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THE NUMBER OF TRREDUCIBLE POLYNOMIALS
WITH THE FIRST TWO PRESCRIBED
COEFFICIENTS OVER A FINITE FIELD

MATILDE LALIN AND OLIVIER LAROCQUE

ABSTRACT. We use elementary combinatorial methods,
together with the theory of quadratic forms, over finite fields
to obtain the formula, originally due to Kuz’min, for the
number of monic irreducible polynomials of degree n over a
finite field F; with the first two prescribed coefficients. The
formula relates the number of such irreducible polynomials
to the number of polynomials that split over the base field.

1. Introduction. Let F, be the finite field of ¢ elements and char-
acteristic p, and let a = (a1, ..., as) be fixed. The problem of counting
the number of irreducible polynomials,

n—~0—1

"+ arz" ! —|—-~~—|—agm"7£—|—tg+1x + -+t € Fylz],

has been studied extensively. Asymptotic results were initiated by
Artin [1] and answered in the most generality by Cohen [7]. In the
domain of exact formulas Carlitz [2] and Yucas [17] have established
formulas where the first or the last coeflicient are fixed. This has also
been studied by Omidi Koma, et al. [16]. Kuz’min [10, 11] has proved
formulas where the first two coefficients are fixed and obtained partial
results with three coefficients [13]. There is also work of Kuz’'min [12],
Cattell, et al. [4], Yucas and Mullen [18] and Fitzerald and Yucas [8]
that expands solutions to three fixed coefficients in characteristic 2.
More extensive results in characteristics 2 and 3 were proven by Moisio
and Ranto [15]. We refer the reader to surveys of Cohen [5, 6] for
more information.
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1588 MATILDE LALIN AND OLIVIER LAROCQUE

In this work, we examine the problem of two fixed coefficients. Let
H,(a1,as2) be the number of irreducible polynomials of the form:

2+ a2ty 3+ 8y, € F,lx].

Kuz’'min, building upon the ideas of Carlitz [2] and Hayes [9], proved
the following result.

Theorem 1.1 ([11, Theorem 1], [12]). Let p > 2 and a be nonzero.
Then, for n > 2,

d|n
ptd
and
E n
(1.2) Zu Onsa0) = = > pld)g™,
d|n dln/p
ptd ptd

where e = 1 if p | n and 0, otherwise.

Ifp|n,

(1.3) Zﬂ d)g™'?.

d|n
ptd

Here, p1 denotes the Mobius function defined as

(=1)" n square-free and
pun)=<n is a product of r distinct primes,

0 n is not square-free.
Forn>1and a € Fy,
n(a) = ¢" 2+ (=1)"(¢""? = Qu-1(a)),
with @y, (a) being the number of solutions of the equation

(1.4) Zx + Z T;Tj = a.

1<i<j<n
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For p > 2, ptn,

while, for p | n,

2= v(@)())g " n=2L

On(a) =

¢+ (CU) g =201,

-1 a#0,
v(a)_{ql a=0.

where

When p { n, the change of variables x1 = x + a1 /n allows us to write

n—1
H,(ay,a2) = Hy <O,a2 - a%).

When p | n and a1 # 0, the change

implies
Hn(al, CLQ) = Hn(]., O)

Therefore, Theorem 1.1 provides a complete answer for the value of
H,(a1,as2) in all cases. A similar result for p = 2 is also proven in
[11, 12].

Let X(gn/a)(0,a) denote the number of polynomials of the form fr/d
with f irreducible, and such that a; = 0 and as = a. The key to the
proof of Theorem 1.1 lies in the equation:

(1.5) > dX (gnsay(0,0) = 6n(—a).
d|n

The final result is then proven by means of Mobius inversion.
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The first cases of Theorem 1.1 for n < 7 are analyzed [10] by
elementary combinatorial methods, while the general case is proven
[11, 12] by using L-functions and Gauss sums.

The goal of this paper is to complete the work of [10], namely,
to show that the elementary combinatorial methods introduced by
Kuz’'min can also be used to prove equation (1.5) and ultimately
Theorem 1.1 completely. This is analogous to the work of Yucas [17]
who gave elementary proofs for results of Carlitz [2] for fixed first or
constant coefficient.

The combinatorial method has great potential for finding formulas
in other cases, most notably in the cases of different prescribed factor-
ization type. This method is also promising for formulas involving a
higher number of fixed coefficients, although it should be noted that
proving such formulas would be quite involved from the combinatorial
point of view. Finally, we remark that the combinatorial part of the
method works for any characteristic as reflected in the statement of
equation (1.5). We focus on the case of p > 2 for simplicity, but the
central proof is independent of the characteristic.

2. Notation. Let a = (ay,...,ar) with £ <n. Let P,(a) be the set
of polynomials of the form ™ + a12™ " + - - + apz"“ +tp 2"+
---+t, € Fylz]. Let Hy(a) be the number of polynomials in P, (a) that
are irreducible. We write P,, and H,, when no conditions are imposed
on the coefficients.

By the type of a polynomial in F,[z] we refer to the collection of
degrees of irreducible factors together with their multiplicities in the
canonical decomposition of the polynomial over F,[z]. For example,
2%(x + 1) has type (12,1). We denote by Xy(a) the number of
polynomials of type v in P, (a). For example, X(;2 1) (with no condition
on the coefficients) denotes the number of polynomials of type (12, 1),
i.e., polynomials of the form (z+ «)?(z + 3) with a # 3. Then we have
that X(lz)l) =q(qg—1).

In this paper, we are going to work mainly with the specific case of
£ = 2. Accordingly, n > 2.

