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NILPOTENT TOEPLITZ OPERATORS
ON REINHARDT DOMAINS

MEHMET ÇELİK AND YUNUS E. ZEYTUNCU

ABSTRACT. We construct explicit examples of non-
trivial nilpotent Toeplitz operators on Bergman spaces of
certain Reinhardt domains in C2.

1. Introduction.

1.1. Set-up and results. Let Ω be a domain in Cn and A2(Ω) denote
the Bergman space of Ω. The Bergman projection operator BΩ is the
orthogonal projection from L2(Ω) onto A2(Ω). It is an integral operator
with the kernel called the Bergman kernel, denoted by BΩ(z, w). If
{en(z)}∞n=0 is an orthonormal basis for A2(Ω), then the Bergman kernel
can be represented as

BΩ(z, w) =
∞∑

n=0

en(z)en(w).

See [11] for the general theory of Bergman spaces.

For a function u on Ω, the Toeplitz operator Tu : A2(Ω) → A2(Ω)
with the symbol u is defined by Tu(f) = BΩ(uf).

In this note, we are interested in the zero product problem. For two
symbols u1 and u2, if the product Tu1Tu2 is identically zero on A2(Ω),
then can we claim Tu1 or Tu2 is identically zero? This is a non-trivial
problem, and the answer is not even known when Ω is the unit disc.

Here, we indicate the problem has a different flavor in higher dimen-
sions. In particular, we present a family of Reinhardt domains in C2
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on which not only zero products but nilpotent Toeplitz operators of
non-trivial Bergman space Toeplitz operators exist.

Theorem 1.1. There exist Reinhardt domains in C2 on whose Bergman
spaces there are nilpotent Toeplitz operators.

Remark 1.2. It becomes clear in the proof that the operators in
Theorem 1.1 are also of infinite rank.

1.2. History. The zero product problem on the Hardy space is ini-
tiated in [5]. It is completely solved in [3], where authors established
that the product of non-zero Toeplitz operators is never zero. For the
intermediate results, before the complete solution, see [9, 10] and the
references in [3].

In [1], it is shown that, for the Toeplitz operators on the Bergman
space A2(D) of the unit disc D, the analogue of the Brown-Halmos
theorem holds under an additional hypothesis that u and v are bounded
and harmonic. Later, the same result is proven for radial symbols in
[2]. The problem on D, without extra assumptions on the symbols,
remains open.

The higher-dimensional cases are studied in [6, 7, 8], where the
results on the unit disc are extended to the ball or to the polydisk. In
these papers, neither non-trivial zero products nor nilpotent Toeplitz
operators are observed.

In [4], the problem is considered on the Segal-Bargmann space (the
space of square integrable entire functions on Cn with a Gaussian decay
weight) and an example of a non-trivial zero product of three Toeplitz
operators is constructed. However, no nilpotent Toeplitz operator is
observed.

2. Proof of Theorem 1.1. Inspired by the construction in [12],
we define the following family of domains Ωm in C2.

X =

{
(z1, z2) ∈ C2 : |z1| > e, |z2| <

1

|z1| log |z1|

}
,

Ym =

{
(z1, z2) ∈ C2 : |z2| > 2,

∣∣∣∣|z1| − 1

|z2|

∣∣∣∣ < 1

|z2|m

}
,
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Z =
{
(z1, z2) ∈ C2 : |z1| ≤ e, |z2| ≤ 2

}
,

and put
Ωm = X ∪ Ym ∪ Z, m = 1, 2, . . . .

Each Ωm is an unbounded Reinhardt domain with finite volume, see
Figure 1.

Figure 1. Representation of Ωm in absolute space {(r1, r2) ∈ R2 | r1 ≥ 0
and r2 ≥ 0}, under the map τ : (z1, z2) → (|z1|, |z2|).

Lemma 2.1. For a multi-index α = (α1, α2), the monomial zα is in
A2(Ωm) if and only if α2 ≥ α1 > α2 − (m− 1)/2.

