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GENERAL MIXED CHORD-INTEGRALS
OF STAR BODIES

YIBIN FENG AND WEIDONG WANG

ABSTRACT. Mixed chord-integrals of star bodies were
first defined by Lu [19]. In this paper, the concept of mixed
chord-integrals is extended to general mixed chord-integrals,
which is motivated by the recent work on general Lp-affine
isoperimetric inequalities by Haberl, et al. [16]. For this
new notion of general mixed chord-integrals, isoperimetric
and Aleksandrov-Fenchel type inequalities are established
which generalize inequalities obtained by Lu, and a cyclic
inequality is also obtained. Furthermore, we prove several
Brunn-Minkowski type inequalities for general mixed chord-
integrals.

1. Introduction and main results. Let Sn−1 denote the unit
sphere in Euclidean space Rn, and let V (K) denote the n-dimensional
volume of a body K. For the standard unit ball B in Rn, we write
ωn = V (B) for its volume.

If K is a compact star-shaped (about the origin) set in Rn, then its
radial function, ρK = ρ(K, ·) : Rn \ {0} → [0,∞), is defined by (see,
e.g., [8, 33])

ρ(K,u) = max{λ ≥ 0 : λu ∈ K}, u ∈ Sn−1.

If ρK is positive and continuous, thenK will be called a star body (about
the origin), and Sn denotes the set of star bodies in Rn. We will use Sn

o

and Sn
c to denote the subset of star bodies in Sn containing the origin

in their interiors and whose centroids lie at the origin, respectively.
Two star bodies, K and L, are said to be dilates of one another if
ρK(u)/ρL(u) is independent of u ∈ Sn−1.
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Lutwak [23] introduced the notion of mixed width-integrals of
convex bodies. Motivated by Lutwak’s ideas, the notion of mixed
chord-integrals of star bodies was recently defined by Lu (see [19]):
For K1, . . . ,Kn ∈ Sn

o , the mixed chord-integral, C(K1, . . . ,Kn), of
K1, . . . ,Kn was defined by

(1.1) C(K1, . . . ,Kn) =
1

n

∫
Sn−1

c(K1, u) · · · c(Kn, u0) dS(u),

where dS(u) is the (n − 1)-dimensional volume element on Sn−1

and c(K,u) denotes the half chord of K in the direction u, namely,
c(K,u) = ρ(K,u)/2 + ρ(K,−u)/2. Thus, the mixed chord-integral is
a map Sn

o × · · · × Sn
o︸ ︷︷ ︸

n

→ R. It is positive, continuous and multilinear

with respect to radial Minkowski linear combinations, positively homo-
geneous and monotone under set inclusion. Star bodies K1, . . . ,Kn are
said to have a similar chord if there exist constants λ1, . . . , λn > 0 such
that λ1c(K1, u) = · · · = λnc(Kn, u) for all u ∈ Sn−1. Lu [19] estab-
lished the following isoperimetric and Aleksandrov-Fenchel inequalities
for mixed chord-integrals.

Theorem 1.A. If K1, . . . ,Kn ∈ Sn
o , then

C(K1, . . . ,Kn)
n ≤ V (K1) · · ·V (Kn),

with equality if and only if K1, . . . ,Kn are centered at the origin and
dilates of each other.

Theorem 1.B. If K1, . . . ,Kn ∈ Sn
o and 1 < m ≤ n, then

C(K1, . . . ,Kn)
m ≤

m∏
i=1

C(K1, . . . ,Kn−m,Kn−i+1, . . . ,Kn−i+1),

with equality if and only if Kn−m+1, . . . ,Kn are all of a similar chord.

We now propose the definition of general mixed chord-integrals of
star bodies, which generalizes the above definition of mixed chord-
integrals.
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For τ ∈ (−1, 1), the general mixed chord-integral, C(τ)(K1, . . . ,Kn),
of K1, . . . ,Kn ∈ Sn

o is defined by

(1.2) C(τ)(K1, . . . ,Kn) =
1

n

∫
Sn−1

c(τ)(K1, u) · · · c(τ)(Kn, u) dS(u),

where c(τ)(K,u) = f1(τ)ρ(K,u) + f2(τ)ρ(K,−u) and the functions
f1(τ) and f2(τ) are defined as follows:

(1.3) f1(τ) =
(1 + τ)2

2(1 + τ2)
, f2(τ) =

(1− τ)2

2(1 + τ2)
.