3. Results and strategy. Our goal is to prove equation (1.1). We
are going to obtain this result as a corollary to the following identity.
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(3.1)
ad TL'
E dHy( 0, — | + (=1)" " e en(0a
din d< ’I’L) ( ) el+.§:ek:n 61!.-.616! (115001 k)( )
ptn/d .

— qn—2 T (_1)nqn—2.

This equation reduces to equation (1.1) by an application of the M6bius
inversion because of the following result:

(3.2) Z 'L!X(lel ..... 121 (0, a) = Qn-1(—a).

e Lo
ertfep=n I k

One can easily see that the left hand side of (3.2) is equivalent to the
number of solutions of

n
Z(Ei = 0,
i=1

Z T;T; = a,

1<i<j<n

which can be seen to be the same as the number of solutions of (1.4)
(with the opposite sign for a). Then the number @, _;(—a) is found
by using Minkowski’s method from the theory of quadratic forms over
finite fields, see [3, 14] for more details.

Equation (3.1) is analogous to

(3.3)
D AHa+ ()" Y X = "+ ()
d| ert-ter=n
and
3.4 am, (¢ 1" oy
B4 D dHa( )+ (0T D o X (0)
pi\l?d e1+--t+ex=n

— qnfl + (71)nqn71'
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Notice that, in the case of equation (3.3), we have that

n! n
(3.5) > mX(lel,m,l%) =q,
ertfep=n

since this is equivalent to all of the possible products of linear factors
that one can form by choosing n ordered linear factors among g
possibilities. By equation (3.4), we have, for p{n and a # 0,

n! _ n—1
(3.6) Z 61!%-X(l&l,....,1%)(a> =4q )
e1tten=n

since this is the number of solutions of
n

IEE
i=1

By Mobius inversion, equations (3.3) and (3.4) imply the well known
results:

1
(3.7) Hy == u(d)g"?,
d|n

an e i(d)g" a#0,
> ap p(d)g™ = £ 3w p(d)g™ P a =0,
ptd ptd

where e = 1 if p | n and 0 otherwise. See, for example, [17].

(38)  Hyp(a) =

Proof of Theorem 1.1. Equations (3.1) and (3.2) combined yield

> dHy (0 ) = 6, (—a).
d|n
pin/d
Write n = mp” with pt m. Thus, we write, more precisely,
> " dp" Hapr (0, a1d) = by (—a1m),
d|m
where a1 = a/m.
By Mobius inversion,

mp" Hppr (0, a1m) Zédp —ayd),
d|m
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which translates into (1.1) by reversing all changes of variable.

Now equations (1.1) and (3.8) give us

H,(0,0) = H,(0) = Y Hy(0,0)
a#0
o Sl
d|n
ptd
€ 1
== D ud)gV T = = u(d) Y 8nja(—a/d).
i oo

By observing that ), Q,/4—1(—a/d) is simply the number of possibil-
ities of choosing n/d — 1 elements in F,, ¢"/% 1 we conclude

> 6nja(—a/d) = Zan/d (—a/d) = 6,/4(0) = g™/t — 5,,4(0).
a#0
Thus,

ZM 6n/a(0 i > u(d)g

d|n d|n/p
ptd ptd

If p | n, we have

= Z Hn(a1,a2)

ay,a2
> Hu(ar,a) + Y H(0,ap)
al;éO,ag az

= (¢ — 1)qHn(1,0) + Hy(0)
= (q - 1)an(lv O) +H, — (q - 1)Hn(1)'

Thus,
1
H,(1,0 d)g™'?.
(1,0)= " H Z p(d
p’fd
This completes the proof of Theorem 1.1 from equation (3.1). |

The rest of the paper is devoted to giving a combinatorial proof of
equation (3.1).



1594 MATILDE LALIN AND OLIVIER LAROCQUE

4. A family of equations. The following lemma is the starting
point for generating relationships among the X, (a)’s.

Lemma 4.1. Let 0 < k < n—{. A monic polynomial of degree k
divides ¢"'% polynomials in P, (a).

Proof. For a generic polynomial,
f@)=a" +ax" 4 a4 t, € Pa(a),
and a fixed polynomial,
g(z) = 2 b T+ bz + by,
such that g(x) | f(z), we write f(z) = g(x)h(z) with
h(z) = 2" F e R e 1T+ Coke

Given the values by, ..., by, the numbers ¢y, ..., c,_, must satisfy the
equations

by +c1=ay

by +bicr +c2 = as

be+by_1c1 + -+ bice—1 + ¢ = ayg,
where we set b; = 0 if i > k.

Thus, g(x) fixes the first ¢ coefficients of h(z). There are n — k — ¢
choices for the remaining coefficients of h(x). O

Given a factorization type v, the degree, denoted deg(v), is simply
the degree of the resulting polynomial.

We note that there is a more precise way of describing a certain
factorization type v of degree n by means of an n xn matrix V = (v; ;),
where the entry v; ; indicates the number of factors of the form i/ in
the factorization type. Then the matrix V must satisfy:

deg(V) := Zz’jvm =n.
,J

Accordingly, we use the notation Xy (a) as equivalent to the notation
Xy (a).
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The length of v, denoted lg (v) or g (V) is defined as:

lg (V)= juij.
,J

Our goal is to find a formula for X(,)(0,a). In order to do that we
are going to consider the equations that we can form with the Xy (a).

Let V and W be n x n matrices with integral entries. We say that
W is majorized by V (written W < V), if and only if
Wi n S Vin

Wi p + Win—1 < Vi + Vin_1

Wigp + -+ w1 < Vp+ -+,

foreachi=1,...,n.

