2) Pi(α
s1x, αs2y) = αsi−1+dPi(x, y),

for i = 1, 2. We call s = (s1, s2) the weight exponent of system (1.1)
and d the weight degree with respect to the weight exponent s. In the
particular case where s = (1, 1), system (1.1) is called a homogeneous
polynomial differential system of degree d.
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Recently, such systems have been investigated by several authors.
Labrunie [12] and Ollagnier [15] characterized all polynomial first in-
tegrals of the three-dimensional (a, b, c) Lotka-Volterra systems. Ma-
ciejewski and Strelcyn [14] proved that the so-called Halphen system
has no algebraic first integrals. However, some of the best results for
general weight homogeneous polynomial differential systems have been
provided by Furta [10] and Goriely [11]. For quadratic homogeneous
polynomial differential systems, we refer the reader to [13, 16]. Addi-
tionally, we refer the reader to [1–5].

A non-constant function H(x, y) is a first integral of system (1.1)
if it is constant on all solution curves (x(t), y(t)) of system (1.1),
i.e., H(x(t), y(t))is constant for all values of t for which the solution
(x(t), y(t)) is defined. If H is C1, then H is a first integral of
system (1.1) if and only if

(1.3) P1
∂H

∂x
+ P2

∂H

∂y
= 0.

The function H(x, y) is weight homogeneous of weight degree m
with respect to the weight exponent s if it satisfies H(αs1x, αs2y) =
αmH(x, y), for all α ∈ R+.

Given H ∈ C[x, y], we can split it into the form

H = Hm +Hm+1 + · · ·+Hm+l,

where Hm+i is a weight homogeneous polynomial of weight degree m+i
with respect to the weight exponent s, i.e.,

Hm+i(α
s1x, αs2y) = αm+iHm+i(x, y).

The following well-known proposition (see [13] for proof) reduces
the study of the existence of analytic first integrals of a weight-
homogeneous polynomial differential system (1.1) to the study of the
existence of a weight-homogeneous polynomial first integral.

Proposition 1.1. Let H be an analytic function, and let

H =
∑
i

Hi

be its decomposition into weight-homogeneous polynomials of weight de-
gree i with respect to the weight exponent s. Then, H is an analytic first
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integral of the weight-homogeneous polynomial differential system (1.1)
if and only if each weight-homogeneous part Hi is a first integral of
system (1.1) for all i.

The main goal of this paper is to classify all analytic first integrals
of the weight-homogenous planar polynomial differential systems of
weight degree 4. In view of Proposition 1.1, we only need to classify all
polynomial first integrals of the weight-homogenous planar polynomial
differential systems of weight degree 4. The classification of all poly-
nomial first integrals (and hence, of all analytic first integrals) of the
weight-homogenous planar polynomial differential systems of weight de-
gree 1 is straightforward and trivial. The classification of all polynomial
first integrals (and hence, of all analytic first integrals) of the weight-
homogenous planar polynomial differential systems of weight degree 2
was given in [8, 13] and for systems of weight degree 3 in [6, 8].

Kowalevskaya exponents are used in the classification of all polyno-
mial first integrals for weight-homogenous planar polynomial differen-
tial systems of weight degrees 2 and 3. However, it was shown in [6,
Theorem 4] that these exponents are useless for classifying the polyno-
mial first integrals for weight-homogenous planar polynomial differen-
tial systems of weight degrees larger than 3.

Proposition 1.2. The systems with weight degree 4 in C2 and their
corresponding values of s can be written as follows:

s = (1, 1) : ẋ = a40x
4 + a31x

3y + a22x
2y2 + a13xy

3 + a04y
4,

ẏ = b40x
4 + b31x

3y + b22x
2y2 + b13xy

3 + b04y
4;

s = (1, 2) : ẋ = a40x
4 + a21x

2y + a02y
2,

ẏ = b50x
5 + b31x

3y + b12xy
2;

s = (1, 3) : ẋ = a40x
4 + a11xy, ẏ = b60x

6 + b31x
3y + b02y

2;

s = (1, 4) : ẋ = a40x
4 + a01y, ẏ = b70x

7 + b31x
3y;

s = (2, 3) : ẋ = a11xy, ẏ = b30x
3 + b02y

2;

s = (2, 5) : ẋ = a01y, ẏ = b40x
4;

s = (3, 3) : ẋ = a20x
2 + a11xy + a02y

2, ẏ = b20x
2 + b11xy + b02y

2;

s = (6, 9) : ẋ = a01y, ẏ = b20x
2.
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The proof of Proposition 1.2 is provided in Section 2.

In what follows, we state our main result, i.e., we classify when the
systems of Proposition 1.2 exhibit a polynomial first integral. The
systems with weight exponent (1, 1) having a polynomial first integral
are given in Section 3. The systems with weight exponent (3, 3) having
a polynomial first integral are studied inside the systems with weight
exponent (1, 2). The polynomial first integrals for the other systems of
Proposition 1.2 are provided in this introduction.

We introduce the change (X,Y ) = (x2, y) in the planar weight
homogeneous polynomial differential systems (1.1) of weight degree 4
with weight exponent (1, 2). With these new variables (X,Y ) the
system with weight exponent (1, 2) becomes, after introducing the new
independent variable dτ = x dt,

(1.4)
X ′ = 2a40X

2 + 2a21XY + 2a02Y
2,

Y ′ = b50X
2 + b31XY + b12Y

2,

where the prime denotes the derivative with respect to τ .

System (1.4) is a homogeneous quadratic planar polynomial system
with s = (1, 1). It is well known (see [9]) that, for each quadratic
homogeneous system, there exist some linear transformation and a
rescaling of time which transform system (1.4) into systems in (1.5).