From (1.3), it immediately follows that

(1.4) f1(τ) + f2(τ) = 1;

(1.5) f1(−τ) = f2(τ), f2(−τ) = f1(τ).

By (1.3), if we let τ = 0 in definition (1.2), then C(0)(K1, . . . ,Kn)
is just Lu’s mixed chord-integral C(K1, . . . ,Kn). Similarly, the general
mixed chord-integral, C(τ)(K1, . . . ,Kn) : Sn

o ×· · ·×Sn
o → R, is also pos-

itive, continuous and multilinear with respect to the radial Minkowski
linear combinations, positively homogeneous and monotone under set
inclusion. Star bodies K1, . . . ,Kn are said to have a similar general
chord if there exist constants λ1, . . . , λn > 0 such that λ1c

(τ)(K1, u) =
· · · = λnc

(τ)(Kn, u) for all u ∈ Sn−1. They are said to have a joint con-
stant general chord if the product c(τ)(K1, u) · · · c(τ)(Kn, u) is constant
for all u ∈ Sn−1.

If we take K1 = · · · = Kn−i = K and Kn−i+1 = · · · = Kn = B in

definition (1.2), then the general chord-integral of order i, C
(τ)
i (K), of

K ∈ Sn
o is defined by

(1.6) C
(τ)
i (K) =

1

n

∫
Sn−1

c(τ)(K,u)n−i dS(u).

Taking K1 = · · · = Kn = K in (1.2), we write C(τ)(K) for
C(τ)(K, · · · ,K), and call it the general chord-integral of K ∈ Sn

o .

The asymmetric (dual) Brunn-Minkowski theory has as its starting
point the theory of valuations in connection with isoperimetric and
analytic inequalities (see [1, 6, 13, 14, 15, 16, 20, 21, 22, 27, 28,
29, 30, 31, 34, 36, 37, 38, 39, 40]).



1502 YIBIN FENG AND WEIDONG WANG

As our main results, we first establish extended versions of Theo-
rem 1.A and Theorem 1.B, given by Theorem 1.1 and Theorem 1.2.

Theorem 1.1. If τ ∈ (−1, 1) and K1, . . . ,Kn ∈ Sn
o , then

(1.7) C(τ)(K1, · · · ,Kn)
n ≤ V (K1) · · ·V (Kn),

with equality if and only if K1, . . . ,Kn are centered at the origin and
dilates of each other.

Theorem 1.2. If τ ∈ (−1, 1) and K1, . . . ,Kn ∈ Sn
o , 1 < m ≤ n, then

(1.8)

C(τ)(K1, . . . ,Kn)
m ≤

m∏
i=1

C(τ)(K1, . . . ,Kn−m,Kn−i+1, . . . ,Kn−i+1),

with equality if and only if Kn−m+1, . . . ,Kn are all of similar general
chord.

Moreover, we will prove the following cyclic inequality.

Theorem 1.3. If τ ∈ (−1, 1) and K,L ∈ Sn
o , then, for i < j < k,

(1.9) C
(τ)
i (K,L)k−jC

(τ)
k (K,L)j−i ≥ C

(τ)
j (K,L)k−i,

with equality if and only if K and L have a similar general chord.

Here, C
(τ)
i (K,L) = C(τ)(K,n − i;L, i) in which K appears n − i

times and L appears i times.

The proofs of Theorems 1.1–1.3 will be given in Section 4 of this
paper. In Section 3, we establish some properties of general chord-
integrals of order i. Moreover, several Brunn-Minkowski type inequal-
ities for general chord-integrals of order i are obtained in Section 5.

2. Preliminaries. If E ⊆ Rn is non-empty, the polar set E∗ of E
is defined by (see [8])

E∗ = {x ∈ Rn : x · y ≤ 1, for all y ∈ E}.

For K ∈ Sn
c , an extension of the well-known Blaschke-Santaló

inequality takes the following form (see [24]).
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Theorem 2.A. If K ∈ Sn
c , then

(2.1) V (K)V (K∗) ≤ ω2
n,

with equality if and only if K is an ellipsoid.

If K1, . . . ,Km ∈ Sn
o and λ1, . . . , λm ∈ R, then the radial Minkowski

linear combination is defined by (see [25])

(2.2) ρ(λ1K1+̃ · · · +̃λmKm, ·) = λ1ρ(K1, ·) + · · ·+ λmρ(Km, ·).