Any factorization type w of total degree k less than or equal to n— ¢
may be represented by a matrix W with

Z ijwm =k.
(2]

For any such factorization of type w we may consider all the factoriza-
tion types v of degree n such that w is a factor. This is simply the set
of v such that W <X V. Counting the number of polynomials of each of
these types and using Lemma 4.1 yield the following equation:

wy Y1 (;’)T; ) (“" +Uin-1 - “’n)

Wi n—
VW i=1 4n—1

('Ui,n otV — Wi — wi,2) Xy (a)

Wi, 1
n
H.
n—_L—k 7
=" *]1 :
. Wi, - Win
=1 ’ ’

where H; denotes the number of irreducible polynomials of degree 1,
with no restrictions.

We refer to equation (4.1) as Ew(a) or Ew (a).
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5. A combination of equations. We are going to consider a
certain combination of equations of the form £y (a). From now on,
we are going to assume that £ = 2. However, the combination we find
also works for smaller values ¢ = 0, 1.

Consider the following set:
W, = {w factorization type | deg(w) <n —2,w; ; =0,j > 1}.
Then we write

A Y (—1)E) (0 — deg(w))Ew (a).
weW,

Observe that this is a combination of equations.

Now, define
W, = {w factorization type | deg(w) < n—2,w; ; = 0,5 > 1,wi1 # 0},

and
B:— Y (-1)E™ey(a).

wEW,
Finally, consider the set

W, = {w factorization type | deg(w) <n —2,w; ; =0,
i,j > 1, there exists jo,wn j, # 0}.

We will work with the sequence given by

S
e
Qg = Z 4! < >
=0
Let v be a function on n-vectors with nonnegative integral entries given
by the following recurrence.

e For s; > 0,
~v(81,0,0,...,0) = ag, -
e When there is an ¢ > 1 with s; # 0, we have

n

V(81,82 .., Sp—1,8n) = E v(s1,..,85-1+ 1,85 —1,...,8,)s;.
i=1
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Notice that the sum starts with y(s; — 1,82,...,8,-1,8,) if

81750.

Now, set

C Z lg (w 'U)l,la w1,2, - - - 7w1,n)gw(a)'
weEW,.

We will see in Section 7 that A+ B + C gives us the desired result,

namely, equation (3.1). Before that, we need to prove certain properties
of .

6. A property of 7. In this section, we are going to prove the
following.

Proposition 6.1. Let sq,...,s, be nonnegative integers. Define

f(s1,...,8,) = Z Y(t1,ta, ... tn)

t; >0
X (=1t Sn\ [(Sn+ Sp—1—ln
tn tnfl
Sn+"'+81_tn_"'_t2
tq )

Then, we have

+ 285 4 -+ + nsy)!
6.1 ey 8y) = (—1)SrZsadnsn (51
6.1)  f(s10emin) = (1) e

Before proceeding to the proof of this result, we need to consider the
following lemma.

Lemma 6.2. For (s1,...,s8,) # (0,...,0), We have the following
recurrence relation.

n
(6.2) f(s1,...,8,) = —Zsjf(sl,...,sj_l +1,8;—1,...,8p).
=1
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Proof. First notice that, for s > 0,

f(s,0,...,00= > W(t,O,...,O)(_l)t<5)

0<t<s t
= 3 ()
— g+ I;tgs(at_lt L)1) (j)
_ O;tgs(_l)t @ +s 1;tgsat_l(_1)t (j - i)

=—sf(s—1,0,...,0).

By applying the recurrence of v,

f(Sl,...7Sn) = sz(tl,...,tj,1+1,tj—1,...,tn)t]‘

;>0 j=1
i () (3 2o =)
tn tn—l
sn+...+31_tn_..._t2
t1 '
We remark that it is correct to apply the recurrence relation for the
part of the sum involving the terms ~(¢1,0,...,0) due to the case

f(s,0,...,0) analyzed above.

We now look at the term for a fixed value of j. First notice that

v(tl,...,tj1+1,tj—17...,tn)tj(3”+“'+8j—t_tn—-'-—tm)
J

n Sﬂ+"'+5itn"'ti+1)

X
z_lgIrl( t
=q(ty, .. tjmr+ Lty =1, ) (Sn 4 85—ty — o —tjg1)
" <5n+~--+sj—tn—~-~—tj+1—1>
ti—1
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n Sn+"'+8i_tn_"'_ti+1
<11 ( t )7

i=j+1

where we have manipulated the j-binomial coefficient. Now we isolate
the factor s; in order to obtain

1

:fy(tl,...,tj_l—‘rl,tj—l,...,tn)sj‘( po
J

3

i=j+1
—‘r’y(tl,...7tj_1+1,tj—1,...,tn)(8n! +-"+Sj+1—tn—'~'—!tj+1)
% Sn+"'+8j—tn—"'—tj+1—1
tj—1
n
Sn+"'+sz_tn_"'_tz+1

X

I ()

1=j5+1

By manipulating the j + 1-binomial coefficient, we find
:’y(tl,. cey tj—l +]., tj 7].,. c ey tn)Sj <

n 5n+"+sz_tn_'_tz+1
<1l ( ti )

t—1

i=j+1
+y(te, ..o+ Lt =1, ) (Sp+ - Sjp1—tn— - —tiy2)
" (sn-+---4-sj-—tn-—~~.-—tj+1-—1)
ti—1
X(%+~~+%+r%n—~~%ﬁ2—g
tj+1
n Sn+~'~+5i—tn—"'—ti+1)
% .
1:112< b