Proof. We begin with the calculation on the domain X.∫
X

|zα|2 dV (z) =

∫
|z1|>e

|z1|2α1

∫
|z2|<1/|z1| log |z1|

|z2|2α2 dA(z2) dA(z1)

= 4π2

∫ ∞

e

r2α1+1
1

∫ 1/(r1 log(r1))

0

r2α2+1
2 dr2 dr1



1398 MEHMET ÇELİK AND YUNUS E. ZEYTUNCU

=
4π2

2α2 + 2

∞∫
e

r2α1+1
1

r2α2+2
1 (log(r1))2α2+2

dr1.

We note that, for k > 0, the improper integral∫ ∞

e

1

xm(log x)k
dx

converges if and only if m ≥ 1. Therefore, the last integral above
(where k = 2α2 + 2 > 0 and m = 2(α2 − α1) + 1) is finite if and only
if (α2 − α1) ≥ 0. In other words,

zα ∈ A2(X) ⇐⇒ α2 ≥ α1.(2.1)

We continue with the calculation on domain Ym.∫
Ym

|zα|2 dV (z) =

∫
|z2|>2

|z2|2α2

∫
(1/|z2|)−(1/|z2|m)<|z1|<(1/|z2|)+(1/|z2|m)

· |z1|2α1 dA(z2) dA(z1)

= 4π2

∫ ∞

2

r2α2+1
2

∫ 1/r2+1/rm2

1/r2−1/rm2

r2α1+1
1 dr1dr2

=
4π2

2α1 + 2

∫ ∞

2

r2α2+1
2

[(
1

r2
− 1

rm2

)2α1+2

−
(

1

r2
+

1

rm2

)2α1+2]
dr2.

Since r2 > 2, after using the binomial expansion in the brackets, we
consider the term 1/r2 with the smallest degree as the dominant, which
is 1/r2α1+1+m

2 . The last integral can be estimated by:∫
Ym

|zα|2 dV (z) ≈
∫ ∞

2

r2α2+1
2

1

r2α1+1+m
2

dr2.

The integral on the right is finite if and only if α1 > α2 + (1−m)/2.
In other words,

(2.2) zα ∈ A2(Ym) ⇐⇒ α1 > α2 +
1−m

2
.

Lemma 2.1 follows from equations (2.1) and (2.2). �

Next, we set m ≥ 6, ϕ = z1/z1 and consider Tϕ on A2(Ωm).
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Proposition 2.2. The following properties hold :

(i) Tϕ is not a zero operator.
(ii) Tϕ does not have finite rank.
(iii) Tϕ is a bounded operator.
(iv) Tϕ is a nilpotent operator of degree ⌊m/4⌋, the largest integer less

than or equal to m/4.

Remark 2.3. Once we prove Proposition 2.2, we immediately obtain
Theorem 1.1. However, it will be clear in the proof that the domain
and the operator we present are not unique but part of a family of
domains and operators. We leave exploration of more examples to the
reader.

Before starting the proof of Proposition 2.2, we define the following
lattice for m ≥ 6:

Rm =

{
(α1, α2) ∈ N2 | α2 ≥ α1 > α2 −

m− 1

2

}
=

{
(α1, α2) ∈ N2 | α1 +

m− 1

2
> α2 ≥ α1

}
.

Remark 2.4. Shifting α1 to the right by a number s greater than or
equal to (m− 1)/2 is enough to put the resulting index (α1 + s, α2)
out of Rm, that is, if (α1, α2) ∈ Rm, then for s ≥ (m− 1)/2, we get
(α1 + s, α2) /∈ Rm.

For a multi-index γ = (γ1, . . . , γn) ∈ Nn, we set

c2γ =

∫
Ω

|zγ |2 dV (z).