For K,L ∈ Sn
o and λ, µ ≥ 0 (both nonzero), the radial Blaschke

linear combination, λ ·K+̆µ · L, of K and L is defined by (see [25]):

(2.3) ρ(λ ·K+̆µ · L, ·)n−1 = λρ(K, ·)n−1 + µρ(L, ·)n−1.

For more information on binary operations between convex or star
bodies, we refer to the articles [9, 10, 11]. ForK ∈ Sn

o , the intersection
body of K, IK, is the star body symmetric with respect to origin whose
radial function on Sn−1 is given by (see [25]):

(2.4) ρ(IK, u) =
1

n− 1

∫
Sn−1∩u⊥

ρ(K,u)n−1dλn−2(u),

where dλn−2(u) is (n−2)-dimensional spherical Lebesgue measure. For
u ∈ Sn−1, K ∩ u⊥ denotes the intersection of K with the subspace u⊥

that passes through the origin and is orthogonal to u.

From equations (2.2), (2.3) and (2.4), it follows that, if K,L ∈ Sn
o

and λ, µ ≥ 0 (both nonzero), then

(2.5) I(λ ·K+̆µ · L) = λIK+̃µIL.

The polar coordinate formula for volume of a body K in Rn is

(2.6) V (K) =
1

n

∫
Sn−1

ρ(K,u)ndS(u).

3. General chord-integrals of order i. In this section, we es-
tablish some properties and inequalities for general chord-integrals of
order i.
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From definition (1.2) and the multilinearity of general mixed chord-
integrals, we see that the general chord-integral of λ1K1+̃ · · · +̃λmKm

is a homogeneous polynomial of degree n in λ1, . . . , λm.

Theorem 3.1. For τ ∈ (−1, 1) and K1, . . . ,Km ∈ Sn
o , let K =

λ1K1+̃ · · · +̃λmKm. Then

(3.1) C(τ)(K) =
m∑

j1=1

· · ·
m∑

jn=1

λj1 · · ·λjnC
(τ)(Kj1 , . . . ,Kjn).

As a direct consequence of Theorem 3.1, we have:

Theorem 3.2. For τ ∈ (−1, 1) and K ∈ Sn
o , let Kµ = K+̃µB (µ > 0).

Then, for j = 0, 1, . . . , n,

(3.2) C
(τ)
j (Kµ) =

n−j∑
i=0

(
n− j

i

)
C

(τ)
j+i(K)µi.

Lemma 3.3. If τ ∈ (−1, 1) and K ∈ Sn
o , then

(3.3) C(τ)(K) ≤ V (K),

with equality if and only if K is centered at the origin.

Proof. From Minkowski’s inequality (see [17]), we have

C(τ)(K)1/n =

[
1

n

∫
Sn−1

c(τ)(K,u)ndS(u)

]1/n
=

[
1

n

∫
Sn−1

(f1(τ)ρ(K,u) + f2(τ)ρ(K,−u))
n
dS(u)

]1/n
≤

[
1

n

∫
Sn−1

(f1(τ)ρ(K,u))
n
dS(u)

]1/n
+

[
1

n

∫
Sn−1

(f2(τ)ρ(K,−u))
n
dS(u)

]1/n
=

[
1

n

∫
Sn−1

ρ(K,u)ndS(u)

]1/n
,
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that is,

C(τ)(K) ≤ 1

n

∫
Sn−1

ρ(K,u)ndS(u) = V (K).

From the equality condition of Minkowski’s inequality, we see that
equality holds in (3.3) if and only if K and −K are dilates of one
another, i.e., K is centered at the origin. �

Theorem 3.4. If τ ∈ (−1, 1) and K ∈ Sn
c , then, for 0 < i < n,

(3.4) C
(τ)
i (K)C

(τ)
i (K∗) ≤ ω2

n,

for i > n, inequality (3.4) is reversed, with equality in each inequality
if and only if K is an ellipsoid centered at the origin.

Proof. From Lemma 3.3 and Jensen’s inequality (see [17]), we get
for i > 0 and i ̸= n,[

1

ωn
C

(τ)
i (K)

]1/(n−i)

≤
[
1

ωn
C(τ)(K)

]1/n
≤

[
1

ωn
V (K)

]1/n
,

i.e.,

(3.5) C
(τ)
i (K)1/(n−i) ≤ ωi/n(n−i)

n V (K)1/n.

By (3.5), we have

(3.6) C
(τ)
i (K∗)1/(n−i) ≤ ωi/n(n−i)

n V (K∗)1/n.