ẋ = −2xy + 2
3x(p1x+ p2y), ẏ = −x2 + y2 + 2

3y(p1x+ p2y),

ẋ = −2xy + 2
3x(p1x+ p2y), ẏ = x2 + y2 + 2

3y(p1x+ p2y),

ẋ = −x2 + 2
3x(p1x+ p2y), ẏ = 2xy + 2

3y(p1x+ p2y),(1.5)

ẋ = 2
3x(p1x+ p2y), ẏ = x2 + 2

3y(p1x+ p2y),

ẋ = 2
3x(p1x+ p2y), ẏ = 2

3y(p1x+ p2y).

We prove the following theorem which characterizes all polynomial
first integrals for the systems in (1.5).

Theorem 1.3. The homogeneous polynomial systems in (1.5) have a
polynomial first integral H if and only if one of the following conditions
hold.

(a) The first system in (1.5) with p1 = 0, p2 = 3(1 − q)/(1 + 2q) with
q = n/m ∈ Q+ and, in this case, H = xm(3y2 − x2)n.
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(b) The second system in (1.5) with p1 = 0, p2 = 3(1−q)/(1+2q) with
q = n/m ∈ Q+ and, in this case, H = xm(3y2 + x2)n.

(c) The third system, in (1.5) with p1 = 0 and p2 = 3(1−2q)/(2(1+q))
with q = n/m ∈ Q+ and, in this case, H = xmyn.

(d) The fourth system in (1.5) with p1 = p2 = 0 and, in this case,
H = x.

We note that systems with weight exponent (3, 3) coincide with
systems (1.4), and hence, it can be written into systems in (1.5).
Therefore, Theorem 1.3 applies to those systems.

The proof of Theorem 1.3 is given in Section 4.

Theorem 1.4. The weight homogeneous polynomial differential sys-
tems with weight exponent (1, 3) and weight degree 4 have a polynomial
first integral H if and only if the following conditions hold :

(a) a11 = a40 = 0 with H = x.
(b) b60 = b31 = b02 = 0 with H = y.
(c) (3a11 − b02)(3a11 − 2b02) ̸= 0, a40 = −a11b31/(3a11 − 2b02),

3a11/(6a11 − 2b02) = m/n ∈ Q+ and m/n < 1 with

H = x3(n−m)((3a11 − 2b02)b60x
6 + 2(3a11 − b02)b31x

3y

− (9a211 − 9a11b02 + 2b202)y
2)m.

(d) b31/a40 = −m/n and m/n ∈ Q+ with H = x3m(b60x
3 + (b31 −

3a40)y)
3n.

(e) b02 = 0, a11 ̸= 0, a40 = −b31/3 and b06 = −(3a40 − b31)
2/(12a11)

with H = b31x
3 − 3a11y.

(f) (3a11 − b02)(3a11 − 2b02) ̸= 0, a40 = −a11b31/(3a11 − 2b02), b06 =
−(3a40−b31)

2/(4(3a11−b02)), b02 ̸= 0 and −3a11/b02 = n/m ∈ Q+,
with

H = x3n(b31x
3 + (2b02 − 3a11)y)

m.

The proof of Theorem 1.4 is given in Section 5.

Theorem 1.5. The weight homogeneous polynomial differential sys-
tems with weight exponent (1, 4) and weight degree 4 have a polynomial
first integral H if and only if the following conditions hold :
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(a) a40 = a01 = 0 and H = x.
(b) b70 = b31 = 0 and H = y.
(c) b31 = −4a40, and 4a240 + a01b70 ̸= 0 with H = −b70x

8 + 8a40x
4y +

4a01y
2.

(d) b31 = −4a40, a40b70 ̸= 0 and 4a240 + a01b70 = 0 with H =
b70x

4 − 4a40y.

The proof of Theorem 1.5 is given in Section 6.

Theorem 1.6. The weight homogeneous polynomial differential sys-
tems with weight exponent (2, 3) and weight degree 4 have a polyno-
mial first integral H if and only if a11 = 0, in which case H = x, or
b30 = b02 = 0, in which case, H = y, or a11(3a11 − 2b02) ̸= 0 and
−2b02/a11 = n/m ∈ Q+, in which case,

H = xn(2b30x
3 − 3a11y

2 + 2b02y
2)m.

The proof of Theorem 1.6 is given in Section 7.

Theorem 1.7. The weight homogeneous polynomial differential sys-
tems with weight exponent (2, 5) and weight degree 4 have the polyno-
mial first integral H = 2b40x

5 − 5a01y
2.

The proof of Theorem 1.7 is given in Section 8.

Theorem 1.8. The weight homogeneous polynomial differential sys-
tems with weight exponent (6, 9) and weight degree 4 have the polyno-
mial first integral H = 2b20x

3 − 3a01y
2.

The proof of Theorem 1.8 is given in Section 9.

2. Proof of Proposition 1.2. From the definition of weight homo-
geneous polynomial differential systems (1.1) with weight degree 4, the
exponents ui and vi of any monomial xuiyvi of Pi for i = 1, 2, are such
that they satisfy respectively the relations

(2.1) s1u1 + s2v1 = s1 + 3 and s1u2 + s2v2 = s2 + 3,
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respectively. Moreover, we can assume that P1 and P2 are coprime,
and, without loss of generality, we can also assume that s1 ≤ s2. We
consider different values of s1.

Case s1 = 1. If s2 = 1, then in view of (2.1), we must have
u1 + v1 = 4 and u2 + v2 = 4, that is, (ui, vi) = (0, 4), (ui, vi) = (1, 3),
(ui, vi) = (2, 2), (ui, vi) = (3, 1) and (ui, vi) = (4, 0), for i = 1, 2.

If s2 = 2, then, in view of (2.1), we must have u1 + 2v1 = 4
and u2 + 2v2 = 5, that is, (u1, v1) = (0, 2), (u1, v1) = (2, 1) and
(u1, v1) = (4, 0), while (u2, v2) = (1, 2), (u2, v2) = (3, 1), and finally,
(u2, v2) = (5, 0).