Then, on a radially symmetric domain Ω that contains the origin, the
set (or a subset of) {zγ/cγ}γ∈Nn gives a complete orthonormal basis
for A2(Ω). Each f ∈ A2(Ω) can be written in the form

f(z) =
∑
γ

fγ
zγ

cγ
,

where the sum converges in A2(Ω), but also uniformly on compact
subset of Ω. For the coefficients fγ , we have fγ = ⟨f(z), zγ/cγ⟩Ω.
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Proof of Proposition 2.2. Consider Tϕ on A2(Ωm) for m ≥ 6. Ωm

is a radially symmetric domain and the monomials with exponents
that reside in Rm form a complete system for A2(Ωm). By using the
orthogonality of monomials we obtain

Tϕ(z
α) = BΩm

(
z1
z1

· zα
)

=
∑

γ∈Rm

⟨
z1
z1

zα,
zγ

cγ

⟩
zγ

cγ
(2.3)

=
c2(α1+1,α2)

c2(α1+2,α2)

zα1+2
1 zα2

2 .

On the above summation only (γ1, γ2) = (α1 + 2, α2) survives. More-
over, there exist multi-indices (α1, α2) in Rm such that (α1 + 2, α2) is
also in Rm. Therefore, there exists zα ∈ A2(Ωm) such that

Tϕ(z
α) =

c2(α1+1,α2)

c2(α1+2,α2)

zα1+2
1 zα2

2 ∈ A2(Ωm)

and Tϕ is a non-zero operator.

For m ≥ 6 and k ∈ N, zk1z
k+2
2 ∈ A2(Ωm) and

Tϕ

(
zk1z

k+2
2

)
=

c2(k+1,k+2)

c2(k+2,k+2)

zk+2
1 zk+2

2 ∈ A2(Ωm).

Hence, the range of the operator Tϕ contains all the monomials of the

form zk+2
1 zk+2

2 , and so the range of Tϕ is infinite-dimensional.

If g(z1, z2) ∈ A2(Ωm), then its series expansion will be

g(z1, z2) =
∞∑

α1=0

α1+r−1∑
α2=α1

gα1α2

zα2
2 zα1

1

c(α1,α2)
=

∞∑
α1=0

α1+r−1∑
α2=α1

⟨
g(z),

zα

cα

⟩
zα

cα
,

where

r =

{
m/2 if m is even,

(m− 1)/2 if m is odd.

The norm of g(z1, z2) is given by

(2.4) ∥g∥2A2(Ωm) =

∞∑
α1=0

α1+r−1∑
α2=α1

|gα1α2 |
2
,
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and the norm of Tϕ(g) is

∥Tϕ(g)∥2A2(Ωm) =

∥∥∥∥ ∞∑
α1=0

α1+r−1∑
α2=α1

⟨
z1
z1

· g(z), z
α

cα

⟩
zα

cα

∥∥∥∥2(2.5)

=

∞∑
α1=0

α1+r−1∑
α2=α1

∣∣∣∣⟨ z1
z1

· g(z), z
α

cα

⟩∣∣∣∣2

=
∞∑

α1=0

α1+r−1∑
α2=α1

∣∣∣∣⟨ z1
z1

·
∑
β

gβ
zβ

cβ
,
zα

cα

⟩∣∣∣∣2

=
∞∑

α1=2

α1+r−1∑
α2=α1

∣∣∣∣⟨ z1
z1

· g(α1−2,α2)z
α1−2
1 zα2

2 ,
zα

cα

⟩∣∣∣∣2,
by orthogonality of monomials

=

∞∑
α1=2

α1+r−1∑
α2=α1

∣∣∣∣g(α1−2,α2)

c(α1−1,α2)

cα

∣∣∣∣2;(2.6)

then we shift the indices

=

∞∑
α1=0

α1+r−1∑
α2=α1

|g̃α1α2 |
2
,(2.7)

where

g̃α1α2 =

{
0 if α1 = α2 or α1 = α2 + 1,

(c(α1+1,α2)/c(α1+2,α2))gα1α2 otherwise.