Combining equations (3.5) and (3.6), it follows from the extended
Blaschke-Santaló inequality (see Theorem 2.A) that

(3.7)
[
C

(τ)
i (K)C

(τ)
i (K∗)

]1/(n−i)

≤ ω2/(n−i)
n .

If 0 < i < n in inequality (3.7), then we have

C
(τ)
i (K)C

(τ)
i (K∗) ≤ ω2

n;

if i > n in inequality (3.7), then the above inequality is reversed.

According to the equality conditions of inequality (2.1), inequality
(3.3) and Jensen’s inequality, we see that equality holds in every
inequality if and only if K is an ellipsoid centered at the origin. �
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4. Proofs of Theorems 1.1–1.3.

Proof of Theorem 1.1. By Hölder’s inequality (see [17]), we have

C(τ)(K1, . . . ,Kn)
n =

(
1

n

∫
Sn−1

c(τ)(K1, u) · · · c(τ)(Kn, u) dS(u)

)n

≤
(
1

n

∫
Sn−1

c(τ)(K1, u)
ndS(u)

)
× · · ·(4.1)

×
(
1

n

∫
Sn−1

c(τ)(Kn, u)
ndS(u)

)
,

with equality if and only if K1, · · · ,Kn have similar general chord. An
application of Minkowski’s inequality (see [17]) thus yields

C(τ)(K1, . . . ,Kn)

≤
(
1

n

∫
Sn−1

c(τ)(K1, u)
ndS(u)

)1/n

× · · ·

×
(
1

n

∫
Sn−1

c(τ)(Kn, u)
ndS(u)

)1/n

=

(
1

n

∫
Sn−1

(f1(τ)ρ(K1, u) + f2(τ)ρ(K1,−u))ndS(u)

)1/n

× · · ·

×
(
1

n

∫
Sn−1

(f1(τ)ρ(Kn, u) + f2(τ)ρ(Kn,−u))ndS(u)

)1/n

≤
(
1

n

∫
Sn−1

ρ(K1, u)
ndS(u)

)1/n

× · · ·

×
(
1

n

∫
Sn−1

ρ(Kn, u)
ndS(u)

)1/n

= V (K1)
1/n · · ·V (Kn)

1/n,

with equality in the second inequality if and only if τ = 0. Conse-
quently,

C(τ)(K1, · · · ,Kn)
n ≤ V (K1) · · ·V (Kn).

According to the equality conditions of the above inequalities, we
see that equality holds in (1.7) if and only if K1, . . . ,Kn are dilates of
each other and centered at the origin. �
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Lemma 4.1 ([26]). If f0, f1, . . . , fm are (strictly) positive continuous
functions defined on Sn−1 and λ1, . . . , λm are positive constants, the
sum of whose reciprocals is unity, then
(4.2)∫
Sn−1

f0(u)f1(u) · · · fm(u) dS(u) ≤
m∏
i=1

[ ∫
Sn−1

f0(u)f
λi
i (u) dS(u)

]1/λi

,

with equality if and only if there exist positive constants α1, . . . , αm

such that α1f
λ1
1 (u) = · · · = αmfλm

m (u) for all u ∈ Sn−1.

Proof of Theorem 1.2. In Lemma 4.1, we take

λi = m (1 ≤ i ≤ m);

f0 = c(τ)(K1, u) · · · c(τ)(Kn−m), u (f0 = 1 if m = n);

fi = c(τ)(Kn−i+1, u) (1 ≤ i ≤ m).

Then it follows that∫
Sn−1

c(τ)(K1, u) · · · c(τ)(Kn, u) dS(u)

≤
m∏
i=1

[ ∫
Sn−1

c(τ)(K1, u) · · · c(τ)(Kn−m, u)c(τ)(Kn−i+1, u)
mdS(u)

]1/m
.

By definition (1.2), this yields

C(τ)(K1, · · · ,Kn)
m ≤

m∏
i=1

C(τ)(K1, . . . ,Kn−m,Kn−i+1, . . . ,Kn−i+1).