If s2 = 3, then, in view of (2.1), we must have u1 + 3v1 = 4
and u2 + 3v2 = 6, that is, (u1, v1) = (1, 1), (u1, v1) = (4, 0), while
(u2, v2) = (0, 2), (u2, v2) = (3, 1), and finally, (u2, v2) = (6, 0).

If s2 = 4, then, in view of (2.1), we must have u1 + 4v1 = 4
and u2 + 4v2 = 7, that is, (u1, v1) = (0, 1), (u1, v1) = (4, 0), while
(u2, v2) = (3, 1), and finally, (u2, v2) = (7, 0).

If s2 = 4 + l with l ≥ 1, then equation (2.1) becomes

(2.2) u1 + (4 + l)v1 = 4 and u2 + (4 + l)v2 = 7 + l.

From the first equation of (2.2), we obtain v1 = 0 and u1 = 4. By the
second equation of (2.2), it follows that v2 ∈ {0, 1}. If v2 = 0, then
u2 = 7 + l; if v2 = 1, then u2 = 3. In both cases, P1 and P2 are not
coprime. Thus, this case is not considered. �

Case s1 = 2. Now, we have s2 ≥ 2. If s2 = 2, then in view of (2.1),
we must have 2u1 + 2v1 = 5 and 2u2 + 2v2 = 5, which is not possible
because 5 is not an even number.

If s2 = 3, then, in view of (2.1), we must have 2u1 + 3v1 = 5 and
2u2 + 3v2 = 6, that is, (u1, v1) = (1, 1), while (u2, v2) = (0, 2) and
(u2, v2) = (3, 0).

If s2 = 4, then, in view of (2.1), we must have 2u1 + 4v1 = 5 and
2u2 + 4v2 = 7, which is not possible because 5 is not even.

If s2 = 5, then, in view of (2.1), we must have 2u1 + 5v1 = 5 and
2u2 + 5v2 = 8, that is, (u1, v1) = (0, 1) and (u2, v2) = (4, 0).

If s2 = 5 + l with l ≥ 1, then equation (2.1) becomes

(2.3) 2u1 + (5 + l)v1 = 5 and 2u2 + (5 + l)v2 = 8 + l.
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The first equation of (2.3) is not possible because 5 is not an even
number, 5 + l ≥ 6 and u1 and v1 are non-negative integers. �

Case s1 = 3. Now, we have s2 ≥ 3. If s2 = 3, then in view of (2.1),
we must have 3u1+3v1 = 6 and 3u2+3v2 = 6, that is, (ui, vi) = (0, 2),
(ui, vi) = (1, 1) and (ui, vi) = (2, 0), for i = 1, 2.

If s2 = 3 + l with l ≥ 1, then in view of (2.1), we must have

(2.4) 3u1 + (3 + l)v1 = 6 and 3u2 + (3 + l)v2 = 6 + l.

From the first equation of (2.4) we have that

v1 =
6− 3u1

3 + l
≤ 6

3 + l
,

and, using l ≥ 1, then v1 ∈ {0, 1}.
When v1 = 0, then 3u1 = 6; thus, u1 = 2. Then, from the second

equation of (2.4) we obtain that v2 ∈ {0, 1}. If v2 = 0, then u2 ≥ 1,
and, if v2 = 1, then u2 = 1. In both cases, we have that P1 and P2 are
not coprime.

When v1 = 1, then 3u1 = 3− l, which is not possible since u1 is an
integer and l ≥ 1. �

Case s1 = 3+ l with l ≥ 1. Now, we have s2 ≥ 3+ l with l ≥ 1, and
equation (2.1) becomes

(3 + l)u1 + s2v1 = 6 + l = (3 + l) + 3(2.5)

and

(3 + l)u2 + s2v2 = 3 + s2.

From the first equation of (2.5), and taking into account that l ≥ 1, we
obtain that u1 ∈ {0, 1}.

When u1 = 0, we must have s2v1 = 6 + l, and since s2 ≥ 3 + l, we
obtain

v1 =
6 + l

s2
≤ (3 + l) + 3

3 + l
= 1 +

3

3 + l
.

Since v1 ̸= 0 and l ≥ 1, we must have v1 = 1. Then s2 = 6 + l. Now,
the second equation of (2.5) becomes

(2.6) (3 + l)u2 + (6 + l)v2 = (6 + l) + 3.
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Then v2 = 0. From equation (2.6), we have u2 = 1 + (6/l + 3). Thus,
l = 3 and u2 = 2, and we obtain the systems with weight exponent
(6, 9).

When u1 = 1, we must have s2v1 = 3, and, since s2 ≥ 3+l, we obtain
(3 + l)v2 ≤ 3, which is not possible because l ≥ 1. This concludes the
proof of the proposition. �

3. Weight exponent s = (1, 1). A weight homogeneous polynomial
system,

ẋ = P1(x, y); ẏ = P2(x, y),

with weight exponent (1, 1) and weight degree d is integrable, and its
inverse integrating factor is V (x, y) = xP2(x, y)−yP1(x, y). See [7] for
more details.

As P1(x, y), P2(x, y) and V (x, y) are homogeneous polynomials, if
the degree of P1(x, y) and P2(x, y) is d, then, of course, the degree
of V (x, y) is d + 1. Thus, for d = 4, we can write the homogeneous
polynomials as follows:

(3.1)

P1(x, y) = (p1 − a1)x
4 + (p2 − 4a2)x

3y + (p3 − 6a3)x
2y2

+ (p4 − 4a4)xy
3 − a5y

4,

P2(x, y) = a0x
4 + (4a1 + p1)x

3y + (6a2 + p2)x
2y2

+ (4a3 + p3)xy
3 + (a4 + p4)y

4,

and

V (x, y) = a0x
5 + 5a1x

4y + 10a2x
3y2 + 10a3x

2y3 + 5a4xy
4 + a5y

5.