Again, we isolate the factor s;11,

Sn+..._|_Sj_tn_..._tj+1_1>
1

:’y(tl,...,t]’_l—f—l,tj—l,...,tn)sj‘( o
J
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n Sn+"'+si_tn_"'_ti+l
<11 ( ti )

i=j+1
+7(t17"'atj—1+1atj_17"'7tn)8j+1
tj—l tj+1
n
Sn+...+8i_tn_..._ti+l
X
=742
+’}/(t17...,tj_1+l,tjf].,...,tn)(8n+'"+Sj+27tn7"'7tj+2)
tj—1
o« <sn++sj+1tntj+21>
i1
n
Sn+...+8i_tn_..._ti+1
X .
=742
We rewrite the last row as two products:
:'Y(tla-“ytj1+1;tj_17~-~7tn>3j( " J til A )
J
n
SnJF"'JFSi*tn*"'*ti—o—l
X
H ( t; )
=741
—|—’y(t1,...7tj,1+17tj—17...,tn)8j+1
« Sn+..+3]_tn_._tj+1_1
ti—1
i1
n
5n+"'+si*tn*"'*ti+l
X
H ( t; )
=742
—I—’y(tl,...,tj,l-i—l,tj—1,...,tn)(8n+~-~+8j+2—tn—"'—tj+3)

« Sn+._'_$]_tn_.._tj+1_1
t—1
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+2
> ﬁ Sn"’"'_"si_tn_"'_ti-‘rl_l
. 123

This process is repeated until we reach the following:

:’y(t17...,tj_1+1,tj 71,...725”)

« Sn++8j_tn__t]+1_1
ti—1

n 4
30 |l R
(=5 i=j+1 v

« ﬁ (Sn++81_ttn__tl+l)
%

i=0+1
We now introduce the remaining factors
’y(tl,. ..,tj,1 + 1,tj - 1, ;tn)tj

, t;
i=1

:’y(tl,...,tj,1+1,tj —1,...7tn)

j—2
']H(8n+...+8i_tn_..._ti+1)
: t;

i=1

« (87L+"'+8j_1—tn—~-~—tj>
tj—1

y (Sn+"'+3j_tn_"'_tj+1_1)
tj—1
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We manipulate the j — 1-binomial coefficient

:’y(tl,...,tj_1+17tj 71,...,tn)

j—2

JH sn+"'+5i_tn_"'_ti+1
. t;

i=1

X(3n+"'+3jl_tn_"'_tj"‘l)
tji—1+1
Sn+...+sj_tn_..._tj+1_1 n
X
( >
=3
(st si—t tigr —1
" "t i —tp — =t —
11 '
i=j+1
n
sn+...+si_tn_..._ti+1
X
H ( t;
1=0+1
7"}’(t1,...7tj_1+17tj71,...,tn)
) —2
h(sn+'.'+si_tn_.'._ti+1>
i=1 bi
« 5n+"'+sj71_tn_"'_tj Sn+'+sj_tn_._tj+1_1
tj—1+1 t;—1
n 4
Sn++87,_tn__t’b+l_]-
X ‘SZ'H ( t
l=j i=j+1
n
sn+...+si_tn_..._ti+1
X .
1=0+1
Taking into account the signs, the terms containing ~(¢1,...,%t;-1 +

1,t; —1,...,t,) with j > 2 yield:
n
—Zszf(sl,...,sj,l—|—1,...,5g—1,...,sn)
=

n
+Zng(sl,...,sj_2—1—1,...,5@—1,...,sn).
=
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On the other hand, the term containing v(¢; — 1,...,¢,) yields
n
*ZS[f(Sl,...,Sg —1,...,8n),
=1

while the one containing v(¢; + 1,t5 — 1,...,¢,) yields
n n
—wa(sl—|—1,...,sz—1,...,sn)+23gf(51,...,5¢— 1,00, 80).
£=2 =2

Putting all of this together, we get:

n n
f(317~--,8n):—Zzsef(817--~78j—1+1,---7S€—1,-~-,Sn)
i=1 =
n n
+ZZ$gf(sl,...,sj_g—i-l,...,Sg—1,...,sn)
i=2 (=
n n
:—ZZS@f(sl,...,sj_l+1,...,5571,...,5n)
i=1i=j
n—1 n
+Z Z Sef(s1y- -y 8h—1+1,...,80—1,...,8,)
h=1t=h+1

= —Zij(Sl,...,Sj,1 +].,Sj — ].,...,Sn).
j=1
This concludes the proof of the recurrence for f(sy,...,sy,). |

Proof of Proposition 6.1. Observe that, for s = 0, f(0,...,0) = 1.
Now assume that s > 0. We have:

s t
S Lt s
.00 = Y a1 (§) = (0 ) ()
>0 t=0j=0
By exchanging the order of summation,

£(s,0,...,0) —]Zoj'(j) i(l)tc:j).

t=j
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Now notice that the inner sum equals zero unless s = j and, in that
case, it equals (—1)*. Thus, we get

£(5,0,...,0) = (—1)%sl = (—1)°

s

We proceed by induction on k = s1 + 289 + - - - + ns,. We remark

that we have proved the case of k = s; for any value of k. We
are going to apply the recurrence (6.2). Observe that, in the term
f(s1,...,85-1+1,s; —1,...,5,), we have

si+-+ G -D(sjo1+ 1) +j(s;— 1)+ +ns, =k — 1.
Thus, by the induction hypothesis,

n
fls1, .y 80) = —Zsjf(sl,...,sj_1+l,sj —1,...,8)
j=1
n
_ Z Sj(*1)81+282+m+n5"71

Jj=

=

(81 + 2834 -+ +ns, — 1)
(1!)51 . ((] _ 1)!)5]'714-1(]'!)3]'—1 . (n!)sn
— (_1)51+282+--4+nsn (51 + 280 4 -+ -+ ns, — 1)'