From the equality condition of inequality (4.2), we see that equality
holds in (1.8) if and only if Kn−m+1, . . . ,Kn are all of a similar general
chord. �

Proof of Theorem 1.3. From Hölder’s inequality (see [17]), it follows
that:

C
(τ)
i (K,L)(k−j)/(k−i)C

(τ)
k (K,L)(j−i)/(k−i)

=

(
1

n

∫
Sn−1

c(τ)(K,u)n−ic(τ)(L, u)idS(u)

)(k−j)/(k−i)
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×
(
1

n

∫
Sn−1

c(τ)(K,u)n−kc(τ)(L, u)kdS(u)

)(j−i)/(k−i)

≥ 1

n

∫
Sn−1

c(τ)(K,u)n−jc(τ)(L, u)jdS(u) = C
(τ)
j (K,L),

i.e.,

C
(τ)
i (K,L)k−jC

(τ)
k (K,L)j−i ≥ C

(τ)
j (K,L)k−i.

From the equality condition of Hölder’s inequality, we see that
equality holds in (1.9) if and only if K and L have a similar general
chord. �

If i = 0, j = i and k = n in inequality (1.9), then we have the
following fact.

Corollary 4.2. If τ ∈ (−1, 1) and K,L ∈ Sn
o , then, for 0 ≤ i ≤ n,

(4.3) C
(τ)
i (K,L)n ≤ C(τ)(K)n−iC(τ)(L)i,

for i < 0 or i > n, inequality (4.3) is reversed, with equality in every
inequality if and only if i = n or, when i ̸= n, K and L have a similar
general chord.

If we take i = 1 and i = −1 in Corollary 4.2, then we get the
following versions of the dual Minkowski inequalities for general mixed
chord-integrals.

Corollary 4.3. If τ ∈ (−1, 1) and K,L ∈ Sn
o , then

C
(τ)
1 (K,L)n ≤ C(τ)(K)n−1C(τ)(L),

with equality if and only if K and L have a similar general chord.

Corollary 4.4. If τ ∈ (−1, 1) and K,L ∈ Sn
o , then

C
(τ)
−1 (K,L)n ≥ C(τ)(K)n+1C(τ)(L)−1,

with equality if and only if K and L have a similar general chord.
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5. Brunn-Minkowski type inequalities. This section is dedi-
cated to the study of Brunn-Minkowski inequalities for general chord-
integrals of order i. Log-concavity properties of geometric function-
als have long played an important role in analysis and geometry (see
[2, 4, 32, 35, 41, 42] for some recent results). We first establish the
following Brunn-Minkowski type inequality for general chord-integrals
of order i with respect to the radial Minkowski addition.

Theorem 5.1. If τ ∈ (−1, 1) and K,L ∈ Sn
o , then, for i ≤ n− 1,

(5.1) C
(τ)
i (K+̃L)1/(n−i) ≤ C

(τ)
i (K)1/(n−i) + C

(τ)
i (L)1/(n−i);

and, for i > n,

(5.2) C
(τ)
i (K+̃L)1/(n−i) ≥ C

(τ)
i (K)1/(n−i) + C

(τ)
i (L)1/(n−i),

with equality in each inequality if and only if K and L have a similar
general chord.

Proof. We first prove inequality (5.1). For i ≤ n− 1, it follows from
Minkowski’s inequality (see [17]) that

C
(τ)
i (K+̃L)1/(n−i) =

(
1

n

∫
Sn−1

c(τ)(K+̃L, u)n−idS(u)

)1/(n−i)

=

(
1

n

∫
Sn−1

(c(τ)(K,u) + c(τ)(L, u))n−idS(u)

)1/(n−i)

≤
(
1

n

∫
Sn−1

c(τ)(K,u)n−idS(u)

)1/(n−i)

+

(
1

n

∫
Sn−1

c(τ)(L, u)n−idS(u)

)1/(n−i)

= C
(τ)
i (K)1/(n−i) + C

(τ)
i (L)1/(n−i).

This gives inequality (5.1). Similarly, Minkowski’s inequality yields
inequality (5.2).

From the equality conditions of Minkowski’s inequality, we see that
equality holds in inequalities (5.1) and (5.2) if and only if K and L
have a similar general chord. �
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Theorem 5.2. If K,L ∈ Sn
o and τ ∈ (−1, 1), i, j ∈ R, then, for

i ≤ n− 1 ≤ j ≤ n,
(5.3)(
C

(τ)
i (I(K+̆L))

C
(τ)
j (I(K+̆L))

)1/(j−i)

≤
(
C

(τ)
i (IK)

C
(τ)
j (IK)

)1/(j−i)

+

(
C

(τ)
i (IL)

C
(τ)
j (IL)

)1/(j−i)

;

for j ≥ n ≥ i ≥ n− 1,
(5.4)(
C

(τ)
i (I(K+̆L))

C
(τ)
j (I(K+̆L))

)1/(j−i)

≥
(
C

(τ)
i (IK)

C
(τ)
j (IK)

)1/(j−i)

+

(
C

(τ)
i (IL)

C
(τ)
j (IL)

)1/(j−i)

,

with equality in each inequality if and only if IK and IL have a similar
general chord.