Thus, the first integral is

H(x, y) =

∫
P1(x, y)

V (x, y)
dy + g(x),

satisfying ∂H/∂x = −P2/V . The canonical forms appear in the
factorization of V . Assume that V (x, y) factorizes as:

(i) five simple real roots: a0(x− r1y)(x− r2y)(x− r3y)(x− r4y)(x−
r5y),

(ii) one double and three simple real roots: a0(x− r1y)
2(x− r2y)(x−

r3y)(x− r4y),
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(iii) two double roots and one simple real root: a0(x − r1y)
2(x −

r2y)
2(x− r3y),

(iv) one triple and two simple real roots: a0(x−r1y)
3(x−r2y)(x−r3y),

(v) one triple and one double real roots: a0(x− r1y)
3(x− r2y)

2,
(vi) one quadruple and one simple real roots: a0(x− r1y)

4(x− r2y),
(vii) one quintuple real root: a0(x− ry)5,
(viii) three real and one couple of conjugate complex roots: a0(x −

r1y)(x− r2y)(x− r3y)(x
2 + bxy + cy2) with b2 − 4c < 0,

(ix) one double, one simple real and one couple of conjugate complex
roots: a0(x− r1y)

2(x− r2y)(x
2 + bxy + cy2) with b2 − 4c < 0,

(x) one triple real and one couple of conjugate complex roots: a0(x−
r1y)

3(x2 + bxy + cy2) with b2 − 4c < 0,
(xi) one simple real and two couples of conjugate complex roots:

a0(x − ry)(x2 + b1xy + c1y
2)(x2 + b2xy + c2y

2) with b21 − 4c1 <
0, b22 − 4c2 < 0,

(xii) one simple real and one double couple of conjugate complex roots:
a0(x− ry)(x2 + bxy + cy2)2 with b2 − 4c < 0.

Now, we shall compute the first integral for each case and obtain the
conditions in order to show that it is a polynomial.

We define the function:

f(r) = 5(p4 + p3r + p2r
2 + p1r

3).

Case (i). A first integral H is

(x− r1y)
γ1(x− r2y)

γ2(x− r3y)
γ3(x− r4y)

γ4(x− r5y)
γ5 ,

where

γi =

f(ri) + a0

5∏
j=1
j ̸=i

(ri − rj)

5∏
j=1
j ̸=i

(ri − rj)

.

We note that an integer power of H is a polynomial if and only if γi ∈ Q
for i = 1, 2, 3, 4, 5, if they all have the same sign.
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Case (ii). A first integral H is

(x− r1y)
γ1(x− r2y)

γ2(x− r3y)
γ3(x− r4y)

γ4

exp

(
f(r1)x

r1(r1 − r2)(r1 − r3)(r1 − r4)(x− r1y)

)
,

with γ1 = A1/B1 = A1/[(r1 − r2)
2(r1 − r3)

2(r1 − r4)
2],

A1 = 5p1((r2 + r3 + r4)r
2
1 − 2(r3r4 + r2(r3 + r4))r1 + 3r2r3r4)r

2
1

+ 5p2(r
3
1 − (r3r4 + r2(r3 + r4))r1 + 2r2r3r4)r1

+ 5p3(2r
3
1 − (r2 + r3 + r4)r

2
1 + r2r3r4)

+ 5p4(3r
2
1 − 2(r2 + r3 + r4)r1 + r3r4 + r2(r3 + r4))− 2a0B1,

for i = 2, . . . , 4 and

γi =
Ai

Bi
=

−(f(ri) + a0Bi)

(r1 − ri)2
4∏

j=2
j ̸=i

(ri − rj)

.

We note that an integer power of H is a polynomial if and only if
f(r1) = 0 and γi ∈ Q for i = 1, 2, 3, 4, if they all have the same sign.

Case (iii). A first integral H is

(x−r1y)
γ1(x−r2y)

γ2(x−r3y)
γ3 exp

(
−

2∑
i=1

f(ri)x

ri(r1−r2)2(ri−r3)(riy−x)

)
,

with γi = Ai/Bi = Ai/[(r1 − r2)
3(ri − r3)

2] for i = 1, 2, γ3 = A3/B3 =
−(f(r3) + a0B3)/[(r1 − r3)

2(r2 − r3)
2],

Ai = −2a0Bi + (−1)i+1(5p4(3ri − rj − 2r3)− 5p3((r1 + r2)r3 − 2r2i )

+ 5p2ri(ri(r1 + r2)− 2rjr3) + 5p1r
2
i (−3rjr3 + ri(2rj + r3))),

for i, j = 1, 2 and i ̸= j. We note that an integer power of H is
a polynomial if and only if f(ri) = 0 for i = 1, 2 and γi ∈ Q for
i = 1, 2, 3, if they all have the same sign.

Case (iv). A first integral H is

(x−r1y)
γ1(x−r2y)

γ2(x−r3y)
γ3 exp

(
5βx

2r21(r1−r2)2(r1−r3)2(r1y−x)2

)
,
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with

β = (p1(r
2
1−3r2r1−3r3r1+5r2r3)r

3
1−p2(r

2
1+r2r1+r3r1−3r2r3)r

2
1

−p3(3r
2
1−r2r1−r3r1−r2r3)r1+p4(−5r21+3r2r1+3r3r1−r2r3))x

+ 2r1(p1(r1r2 − 2r3r2 + r1r3)r
3
1 + p3(2r1 − r2 − r3)r

2
1

+ p2(r
2
1 − r2r3)r

2
1 + p4(3r

2
1 − 2r2r1 − 2r3r1 + r2r3))y,

γ1 = A1/B1 = A1/[(r1 − r2)
3(r1 − r3)

3],

A1 = −3a0B1 − 5(r2(p2 + p1r2)r
3
1 + (r1 − 3r2)(p2 + p1r2)r3r

2
1

+ (p2r
2
2 + p1r1(r

2
1 − 3r2r1 + 3r22))r

2
3) + 5p3(r

3
1 − 3r2r3r1

+ r2r3(r2 + r3)) + 5p4(3r
2
1 − 3(r2 + r3)r1 + r22 + r23 + r2r3),

γi = Ai/Bi = (−1)i(f(ri) + a0Bi)/[(r1 − ri)
3(r2 − r3)]

for i = 2, 3. We note that an integer power of H is a polynomial if and
only if β = 0 and γi ∈ Q for i = 1, 2, 3, if they all have the same sign.