(1!)51 S (n!)sn

n
i1
+ 8 G
j=1

_ (C1ymzsatetns, (51 + 285+ --- 4 ns,)!
(115 -~ (nl)"n

This concludes the proof of Proposition 6.1. (]

7. A4+ B+ C. In order to prove equation (3.1) we need to compute
the coefficient of each Xy (a) in A+B+C. The following two equations
are going to be key in this section:

(7.) S v(f) =0 s#o

k=0

(7.2) i(-g’%(i) =0, s#L

k=0
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7.1. The term A. The coefficient of X (a) in A is given by:

Z (n—(wy 1+ - -—I—nwml))ﬁ(_l)wi,l(”@"4" : .+vi71> .

: Wi, 1
0<wy 1+ +nwnp,1<n—2 i=1

)

Because of equations (7.1) and (7.2),
- 1 Vit
Z (w1 1+ - ._s_nwn’l))H(_l)wz‘l( ; - ,1> =0,
0<wy, 1+ +nwn,1<n i=1 &1

unless one of the following applies:

® v+ --+wv,1=0forall i, or
e there is an i with v, +- -+ vi,1 =land vy +---4+v;1 =0
for all i # ig.

The first case is impossible, since n > 0. For the second case, since
deg(v) = n, the only possibility for this is v;, ,,/;, = 1, and the rest is
zero. We obtain the coefficient ¢ for X(in/io)(a).

0

For the remaining X (a), the coefficient contributed by A must be

n - Vip + 001
D DR | (C5) ( o )

wi, 1+ +nwy, 1=n—11i=1

Since we have w; 1 < v;, + -+ v;,1, we obtain

n—1:w1,1+~~+nwn71§ E Z"UiJ'
,J

Y ijuig — 1<) v,
0,J ]

and

which implies

> i =iy < L

,J

This can only happen if v; ; = 0 for all j > 1, with the exception of
v1,2 which can be equal to 1 or 0. In any of these cases v;; can take
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any value. Thus, the contribution to the coefficient is given by:

s () e ()

w1+ Fnw,, 1=n—1 ’ 1=2

First assume that v; ; = 0 for j > 1. Since w;1 < v;,1, the case
wig + -+ nwp,1 = n — 1 occurs when w;; = v;; for 4 > 1 and
wy,1 = v1,1 — 1. We obtain

(—1)v1’1+m+v"’1’l]1’1.

Now assume that v; ; = 0 for all 7 > 1 except that v; 3 = 1. Once
again, we have w;; < v;; for ¢ > 1 and wy,; < v11 + 1. The case
Wi+ -+ nwy1 =n— 1 occurs with w1 =v11 +1 and w1 =v;1
for ¢ > 1, and the coefficient equals

(_1)U1,1+"'+Un,1 .

7.2. The term B. We look at expression B. The coefficient of Xy (a)
is given by:

- in [ VitV
S X e (T,

0<wy 14+ Fnwy, 1<n—2 j=1
wy,17#0

Because of equations (7.1) and (7.2),
n
_ 3 [T (”w toet Um) —0,
0<wi, 1+ +nwy,1<ni=1 Wi,1

unless vin + -+ +v;1 = 0 for all 4, which is impossible for n > 0.
The case wy,1 + 2weq + -+ + nw,,1 > n — 1, together with the
conditions w; 1 < v;n + - +v;1 for all 4, imply
ZijviJ —1l=n—-1< w1 +2wy;+ - +nwy1 < Zivi’j’
,J ,J

which gives

> i - Doy < 1

(2%
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This can only happen if v; ; = 0 for all j > 1 with the exception of
v1,2, which can be equal to 1 or 0. In addition, v; ;1 can take any value.
Therefore, the contribution to the coefficient is:

(7.3)

> (~1)wrn <Ul’2 N U“) (—1)we <U“>
w11 s Wi 1

wi,1+2w2, 1+ +nw, 1=n—1,n i ’

(7.4)

o2 M)

2wz, 1+ Hnwy,1 <n—21=2

First, assume that v; ; = 0 for j > 1. Since w;1 < v;1, the case
wig + -+ nwp1 = n — 1 occurs when w;; = v;; for ¢+ > 1 and
wy,; = v1,1 — 1. The case w1 + -+ + nw,,1 = n can only occur if
w; 1 = v;1 for all i. We obtain that the contribution from (7.3) is

,(,1)”1,1+~“+vn,1vl,1 + (71)vl,l+"'+vn,l .

Now assume v; ; = 0 for all j > 1, except that v;2 = 1. Once
again, we have w; 1 < v;; for ¢ > 1 and wy,; < v + 1. The case
wi1+- - +nw,1 =n—1occurs with wy; =v;1+1and w;; = v;; for
1 > 1. The case wy,1 + - - - +nwy,,1 = n never occurs. The contribution
coming from (7.3) equals

7(71)U1,1+“'+Un,1'

The contribution from (7.4) will be analyzed in the more general
case of wy 1 = 0. We have

n
Z H(—l)w,:,l (%n ot Uz;l)
w, .
0<2wsz 1+ +nwy 1 <n—21i=2 3,1
Notice that
n
Vi Ui
I | (e G I
oy
0<2wz, 1+ +nwy,1 <n i=2 1

unless v;p + -+ v;1 = 0 for all ¢ > 1 and, in that case, the above
sum equals 1. Apart from that term, we obtain that the contribution
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to the coeflicient is given by:
. )3 TIv < ot 1>
2wa 1+ Hnwy 1=n—1,ni=2 Wi,1

Because of the previous considerations and the fact that vy 1 +---+v1,
must be positive for X, (a) to appear in this sum, this contribution
only appears if v1; = 1 and v; ; = 0 for j > 1. The only possibility is
wy,1 = 0 and w; 1 = v;; for i > 1, and we obtain

_(_1)U2,1+"'+Un,1 — (_1)v1,1+"'+vn,1 .