In order to prove Theorem 5.2, the following lemmas are required.
An extension of Beckenbach’s inequality (see [3]) was obtained by
Dresher [5] through the means of moment-space techniques.

Lemma 5.3 (The Beckenbach-Dresher inequality). If p ≥ 1 ≥ r ≥ 0,
f, g ≥ 0, and ϕ is a distribution function, then
(5.5)(∫

E(f + g)pdϕ∫
E(f + g)rdϕ

)1/(p−r)

≤
(∫

E f
pdϕ∫

E f
rdϕ

)1/(p−r)

+

(∫
E g

pdϕ∫
E g

rdϕ

)1/(p−r)

,

with equality if and only if the functions f and g are positively propor-
tional.

Here E is a bounded measurable subset in Rn.

Moreover, the inverse Beckenbach-Dresher inequality was obtained
by Li and Zhao [18].

Lemma 5.4 (The inverse Beckenbach-Dresher inequality). If r ≤ 0 ≤
p ≤ 1, f, g ≥ 0, and ϕ is a distribution function, then
(5.6)(∫

E(f + g)pdϕ∫
E(f + g)rdϕ

)1/(p−r)

≥
(∫

E f
pdϕ∫

E f
rdϕ

)1/(p−r)

+

(∫
E g

pdϕ∫
E g

rdϕ

)1/(p−r)

,
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with equality if and only if the functions f and g are positively propor-
tional.

Proof of Theorem 5.2. From equations (1.2) and (2.5), it follows
that, for p ≥ 1 ≥ r ≥ 0,

C
(τ)
n−p(I(K+̆L)) =

1

n

∫
Sn−1

c(τ)(I(K+̆L), u)pdS(u)

=
1

n

∫
Sn−1

c(τ)(IK+̃IL, u)pdS(u)(5.7)

=
1

n

∫
Sn−1

(c(τ)(IK, u) + c(τ)(IL, u))pdS(u).

Similarly,

(5.8) C
(τ)
n−r(I(K+̆L)) =

1

n

∫
Sn−1

(c(τ)(IK, u) + c(τ)(IL, u))rdS(u).

Combining equations (5.7) and (5.8), we obtain, using Lemma 5.3,(
C

(τ)
n−p(I(K+̆L))

C
(τ)
n−r(I(K+̆L))

)1/(p−r)

=

(∫
Sn−1(c

(τ)(IK, u) + c(τ)(IL, u))pdS(u)∫
Sn−1(c(τ)(IK, u) + c(τ)(IL, u))rdS(u)

)1/(p−r)

≤
(∫

Sn−1 c
(τ)(IK, u)pdS(u)∫

Sn−1 c(τ)(IK, u)rdS(u)

)1/(p−r)

(5.9)

+

(∫
Sn−1 c

(τ)(IL, u)pdS(u)∫
Sn−1 c(τ)(IL, u)rdS(u)

)1/(p−r)

=

(
C

(τ)
n−p(IK)

C
(τ)
n−r(IK)

)1/(p−r)

+

(
C

(τ)
n−p(IL)

C
(τ)
n−r(IL)

)1/(p−r)

.

Suppose p = n − i and r = n − j. It follows from 0 ≤ r ≤ 1 ≤ p that
i ≤ n− 1 ≤ j ≤ n. Taking p = n− i and r = n− j in (5.9), this yields
the desired inequality (5.3). Using the same method, and Lemma 5.4
instead, we obtain inequality (5.4).

From the equality conditions of inequalities (5.5) and (5.6), we
see that equality holds in inequalities (5.3) and (5.4) if and only if
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c(τ)(IK, u) and c(τ)(IL, u) are positively proportional, that is, IK and
IL have a similar general chord. �

If j = n in (5.3), then C
(τ)
n (I(K+̆L)) = C

(τ)
n (IK) = C

(τ)
n (IL) = ωn

is a constant, and we obtain the following result.