Case (v). A first integral H is

(x− r1y)
γ1(x− r2y)

γ2 exp(β),

where

β =
2(r1 − r2)xf(r2)r

2
1

r2(r2y − x)
+

(r1 − r2)
2x2f(r1)

(x− r1y)2

+
10(r1 − r2)((2p3 + 2p1r1r2 + p2(r1 + r2))r

2
1 + p4(3r1 − r2))x

r1y − x
,

and

γ1 = −2r21
(
3a0(r1 − r2)

4 + 15p4 + 5p3(r1 + 2r2)

+ 5r2(3p1r1r2 + p2(2r1 + r2))
)
,

γ2 = −2r21
(
2a0(r1 − r2)

4 − 15p4 − 5p3(r1 + 2r2)

− 5r2(3p1r1r2 + p2(2r1 + r2))
)
.

We note that an integer power of H is a polynomial if and only if β = 0
and γi ∈ Q for i = 1, 2, if they all have the same sign.

Case (vi). A first integral H is

(x− r1y)
γ1(x− r2y)

γ2 exp(β),
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where

β =
2(r1 − r2)

3f(r1)x
3

r31(r1y − x)3

+
30(r1−r2)((p3+r2(p2+ p1r2))r

3
1 + p4(3r

2
1 − 3r2r1+ r22))x

r31(r1y − x)

+
15(r1−r2)

2(p4(3r1−2r2)+r1((p2+p1r2)r
2
1 + p3(2r1−r2)))x

2

r31(x− r1y)2
,

and

γ1 = −6(−4a0(r1 − r2)
4 + 5p4 + 5r2(p3 + r2(p2 + p1r2))),

γ2 = 6(a0(r1 − r2)
4 + 5p4 + 5r2(p3 + r2(p2 + p1r2))).

We note that an integer power of H is a polynomial if and only if β = 0
and γi ∈ Q for i = 1, 2, if they all have the same sign.

Case (vii). A first integral H is

(x− ry)γ1 exp

(
βx

(x− ry)4

)
,

where

β = rx(rx(−p2x+ 3p1rx+ 4p2ry) + p3(x
2 − 4ryx+ 6r2y2))

− 3p4(x− 2ry)(x2 − 2ryx+ 2r2y2),

and γ1 = −12a0r
4. We note that x − ry is a polynomial first integral

if and only if β = 0.

Case (viii). A first integral H is

(x− r1y)
γ1(x− r2y)

γ2(x− r3y)
γ3(x2 + bxy + cy2)γ4

exp

(
βx∏3

i=1(c+ b ri + r2i )
√

(4c− b2)x2
arctan

(
bx+ 2cy√
(4c− b2)x2

))
,

where

β = 5(2p1c
3 − (b(p2 − p1(r1 + r2 + r3)) + 2(p3 + p2(r1 + r2 + r3)

+ p1(r2r3 + r1(r2 + r3))))c
2 + ((p3 + p1r1r2 + p1(r1 + r2)r3)b

2

+ (3p4 − 3p1r1r2r3 + p3(r1 + r2 + r3)− p2(r2r3 + r1(r2 + r3)))b

+ 2(p2r1r2r3 + p4(r1 + r2 + r3) + p3(r2r3 + r1(r2 + r3))))c
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− bp4(b+ r1)(b+ r2)+((p1r1b
3− p2r1b

2− p4b+ p3r1b− 2p4r1)r2

− bp4(b+ r1))r3),

and γi = Ai/Bi = −(f(ri) + a0Bi)/[(c + bri + r2i )
∏3

j=1, j ̸=i(ri − rj)]

for i = 1, 2, 3, γ4 = A4/B4 = A4/[2
∏3

i=1(c+ b ri + r2i )]

A4 = −a0B4 + 5((p2 + p1(r1 + r2 + r3))c
2 − (p4 + p1r1r2r3

+ p3(r1 + r2 + r3) + p2(r2r3 + r1(r2 + r3))

+ b(p3 − p1(r2r3 + r1(r2 + r3))))c+ p4(b+ r1)(b+ r2)

+ (p4(b+ r1) + (p4 + (p1b
2 − p2b+ p3)r1)r2)r3).

We note that an integer power of H is a polynomial if and only if β = 0
and γi ∈ Q for i = 1, 2, 3, 4, if they all have the same sign.

Case (ix). A first integral H is

(x−r1y)
γ1(x−r2y)

γ2(x2+bxy+cy2)γ3

exp

(
− f(r1)x

r1(r1−r2)(c+r1b+r21)(r1y−x)

+
βx∏2

i=1(c+ b ri + r2i )
3−i

√
(4c− b2)x2

arctan

(
bx+ 2cy√
(4c− b2)x2

))
,

where

β = 5(2p1c
3 − (b(p2 − p1(2r1 + r2)) + 2(p3 + p2(2r1 + r2)

+ p1r1(r1 + 2r2)))c
2 + ((p3 + p1r1(r1 + 2r2))b

2

+ (3p4 + p3(2r1 + r2)− r1(3p1r1r2 + p2(r1 + 2r2)))b

+ 2(p4(2r1 + r2) + r1(p2r1r2 + p3(r1 + 2r2))))c− bp4(b+ r1)
2

+ (−p4b
2−2p4r1b+(b(p1b

2−p2b+ p3)− 2p4)r
2
1)r2),

γ1 = −A1

B1
= − A1

(r1 − r2)2(c+ b r1 + r21)
2
,

A1 = 2a0c
2(r1 − r2)

2 + 2a0b
2r21(r1 − r2)