7.3. The term C. Finally, we look at expression C.

Z ’Y(’wl,l,wl,z,---,wl,n)

0<wy 142wy 24 +nwy p<n—2
ajval,jO #0

% (_1)uJ1,1+~~+nw1,n (Ula") (vl,n tV1n-1— wl,n) o

Wi,n W1,n—1

(Ul,n e S TS Bl S 'w172>

wi,1
x >

02wz 1+ +nwn 1 <n—2—(w1,1+2w1 24 +nwi »)

n
1 (Vi Tt
<L (7 ")

)

Because of equations (7.1) and (7.2),

Z (w1, wi,2, -, Win)

0<wi, 1 +2wy 24 +nwi n<n

x (_1)w1,1+-"+nw1,n (vla") (’Ul’" T U1 — wlm) .

W1,n W1,n—1
(Ul,n e+ U Wi w1,2)
wW1,1

~ 2

0<2ws 1+ +nwnp,1 <n—(w1,1+2w1 2+ +nw1 n)

[T-ve (vn +oo %1) —0,
w;,1

=2 ’
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unless v;, + -+ +v;1 =0 for all # > 1. In that case, we obtain

Z ’y(w171,w172,...,w17n)

0<wy 1 +2wy o+ +nwy , <n—2
Ejo,wl)jo #0

% (_1)w1,1+'“+nw1,n <U1a") (Ulan +V1n-1— wl,n) .

W1,n W1,n—-1
(Ul,n +--tvi Wiy — U/1,2>
W11
= f(vl,ly oo avl,n)

- Z (w11, wi,2, -, Win)

0<wy,14+2w1,2+-+nwi n=0,n—1,n
x (_1)w1,1+-"+nw1,n <v17"> (/Ul’" T U1 — wl,”) .
W1,n W1,n—-1

(”Ul,n +rtvi Wiy — wl,z)
wi1 '

The case wi + 2wi2 + -+ + nwy, = n — 1, together with the
conditions wy ;+- - -+wi,y, < V14 Fv1, forall i and vy 14207 24+ -+
nvy,, = n imply that there is a jo > 1 such that wq j,—1 = v1,j,-1 + 1
and wy j, = v1,, — 1, or wi1 = vy,;; — 1. This term yields

n

E v1,1+Fnvy n—1
- 7(”1,1)"';vl,j—1+1avl,j *1,...,’017”)(*1) n b V1,5
J=1

= (=L)UY (yy o)

by construction of v, provided that there is an ig > 1 such that vy ;, # 0.
Otherwise, we obtain

(—1)7)1,1 Ul,l'Y('Ul,l — 1, O7 cee ,O)
= (=1)" vy, — (=1)" = (=1)"* (y(v1,1,0,...,0) — 1).

The case wy 1 +2w; 2+ - - +nwy , = n, together with the conditions
wl,i"" . ‘+'U~717n < ’U171‘+' . '+v1,n for all 7 and V1,1 +2’Ul72—|—' . -—|—n’ULn =n,

imply that w; ; = vy ; for all j, yields

(_1)v1,1+~~-+nv1,n7(1}1717 - 7U1,n)-



1610 MATILDE LALIN AND OLIVIER LAROCQUE

We remark that the case v ; = 0 for j > 1 yields
_(_1)1}1110‘1)1,1 = _(_1)1}1717(”1717 0,... 70)'
The term with wy; = --- = wy,, = 0 will be considered in a more
general setting.
If vig o + -+ + 03,1 # 0, for some 7y > 1, the contribution is given

by
- Z ’Y(w1,1,w1,27~~,w1,n)

wi,1+2w1,2++nwi p+2w2 1+ +nwW, 1=n—1,n

« (_1)uJ1,1+~~+nw1,n (Ula") (vl,n +V1n-1— wl,n) L

Wi,n W1,n—1

« <Ul,n + v — Wi — "'w1,2>

wi,1
n
x [ (=1 (“m +oe Um)
Wi
=9 7,1

-(0,...,0) Z H(*l)wm <Ui»n ‘*‘wll‘f' Ui,1>'

2wa, 1+ Fnwy,1 <n—21=2

The case wi 1 + 2wy 2+ - +nwy, + 2w + - +nwp1 > n—1
implies that

Zijvm —1=n-1 Swl,l —‘1-2’(1}1724—' . -+nw17n+2w2,1+~ s +Nnwn 1
1,J
< Zjvl,j + Z ;55
J 1>1,5

which gives

> i - vy <1

i>1,j

This can only happen if v; ; = 0 for ¢,j > 1. Following equation (7.5),

- Z ’Y(U)l,l,wl,%-uawl,n)

w1,1+2w1 2+ +nwi n+2w2 1+ FNnw, 1=n—1,n
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% (_1)w1,1+---+nw1,n (Ulan) (Ula" +V1n-1 — wlm) .