Corollary 5.5. If τ ∈ (−1, 1) and K,L ∈ Sn
o , then, for i ≤ n− 1,

C
(τ)
i (I(K+̆L))1/(n−i) ≤ C

(τ)
i (IK)1/(n−i) + C

(τ)
i (IL)1/(n−i),

with equality if and only if IK and IL have similar general chords.

An inequality of Giannopoulos et al. [12] states that, ifK is a convex
body and L is an n-ball in Rn, then, for k = 0, . . . , n− 1,

(5.10)
Wk(K + L)

Wk+1(K + L)
≥ Wk(K)

Wk+1(K)
+

Wk(L)

Wk+1(L)
.

However, inequality (5.10) does not hold for an arbitrary pair of
nonempty compact convex sets K and L. Also, (5.10) only holds if
k = n− 2 or k = n− 1 [7].

In the following, we will prove two analogous inequalities for general
chord-integrals of order i.

Theorem 5.6. If τ ∈ (−1, 1), and K,L is an arbitrary pair of star
bodies in Rn, then, for k = n− 2 or k = n− 1,

(5.11)
C

(τ)
k (K+̃L)

C
(τ)
k+1(K+̃L)

≤
C

(τ)
k (K)

C
(τ)
k+1(K)

+
C

(τ)
k (L)

C
(τ)
k+1(L)

.

Proof. Let k = n− 2, and let B = (B, . . . , B) be an (n− 2)-tuple of
the unit ball B. It follows from Theorem 1.2 that, for all t, s ≥ 0,

C(τ)(K+̃sB,L+̃tB,B)2 − C
(τ)
n−2(K+̃sB)C

(τ)
n−2(L+̃tB) ≤ 0.

Since general mixed chord-integrals are multilinear with respect to the
radial Minkowski linear combination, we obtain

s2
[
C

(τ)
n−1(L)

2− ωnC
(τ)
n−2(L)

]
+2st

[
ωnC

(τ)(K,L,B)−C
(τ)
n−1(K)C

(τ)
n−1(L)

]
+ t2

[
C

(τ)
n−1(K)2 − ωnC

(τ)
n−2(K)

]
+ g(s, t) ≤ 0,
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where g(s, t) is a linear function of s and t. From Theorem 1.2, we
know that

C
(τ)
n−1(K)2 − ωnC

(τ)
n−2(K) ≤ 0(5.12)

and

C
(τ)
n−1(L)

2 − ωnC
(τ)
n−2(L) ≤ 0.(5.13)

Together with (5.12), it follows that either

(5.14) ωnC
(τ)(K,L,B)− C

(τ)
n−1(K)C

(τ)
n−1(L) ≤ 0,

or

(5.15)
[
ωnC

(τ)(K,L,B)− C
(τ)
n−1(K)C

(τ)
n−1(L)

]2
≤

[
C

(τ)
n−1(K)2 − ωnC

(τ)
n−2(K)

] [
C

(τ)
n−1(L)

2 − ωnC
(τ)
n−2(L)

]
.

Using Theorem 1.2 again, we obtain for s, t ≥ 0,

(5.16) C
(τ)
n−1(sK+̃tL)2 − ωnC

(τ)
n−2(sK+̃tL) ≤ 0.

Using the multilinearity of general mixed chord-integrals we obtain
from (5.16):

(5.17) s2
[
C

(τ)
n−1(L)

2 − ωnC
(τ)
n−2(L)

]
+ 2st

[
C

(τ)
n−1(K)C

(τ)
n−1(L)− ωnC

(τ)(K,L,B)
]

+ t2
[
C

(τ)
n−1(K)2 − ωnC

(τ)
n−2(K)

]
≤ 0.

By equations (5.12) and (5.14), we know that, if (5.17) holds, then the
discriminant of the above quadratic form (5.17) is non-positive. Thus,
equation (5.15) always holds. Now using equation (5.15), it follows
from the arithmetic geometric means inequality that

ωnC
(τ)(K,L,B)− C

(τ)
n−1(K)C

(τ)
n−1(L)

≤
[
ωnC

(τ)
n−2(K)− C

(τ)
n−1(K)2

]1/2 [
ωnC

(τ)
n−2(L)− C

(τ)
n−1(L)

2
]1/2

≤ 1

2

C
(τ)
n−1(L)

C
(τ)
n−1(K)

[
ωnC

(τ)
n−2(K)− C

(τ)
n−1(K)2

]
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+
1

2

C
(τ)
n−1(K)

C
(τ)
n−1(L)

[
ωnC

(τ)
n−2(L)− C

(τ)
n−1(L)

2
]

=
ωn

2

[
C

(τ)
n−1(L)

C
(τ)
n−1(K)

C
(τ)
n−2(K) +

C
(τ)
n−1(K)

C
(τ)
n−1(L)

C
(τ)
n−2(L)

]
− C

(τ)
n−1(K)C

(τ)
n−1(L),

that is,

(5.18) 2C(τ)(K,L,B) ≤
C

(τ)
n−1(L)

C
(τ)
n−1(K)

C
(τ)
n−2(K) +

C
(τ)
n−1(K)

C
(τ)
n−1(L)

C
(τ)
n−2(L).