2

+ c
(
− 5p4 + r1(4a0(b+ r1)(r1 − r2)

2 + 5p1r1(2r1 − 3r2)

+ 5p2(r1 − 2r2))− 5p3r2) + b((4a0r1(r1 − r2)
2 − 5p3

+ 5p1r1(r1−2r2)−5p2r2)r
2
1 + 5p4(r2 − 2r1))+r1(5p4(2r2−3r1)

+ r1((2a0(r1 − r2)
2 − 5p2 − 5p1r2)r

2
1 + 5p3(r2 − 2r1))),
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γ2 =
A2

B2
=

−f(r2) + a0B2

(r1 − r2)2(c+ b r2 + r22)
,

γ3 =
A3

B3
=

A3

2(c+ b r1 + r21)
2(c+ b r2 + r22)

,

A3 = −a0B3 + 5((p2 + p1(2r1 + r2))c
2 − (p4 + p3(2r1 + r2)

+ r1(p1r1r2 + p2(r1 + 2r2)) + b(p3 − p1r1(r1 + 2r2)))c

+ p4(b+ r1)
2 + ((p1b

2 − p2b+ p3)r
2
1 + 2p4r1 + bp4)r2).

We note that an integer power of H is a polynomial if and only if
f(r1) = 0, β = 0 and γi ∈ Q for i = 1, 2, 3, if they all have the same
sign.

Case (x). A first integral H is

(x− r1y)
γ1(x2 + bxy + cy2)γ2 exp

(
f(r1)(c+ b r1 + r21)

2x2

r21(x− r1y)2

− β1(c+ b r1 + r21)x

r21(x− r1y)
+

β2x√
(4c− b2)x2

arctan

(
bx+ 2cy√
(4c− b2)x2

))
,

where

β1 = 10((p2 − bp1)r
4
1 + 2(p3 − cp1)r

3
1 + (−cp2 + bp3 + 3p4)r

2
1

+ 2bp4r1 + cp4),

β2 = 10((p1r
3
1 − p4)b

3 − r1(p2r
2
1 + 3p4)b

2 + r21(p3r1 − 3p4)b

− 2p4r
3
1 + 2c3p1 − c2(2p3 + b(p2 − 3p1r1) + 6r1(p2 + p1r1))

+ c((3p1r
2
1 + p3)b

2 + 3(p4 + r1(p3 − r1(p2 + p1r1)))b

+ 2r1(3p4 + r1(3p3 + p2r1)))),

and

γ1 = −2(3a0(c+ r1(b+ r1))
3 + 5((p1b

2 − p2b+ p3)r
3
1 + 3p4r

2
1

+ 3bp4r1 + b2p4 + c2(p2 + 3p1r1)− c(p4 + b(p3 − 3p1r
2
1)

+ r1(3p3 + r1(3p2 + p1r1))))),

γ2 = 5((p1b
2 − p2b+ p3)r

3
1 + 3p4r

2
1 + 3bp4r1 + b2p4 + c2(p2 + 3p1r1)

− c(p4 + b(p3 − 3p1r
2
1) + r1(3p3 + r1(3p2 + p1r1))))

− 2a0(c+ r1(b+ r1))
3.



1634 JAUME LLIBRE AND CLAUDIA VALLS

We note that an integer power H is a polynomial if and only if
f(r1) = 0, β1 = β2 = 0 and γi ∈ Q for i = 1, 2, if they all have
the same sign.

Case (xi). A first integral H is

(x2 + b1xy + c1y
2)γ1(x2 + b2xy + c2y

2)γ2(x− r1y)
γ3

exp

( 2∑
i=1

βix√
(4ci − b2i )x

2
arctan

(
bix+ 2ciy√
(4ci − b2i )x

2

))
,

with βi = αi/δi for i = 1, 2, where

αi = 5(−bi(c
2
i p2 + cicjp2 + bjci(cip1 + p3)− 3cip4 + cjp4)

+ bi(c
2
i p1 + cjp3 + ci(−3cjp1 + bjp2 + p3) + bjp4)r1

+ b3i (−p4+cjp1r1)+b2i (cicjp1+cip3+bjp4 − (bjcip1+cjp2+p4)r1)

+ 2(c3i p1 − cjp4r1 − c2i (cjp1 + p3 + p2r1 − bj(p2 + p1r1))

+ ci(p4r1 + cj(p3 + p2r1)− bj(p4 + p3r1)))),

δi = ((b22c1 + (c1 − c2)
2 + b21c2 − b1b2(c1 + c2))(ci + bir1 + r21),

for i, j = 1, 2 and i ̸= j,

γi = −2a0(b
2
jci + (ci − cj)

2 + b2i cj − bibj(ci + cj))(ci + r1(bi + r1))

+ 5(b2i (p4 + cjp1r1) + bi(cicjp1 − cip3 − cjp2r1 + p4r1)

+ (ci − cj)(−p4 − p3r1 + ci(p2 + p1r1))− bj(c
2
i p1 + p4(bi + r1)

− ci(p3 + (−bip1 + p2)r1))),

for i, j = 1, 2 and i ̸= j. Finally,

γ3 =
A3

B3
=

−(f(r1) + a0B3)
2∏

i=1

(ci + bi r1 + r21)

.

We note that an integer power of H is a polynomial if and only if
β1 = β2 = 0 and γi ∈ Q for i = 1, 2, 3, if they all have the same sign.