W1,n W1,n—1

n
X (Ulf” +ot V1,1 —Wim — w1’2> H(_l)wi,l (Ui,1>
wi,1 W; 1

i=2 ,
We see that

W;,1 < Vi1 for i > 1,

and

wi;+ - Fwr, <vi;+o-+ v, forany i

The condition w; 1 + 2we 1 + -+ + nwp1 + 2w 2+ - +F W1y =N
is only possible if w;1 = v;; for i« > 1 and wi; + -+ + w1y =
Vi + -+ 4+ v, for all 4, which implies w;; = v1;. The condition
w1 +2wa 1+ nwy 1+ 2wy 2+ - +nwp , =n — 1 is only possible
if wi1 =wv;1 for ¢ > 1 and wy j, = vi4, — 1, and wy jy—1 = V1 ,jo—1 + 1
for a unique jp fixed (this includes the case jo = 1, with the second
condition empty) and w; j = vy ,; for the other j.

Therefore, the contribution to the coefficient is given by

(_1)v2,1+'"+vn,1+vl,1+“'+nvl,n

n

X Z’Y(vl’l’ B . | =+ 1,’[}1)]' — 17 e ,vlm)vl)j
j=1
_ (,1)”2,1+'"Jrvn,l+v1,1+"'+nv1,n7(1)171’ V12, ,Ul,n)~
This term equals 0, unless vy ; = 0 for all j > 1. In that case, this term

equals
_(_1)v1,1+v2,1+'“+vn,1 .

The term wq 1 = -+ = w1, = 0 yields equation (7.6):

—(0,...,0) 3 ﬁ(—nw (wm +w -1+ vm).

0<2wz 1+ +nwy 1 <n—21=2 ’

Notice that
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& 1 (Vi T U
~(0,...,0 _qywia (Y0 )
NCR N SRR § () ( o ) ,

0<2wsz 1+ +nwy, 1 <ni=2

unless v; p + -+ v;1 = 0 for all 4 and, in that case, the above sum
equals —(0,...,0) = —1. In addition, we obtain a contribution given
by

7(0,...,0) 3 ﬁ(_l)wi,l (vn +w -1+ vm)

2wa 1+ +nwy 1=n—1,n1=2 ’

But the sum 2ws 1 + - - +nwy,,; > n — 1 implies that

Zijvm —1=n-1< 2’LU271 + o+ nw, 1 < Z i’l)i’j,
i,j i>1,5

which implies

Zjvl,j + Z i(j— v ; <1
j

i>1,5

Thus, v;; = 0 for j > 1 and v11 > 0 (it cannot be zero since one
term of the form vy ; must be nonzero). In addition, since wi; = 0, we
have that v;; =1 and 2wg 1 + - - - + nwy,,; =n — 1 can only happen if
w;,1 = V4,1, while the case 2ws 1 + - -+ + nwy 1 = n never occurs. The
contribution is:

(71)”2,1“’"""’”71,1 — 7(71)”1,1"”""‘1’”77,,1 .

7.4. Putting the terms together. We compute the final coefficient
for Xy(a) in A+ B+ C by considering each case.

If v; ; # 0 for some ¢, > 1, then the coefficient is 0 unless we are in
the case of X (4n/ay, in which the coefficient is d.

The remaining nonzero coefficients correspond to v;; = 0 for all
i,7 > 1. Table 1 contains a summary of the results in this case, taking
into account that n > 2. Here % indicates that any value is allowed and
v;,1 > 0 (respectively, vy ; > 0) indicates that the inequality is true for
at least one subindex i > 1 (respectively, j > 2). Finally, f is short for
f('Ul,1, sy Ul,n)~

We see that the final coefficient for X, (a), such that v;; = 0
for all 7,57 > 1, is given by 0 if v, > 0 for some ig > 1 and
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TABLE 1. Coefficient of Xy(a) in A+ B+ C.

ma e | V| a p
0 #1 « >0 o -
* * >0 0 o -
’ . 0 o L 0
* 1 0 >0 (—UL 1T Fona ETERTC W L
0 1 >0 >0 5 .
0 >1 B 0 o -
1 0 0 >0 AR R e YIRS A
#0 - >0 >0 5 .
1 0 0 _1 >
1 > 1 0 0 0 1
* >1 0 >0 0 o
>1 0 0 0 (-1 T 1oy T
+(—1)V1,1
>1 0 0 >0 (—pvritoten, —(—1)'”1;,1+‘;.’.L‘T=1ulyl
’ +(—1)Y1,1 Un,1
> 1 1 0 0 —rLl it
i ;1>72 7;11 c A+ B+C
0 #1 * >0 o 5
* * >0 0 F-1 7
0 1 0 0 Fo1 7
* 1 0 >0 o 5
0 1 >0 >0 o 5
0 > 1 « 0 7o -
1 0 0 >0 o)L R 5
#0 * >0 >0 o 5
1 1 0 0 -1 7
1 > 1 0 0 f-1 7
* > 1 0 >0 0 o
>1 0 0 0 o1 (neit 7
>1 0o 0 >0 —(—pPLait e o
> 1 1 0 0 Fo1 7

f(vl,h ..

hand side of A+ B + C equals

Z dX(dn/d) (a) +
d|n

2 D

Vi, g

i>1

.,U1,) otherwise. Now, Proposition 6.1 gives that the left

v1,2 .

e Xy (a).

Note that X(;») appears in both terms giving a final coefficient of

14 (—1).
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Finally, we note that

Hq(0, (ad)/n) pfn/d,

Xgn/ay(0,a) =
(an/ay(0,a) {0 p|n/d.

We can then write

ad n!
g‘; dHy <07 n) + Z’: (_1)n (1!)1;1‘1 (2!)1)1,2 . (n!)vl,n Xv(oa a)v

pin/d vi,j =0
i>1

which is the left hand side of equation (3.1).