By the multilinearity of general mixed chord-integrals and inequality
(5.18), we infer

C
(τ)
n−2(K+̃L) = C

(τ)
n−2(K) + C

(τ)
n−2(L) + 2C(τ)(K,L,B)

≤ C
(τ)
n−2(K) + C

(τ)
n−2(L) +

C
(τ)
n−1(L)

C
(τ)
n−1(K)

C
(τ)
n−2(K)

+
C

(τ)
n−1(K)

C
(τ)
n−1(L)

C
(τ)
n−2(L)

=

[
C

(τ)
n−2(K)

C
(τ)
n−1(K)

+
C

(τ)
n−2(L)

C
(τ)
n−1(L)

](
C

(τ)
n−1(K) + C

(τ)
n−1(L)

)
,

that is,

C
(τ)
n−2(K+̃L)

C
(τ)
n−1(K+̃L)

≤
C

(τ)
n−2(K)

C
(τ)
n−1(K)

+
C

(τ)
n−2(L)

C
(τ)
n−1(L)

.

For the case k = n − 1, note that since C
(τ)
n (K+̃L) = C

(τ)
n (K) =

C
(τ)
n (L) = ωn, Theorem 5.6 reduces to the inequality

C
(τ)
n−1(K+̃L) ≤ C

(τ)
n−1(K) + C

(τ)
n−1(L),

which holds for every pair of star bodies. �
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Theorem 5.7. Let K be a star body and L an n-ball in Rn and
τ ∈ (−1, 1). Then, for all k = 0, . . . , n− 1,

(5.19)
C

(τ)
k (K+̃L)

C
(τ)
k+1(K+̃L)

≤
C

(τ)
k (K)

C
(τ)
k+1(K)

+
C

(τ)
k (L)

C
(τ)
k+1(L)

.

Proof. Let L = tB for t ≥ 0 and define, for every k = 0, 1, . . . , n,

fk(s) = C
(τ)
k (K+̃sB).

From the multilinearity of general mixed chord-integrals, it follows that

fk(s+ ε) = C
(τ)
k (K+̃sB+̃εB)

= C
(τ)
k (K+̃sB) + ε(n− k)C

(τ)
k+1(K+̃sB) +O(ε2)

= fk(s) + ε(n− k)fk+1(s) +O(ε2).

Therefore,
f ′
k(s) = (n− k)fk+1(s).

Apply Theorem 1.2 to get, for k = 0, 1, . . . , n− 2,

C
(τ)
k+1(K+̃sB)2 ≤ C

(τ)
k (K+̃sB)C

(τ)
k+2(K+̃sB),

i.e.,
fk+1(s)

2 ≤ fk(s)fk+2(s).

Define

(5.20) Fk(s) =
fk(s)

fk+1(s)
(k = 0, 1, . . . , n− 2).

It follows that

F ′
k(s) =

f ′
k(s)fk+1(s)− fk(s)f

′
k+1(s)

fk+1(s)2
(5.21)

=
fk+1(s)

2 + (n− k − 1)(fk+1(s)
2 − fk(s)fk+2(s))

fk+1(s)2
≤ 1;

thus,

(5.22) Fk(t) ≤ Fk(0) + t.
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Since

(5.23)
C

(τ)
k (L)

C
(τ)
k+1(L)

=
C

(τ)
k (tB)

C
(τ)
k+1(tB)

= t,

it follows from equations (5.20), (5.22) and (5.23) that, for k =
0, 1, . . . , n− 2,

C
(τ)
k (K+̃L)

C
(τ)
k+1(K+̃L)

≤
C

(τ)
k (K)

C
(τ)
k+1(K)

+
C

(τ)
k (L)

C
(τ)
k+1(L)

.

When k = n− 1, inequality (5.19) always holds as an equality. �
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