Case (xii). A first integral H is

(x−ry)γ1(x2+bxy+cy2)γ2 exp

(
β1x

3

[(4c−b2)x2]3/2
arctan

(
bx+ 2cy√
(4c−b2)x2

)
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+
10β2(c+ b r + r2)x

(b2 − 4c)c(x2 + bxy + cy2)

)
,

where

β1 = −10((p4 + r(p3 − r(p2 + p1r)))b
3 + 4p3r

2b2 + 2r2(p3r − 3p4)b

− 4p4r
3 + 4c3p1 + c2(4(p3 + r(p2 + 3p1r))− 2b(p2 − 3p1r))

− 2c(2p2rb
2 + (3p4 − r(p3 + r(3p1r − p2)))b

+ 2r(3p4 + r(p3 + p2r)))),

β2 = −p4yb
3 + (c(p1rx+ p3y)− p4(x+ ry))b2 + ((p1(x+ ry)− p2y)c

2

+ (−p2rx+ 3p4y + p3(x+ ry))c− p4rx)b

+ 2c(p1yc
2 − (p1rx+ p3y + p2(x+ ry))c+ p3rx+ p4(x+ ry)),

γ1 = 2(a0(c+ br + r2)2 + f(r)),

γ2 = 4a0(c+ br + r2)2 − f(r).

We note that an integer power of H is a polynomial if and only if
β1 = β2 = 0 and γi ∈ Q for i = 1, 2, if they all have the same sign.

4. Weight exponent s = (1, 2). In this section, we prove Theo-
rem 1.3. Since systems in equation (1.5) are homogeneous, we know
that they are integrable because they have the inverse integrating fac-
tor V = xẏ − yẋ. The strategy will be to obtain such first integrals
and to determine which of them are polynomials. Denoting systems in
equation (1.5) by ẋ = P (x, y) and ẏ = Q(x, y), the first integral is

H(x, y) =

∫
P (x, y)

V (x, y)
dy + g(x),

satisfying ∂H/∂x = −Q(x, y)/V (x, y).

The first system in equation (1.5) has the first integral

H = x−3−2p2(3y2 − x2)−3+p2 exp

(
− 2

√
3p1 arctanh

(
x√
3y

))
.

Note that an integer power of H is a polynomial if and only if p1 = 0
and p2 = 3(1− q)/(1 + 2q) with q ∈ Q+.
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The second system in equation (1.5) has the first integral

H = x−3−2p2(3y2 + x2)−3+p2 exp

(
− 2

√
3p1 arctan

(
x√
3y

))
.

Note that an integer power of H is a polynomial if and only if p1 = 0
and p2 = 3(1− q)/(1 + 2q) with q ∈ Q+.

The third system in equation (1.5) has the first integral

H = x−2(3+p1)y−3+2p1 exp
2p2y

x
.

Note that an integer power of H is a polynomial if and only if p2 = 0
and p1 = 3(1− 2q)/(2(1 + q)) with q ∈ Q+.

The fourth system in equation (1.5) has the first integral

H = x exp

(
− y

2p1x+ p2y

3x2

)
.

Note that an integer power of H is a polynomial if and only if p1 =
p2 = 0.

The fifth system in equation (1.5) has the first integral x/y which is
never a polynomial. �

5. Weight exponent s = (1, 3). Performing a change of variables
(X,Y ) = (x3, y), the planar weight homogeneous systems of weight
degree 4 and weight exponent (1, 3) become

(5.1) Ẋ = 3a40X
2 + 3a11XY, Ẏ = b60X

2 + b31XY + b02Y
2.

Again, we shall use the inverse integrating factor V = XẎ −Y Ẋ for
computing the first integrals of system (5.1).

It is clear that, if a11 = a40 = 0, then a polynomial first integral is
X, and, if b60 = b31 = b02 = 0, then a polynomial first integral is Y .

Now, we consider the other cases.

Case (i). 3a11 − b02 ̸= 0 and R = −(3a40 − b31)
2 + 4(−3a11 +

b02)b60 ̸= 0. In this case, system (5.1) has the first integral

6√
R
(a11(3a40+ b31)−2a40b02) arctan

(
3a40X−b31X+6a11Y −2b02Y√

RX

)
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+2(3a11−b02) logX+3a11 log

(
Y (3a40X−b31X+3a11Y−b02Y )

X2
−b60

)
.

Here, logA always means log |A| and, as usual, log is the logarithm in
base e. Since this first integral must be a polynomial, we must have

(5.2) a11(3a40 + b31)− 2a40b02 = 0.

Now, we consider different subcases.

If 3a11 − 2b02 ̸= 0, then from equation (5.2), we obtain

a40 = − a11b31
3a11 − 2b02

.

Therefore, using the exponential of the previous first integral, we obtain
that the first integral is

H = X1−(3a11/6a11−2b02)p(X,Y )3a11/(6a11−2b02),

where

p(X,Y ) = (3a11 − 2b02)b60X
2 + 2(3a11 − b02)b31XY

− (9a211 − 9a11b02 + 2b202)Y
2.

Note that, since a11 − b02 ̸= 0 and 3a11 − 2b02 ̸= 0, we have 9a211 −
9a11b02 + 2b202 ̸= 0. Therefore, an integer power of H is a polynomial
first integral if and only if 3a11/(6a11 − 2b02) = m/n ∈ Q+, and
m/n < 1. In this case, the first integral H is

Xn−m((3a11 − 2b02)b60X
2 + 2(3a11 − b02)b31XY

− (9a211 − 9a11b02 + 2b202)Y
2)m.

If 3a11 − 2b02 = 0, that is, b02 = 3a11/2. In this case, from
equation (5.2), we obtain a11b31 = 0. Hence, either a11 = 0 or b31 = 0.
However, if a11 = 0, then b02 = 0, which contradicts the fact that
3a11 − 2b02 ̸= 0. Therefore, this case is not possible and we must have
b31 = 0. Then, the first integral is

H =
−2b60X

2 + 6a40XY + 3a11Y
2

X
,

which is never a polynomial.
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Case (ii). b02 = 3a11 and b31 − 3a40 ̸= 0. In this case, system (5.1)
has the first integral

(b31 − 3a40)
2 logX +

3a11(3a40 − b31)Y

X

+ 3(−3a240 + b31a40 − a11b60) log

(
− b60X − 3a40Y + b31Y

X

)
.