The right hand side of A + B + C can be computed quite easily
by the following observation. If we take the equations with £ = 0
(no conditions on the coefficients), then we must necessarily arrive at
equation (3.3), which is true since it is the result of Mébius inversion
on equation (3.7) combined with equation (3.5). The combination that
we take with ¢ = 2 (respectively, £ = 1) is the result of dividing the
right hand side of each equation by ¢? (respectively, ¢). In this way, we
arrive at equation (3.1) (respectively, equation (3.4)).

8. Some particular cases. In this section, we consider the cases
n=4and n =75 (for £ = 2) to illustrate how the proof works. In order
to simplify the notation we omit the a part from &y (a).

8.1. Case n = 4. We can find that v(1,0) = ~(0,1) = 2 and
~v(2,0) = 5. In this case, we have

A: 48(0) - 38(1) - 28(2) + 25(1’1),
B: 5(1) - 5(171),
C: —25(1) + 25(12) + 55(1,1).

Thus,
(8.1) A+B+C= 45(0) — 45(1) + 25(12) — 25(2) + 65(1’1).

Table 2 contains all the equations involved, separated by left hand side
(LHS) and right hand side (RHS).
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TABLE 2. Equations for the case n = 4.

’ v ‘ LHS & ‘ RHS &,
Xan +Xa2) + Xaza2)
(0) +X (108 + X1y + Xa12) ¢
T X2 + X2) + Xo2) + X3 + X
AX(1 110 +3X (102 42X (2,02
(1) +2X(1,18) + Xy +2X(1,1,2) 7
tXaz2) + Xas)
(1) X112y +2X a2 12y + X118y + X4y + X(2,9) q
(2) Xa,1,2) + X2,2) +2X(22) + X(22) %
(1,1) | 6X(1,1,1,1) +3X(1,1,12) + X2 12) + X(1,18) + X(1,1,2) %

We obtain

4X(4) + 2X(22) + X(14) + 24X(1717171) + 12X(171712)
+ 4X(1’13) + 6X(12’12) + X(14) = 2(]2,

which is the result predicted by Theorem 1.1.

8.2. Case n = 5. We find some values of ~.

7(1,0,0) | 7(0,1,0) | 7(0,0,1) | 7(2,0,0) | 7(1,1,0) | %(3,0,0)
2 2 2 5 7 16

In this case, we have
A: 55(0) - 45(1) - 35(2) - 25(3) + 35(1’1) + 25(1’2) — 25(1’1’1),

B:&1y—&uy —Ea2 €111,
C: 725(1) + 25(12) - 25(13) + 55(171) — 75(1,12) + 25(172) — 165(17171).

Then
A+B+C= 55(0) — 55(1) + 25(12) — 25(13) — 35(2) — 25(3)

+ 75(171) + 35(172) - 75(1712) - 175(1,171).
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TABLE 3. Equations for the case n = 5.

v ] LHS & | RHS &, |
Xaan + X112 + X212
(0) TX@ 108 + Xaae) + Xas) + Xa,11.2) 7
+X(112,2) + Xas2) + X1,2,2) + X122
+X0,1,3) + Xa2s) + X + Xes) + Xe)
5Xa1,10,1) +4X(1,1,1,12) +3X(112,12)
+3X(11,18) +2X (1,14 + X35y +3X(1,1,1,2) 3
(1) (1,1,19) (1,1%) (%) q
+2X (112 ,0) + X(18,2) T X(1,2,2) + X(1,22)
+2X11,3) + Xazg) + X9
(1%) X,1,1,12) T 2X 0,12 12) + X(1,1,13) e
+X(1Y14> + X(ls) + X<111212) + X(13’2) + X(12’3)
@) | X3 + Xaa) + Xas) + Xs o) l q |
(2) X112+ X112,2) + X132 a*(q=1)
+2X,2,2) + Xa.22) + X2,3) 2
2_
L ® | Xaas + Xazs) + Xes) | afmn |
10X (1,1,1,1,1) +6X(111,12) +3X(112 12y 2(g1)
(1,1) +3X 1,18 + X1 +3X@11,2) e
+X 1122 + X@,13)
(1,2) 3X,1,1,2) +2X (1,122 (-1
7 +X 3.2 +2Xa22) + X 92 2
3X 2y +4X (112 12
2 (1,1,1,12) (1,12,12) B
(171 ) +2X(1’1’13) +X(1_’14> +X(1,12,2) q(q 1)
(1,1,1) 10X a1 +4X w112 alg=1)(g=2)
o +X1202) + X3 + X112 6

Table 3 contains all of the equations involved in A + B + C.

Summing up according to the coefficients from equation (8.2), we
obtain

5X(5) + X5y —120X(1,1,1,1,1) — 60X(1,1,1,12)
— 30X(1’12’12) — 20X(1’1’13) — 5X(1’14) — X(ls) == 0,

which is the result predicted by Theorem 1.1.
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9. Conclusion. We have proved the formula for the number of
irreducible polynomials with the first two prescribed coefficients by
using combinatorial methods and results from the theory of quadratic
forms over finite fields. Our method also gives a proof of the formula
for the number of irreducible polynomials with the first prescribed
coefficient and has the potential of leading results for other prescribed
factorization types. In principle, this method could be extended to a
higher number of fixed coefficients. This condition would restrict the
number of equations &, that we can use, and the equivalent expression

for > an dHg would involve terms Xy (a) whose matrices V' contain
pin/d
nonzero entries outside the first row. It should be interesting to explore

the feasibility of this method for ¢ > 2.
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