The ratio c2(α1+1,α2)
/c2(α1+2,α2)

is uniformly bounded by a constant.

Indeed, each integral on X and Ym has a uniform bound from above
(say CX and CYm) because of conditions (2.1) and (2.2). Furthermore,
we compute the integrals on the polydisc Z explicitly and estimate as
follows:

c2(α1+1,α2)

c2(α1+2,α2)

≤ CX + CYm + π(e2α1+4)/(α1 + 2) · π(22α2+2)/(α2 + 1)

π(e2α1+2)/(α1 + 1) · π(22α2+2)/(α2 + 1)

(2.8)

≤ CX + CYm

π2
+ e2 = C.
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This estimate implies

(2.9) |g̃α1α2 |
2 ≤ C · |gα1α2 |

2
, for all (α1, α2) ∈ Rm.

Thus, from equations (2.4), (2.5) and (2.9), it follows that

∥Tϕ(g)∥2A2(Ωm) ≤ C · ∥g∥2A2(Ωm) .

Finally, we calculate the powers of Tϕ:

T 2
ϕ(z

α) = Tϕ · Tϕ(z
α) = Tϕ

(
c2(α1+1,α2)

c2(α1+2,α2)

zα1+2
1 zα2

2

)
(2.10)

=
c2(α1+1,α2)

c2(α1+2,α2)

·
c2(α1+3,α2)

c2(α1+4,α2)

zα1+4
1 zα2

2 .

As for the third power,

(2.11) T 3
ϕ(z

α) =
c2(α1+1,α2)

c2(α1+2,α2)

·
c2(α1+3,α2)

c2(α1+4,α2)

·
c2(α1+5,α2)

c2(α1+6,α2)

zα1+6
1 zα2

2 .

Continuing in this fashion, the kth power of the operator is:

(2.12) T k
ϕ (z

α) =
c2(α1+1,α2)

c2(α1+2,α2)

·
c2(α1+3,α2)

c2(α1+4,α2)

· · ·
c2(α1+2k−1,α2)

c2(α1+2k,α2)

zα1+2k
1 zα2

2 .

In equation (2.12), if 2k < r, then there exists an (α1, α2) ∈ Rm

such that (α1 + 2k, α2) ∈ Rm, see the discussion in Remark 2.4, so

zα1+2k
1 zα2

2 ∈ A2(Ωm) and T k
ϕ ̸≡ 0 on A2(Ωm).

However, in equation (2.12), if 2k ≥ r, then for all (α1, α2) ∈ Rm,

we have (α1+2k, α2) /∈ Rm by Remark 2.4, so we see that zα1+2k
1 zα2

2 /∈
A2(Ωm) and T k

ϕ ≡ 0 on A2(Ωm), that is, Tϕ is a nilpotent operator of

degree k on A2(Ωm). �

We illustrate the main arguments of the proof in the following
example.

Example 2.5. Set m = 9. Then the monomial zα1
1 zα2

2 is in A2(Ω9)
if and only if α1 + 4 > α2 ≥ α1. The exponents of the monomial in
A2(Ω9) are marked on the lattice in Figure 2. It can be noted that Tϕ

acts like a shift on the lattice; it takes (α1, α2 + 2) to (α1 + 2, α2 + 2).
Thus, if Tϕ is applied on any monomial two times, then the exponent
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Figure 2. Representation of the lattice Rm for m = 9 and the action of
Tϕ on Rm.

of the monomial runs out of the lattice R9, that is, if z
α1
1 zα2

2 ∈ A2(Ω9),
then

Tϕ · Tϕ(z
α1
1 zα2

2 ) =
c2(α1+1,α2)

c2(α1+2,α2)

·
c2(α1+3,α2)

c2(α1+4,α2)

zα1+4
1 zα2

2 ̸∈ A2(Ω9),

and so T 2
ϕ ≡ 0 on A2(Ω9).
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