In order for the first integral to be a polynomial, we must have
a11(3a40 − b31) = 0, that is, a11 = 0 (and hence, b02 = 0). Then, using
the exponential of the previous first integral, we obtain the following
first integral

X1/3

(
b60X − 3a40Y + b31Y

X

)a40/(3a40−b31)

.

Then, we must have b31/a40 = −m/n with m/n ∈ Q+. In this case,
the previous first integral becomes H = Xm(b60X − 3a40Y + b31Y )3n.

Case (iii). b02 = 3a11 and b31 = 3a40. System (5.1) has the first
integral

−2b60X
2 logX + 6a40Y X + 3a11Y

2

6X2
.

Since the case a40 = a11 = 0 has been studied, we have that in this
case the first integral is never a polynomial.

Case (iv). 3a11 − b02 ̸= 0 and R = 0. Then,

b06 =
−(3a40 − b31)

2

4(3a11 − b02)
,

and system (5.1) has the first integral

3(−3a11a40+2b02a40−a11b31)X

3a40X−b31X+6a11Y −2b02Y
+(3a11−b02) log(36a11X−12b02X)

+ 3a11 log

(
− 3a40X − b31X + 6a11Y − 2b02Y

X

)
.

In order to show that it is a polynomial, we must have

(5.3) 2a40b02 − a11(3a40 + b31) = 0.

We will now consider two different subcases.
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If 3a11 ̸= 2b02, then condition (5.3) becomes

a40 = − a11b31
3a11 − 2b02

.

Using the exponential of the previous first integral, we obtain the
following first integral:

X1/(36a11−12b02)

(
b31X − 3a11Y + 2b02Y

X

)a11/4(b02−3a11)
2

.

From this first integral, we obtain the first integral:

X(b31X − 3a11Y + 2b02Y )−3a11/b02 .

So, if b02 ̸= 0, then 3a11/b02 = −m/n with m/n ∈ Q+, and the
polynomial first integral is

Xn(b31X − 3a11Y + 2b02Y )m.

If b02 = 0, then H = b31X − 3a11Y is a polynomial first integral. This
concludes the proof of Theorem 1.4. �

6. Weight exponent s = (1, 4). We introduce the change (X,Y ) =
(x4, y) in the planar weight homogeneous polynomial differential sys-
tems (1.1) of weight degree 4 with weight exponent (1, 4). In these new
variables (X,Y ), the systems with weight exponent (1, 4) become, after
introducing the new independent variable dτ = x3 dt, as follows:

(6.1) X ′ = 4(a40X + a01Y ), Y ′ = b70X + b31Y,

where the prime denotes the derivative with respect to τ . If a40 =
a01 = 0, then a polynomial first integral is X, and, if b70 = b31 = 0,
then a polynomial first integral is Y .

Now, we consider the other cases.

Case (i). R = −(4a40 − b31)
2 − 16a01b70 ̸= 0. Now, a first integral

of system (6.1) is:

2(4a40 + b31)√
R

arctan

(
(4a40 − b31)X + 8a01Y√

RX

)
+ log(−b70X

2 + (4a40 − b31)XY + 4a01Y
2).
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Since it must be a polynomial, we must have b31 = −4a40 such that
the polynomial first integral is H = −b70X

2 + 8a40XY + 4a01Y
2.

Case (ii). R = 0. We consider different subcases.

First, we study when b70 ̸= 0. Then, from R = 0, we obtain

(6.2) a01 = − (4a40 − b31)
2

16b70
.

If b31 − 4a40 ̸= 0, then the first integral is:

2(4a40 + b31)b70X

−2b70X + (4a40 − b31)Y
+ (4a40 − b31) log(2b70X + (−4a40 + b31)Y ),

which is a polynomial if and only if b31 = −4a40. The polynomial first
integral is b70X − 4a40Y .

If b31 = 4a40, then a40 ̸= 0 (otherwise, b31 = 0 and, from equa-
tion (6.2), we also have a01 = 0, which has already been considered),
and the first integral of equation (6.1) is

H =
Y

X
− b70 logX

4a40
,

which is never a polynomial.

If b70 = 0, then from R = 0, we obtain b31 = 4a40. We only consider
the case a40 ̸= 0, where the first integral of equation (6.1) is:

−a40X

Y
+ a01 log Y,

which is never a polynomial. This completes the proof of Theo-
rem 1.5. �

7. Weight exponent s = (2, 3). We prove Theorem 1.6. The
planar weight homogeneous polynomial differential systems (1.1) with
weight degree 4 and weight-exponent (2, 3) are:

(7.1) ẋ = a11xy, ẏ = b30x
3 + b02y

2.

If a11(3a11 − 2b02) ̸= 0, then the first integral of system (7.1) is:

H = x−2b02/a11

(
2b30x

3 − 3a11y
2 + 2b02y

2
)
.
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Then, an integer power of H is a polynomial first integral if and only
if −2b02/a11 ∈ Q+.

If a11 = 0, then H = x is a polynomial first integral of system (7.1).
If b30 = b02 = 0, then H = y is a polynomial first integral of
system (7.1). If a11 ̸= 0 and 3a11 = 2b02, then the first integral of
system (7.1) is:

H =
y4

x3
− 2b30

a11
log x,

which is never a polynomial. This completes the proof of Theo-
rem 1.6. �

8. Weight exponent s = (2, 5). Here, we prove Theorem 1.7. The
planar weight homogeneous polynomial differential systems (1.1) of
weight degree 4 with weight exponent (2, 5) are:

ẋ = a01y, ẏ = b40x
4.

It is straightforward to prove that H = 2b40x
5−5a01y

2 is a polynomial
first integral. �

9. Weight exponent s = (6, 9). Now, we prove Theorem 1.8. The
planar weight homogeneous polynomial differential systems (1.1) of
weight degree 4 with weight exponent (6, 9) are:

ẋ = a01y, ẏ = b20x
2.

It is straightforward to prove that H = 2b20x
3−3a01y

2 is a polynomial
first integral. This completes the proof of Theorem 1.8. �
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