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TWO SIDED α-DERIVATIONS
IN 3-PRIME NEAR-RINGS

M. SAMMAN, L. OUKHTITE, A. RAJI AND A. BOUA

ABSTRACT. The purpose of this paper is to investigate
two sided α-derivations satisfying certain differential identi-
ties on 3-prime near-rings. Some well-known results charac-
terizing commutativity of 3-prime near-rings by derivations
(semi-derivations) have been generalized. Furthermore, ex-
amples proving the necessity of the 3-primeness hypothesis
are given.

1. Introduction. In this paper, N will denote a zero-symmetric left
near-ring. For any x, y ∈ N , the symbol [x, y] will denote the commu-
tator xy−yx, while the symbol x◦y will stand for the anti-commutator
xy + yx. The symbol Z(N) will represent the multiplicative center of
N . Unless otherwise specified, we will use the term near-ring to mean
zero-symmetric left near-ring. According to [6], a near-ring N is said
to be 3-prime if xNy = {0} implies x = 0 or y = 0. N is said to be
2-torsion free if 2x = 0 implies x = 0. An additive mapping δ : N → N
is said to be a derivation if

δ(xy) = xδ(y) + δ(x)y for all x, y ∈ N,

or equivalently, as noted in [14], that

δ(xy) = δ(x)y + xδ(y) for all x, y ∈ N.

An additive mapping d : N → N is called an (α, β)-derivation if there
exist functions α, β : N → N such that

d(xy) = d(x)α(y) + β(x) d(y) for all x, y ∈ N.

Furthermore, an additive mapping d : N → N is called a two sided
α-derivation if d is an (α, 1)-derivation as well as a (1, α)-derivation.
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Moreover, if d commutes with α, then d is called a semi-derivation (see,
[8]). Clearly, every semi-derivation is a two sided α-derivation, but the
converse is not true. Indeed, in Example 2, since dα ̸= αd, then d is
not a semi-derivation; however, d is a two sided α-derivation.

In the case where α = 1, a two sided α-derivation is just a derivation,
but an example due to [1] proves that the converse is not true.

The recent literature contains numerous results on commutativity in
prime and semi-prime rings admitting suitably constrained derivations
and generalized derivations, and several authors have proved compa-
rable results on near-rings. In fact, the relationship between the com-
mutativity of a 3-prime near-ring N and the behavior of a derivation
on N was initiated in 1987 by Bell and Mason [6]. In [13], Hongan
generalizes some of their results by assuming that the commutativity
condition is imposed on an ideal rather than on the wall near-ring. More
recently, Bell et al. [5, 11] generalize several commutativity theorems
for the 3-prime near-ring by treating the case of generalized derivations
satisfying certain algebraic identities involving semigroup ideals. Some
of our results, which deal with conditions on two sided α-derivations,
extend earlier commutativity results involving similar conditions on
derivations and semi-derivations.

2. Two sided α-derivation associated with a homomorphism.
In the following lemmas, α is a function, not necessarily a homomor-
phism.

Lemma 2.1. Let d be a two sided α-derivation. Then, N satisfies the
following partial distributive law :(
d(x)α(y) + xd(y)

)
α(t) = d(x)α(yt) + xd(y)α(t) for all t, x, y ∈ N.

Proof. By the definition of d, we have

d(xyt) = d(xy)α(t) + xyd(t)

=
(
d(x)α(y) + xd(y)

)
α(t) + xy d(t) for all t, x, y ∈ N.

On the other hand,

d(xyt) = d(x)α(yt) + xd(yt)

= d(x)α(yt) + xd(y)α(t) + xy d(t) for all t, x, y ∈ N.
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From the two expressions of d(xyt), we find that

(d(x)α(y)+xd(y))α(t) = d(x)α(yt)+xd(y)α(t) for all t, x, y ∈ N. �

Lemma 2.2. Let N be a near-ring. If N admits an additive mapping d,
then the following statements are equivalent :

(i) d is a (1, α)-derivation.
(ii) d(xy) = α(x) d(y) + d(x)y for all x, y ∈ N .

Proof.

(i) ⇒ (ii). Since d is a (1, α)-derivation, then, for all x, y ∈ N , we
get

d(x(y + y)) = d(x)(y + y) + α(x) d(y + y)

= d(x)y + d(x)y + α(x) d(y) + α(x) d(y) for all x, y ∈ N,

and

d(x(y + y)) = d(xy) + d(xy)

= d(x)y + α(x)d(y) + d(x)y + α(x) d(y) for all x, y ∈ N.

Comparing the two expressions of d(x(y + y)), we conclude that

d(x)y + α(x) d(y) = α(x) d(y) + d(x)y for all x, y ∈ N.

Analogously, we can prove the other implication. �

Theorem 2.3. Let N be a 3-prime near-ring and d a nonzero (1, α)-
derivation associated with a homomorphism α. Then the following
assertions are equivalent :

(i) d(N) ⊆ Z(N);
(ii) d([x, y]) = 0 for all x, y ∈ N ;
(iii) N is a commutative ring.

Proof. It is obvious that (iii) implies both (i) and (ii).

(i) ⇒ (iii). Assume that d(x) ∈ Z(N) for all x ∈ N . Then

d(xy)α(t) = α(t) d(xy) for all t, x, y ∈ N,
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and, using Lemma 2.1, we obtain

(2.1) d(x)α(yt) + xd(y)α(t) = α(t) d(x)α(y) + α(t)xd(y)

for all t, x, y ∈ N . Replacing x by d(x) in (2.1), we get

d2(x)(α(yt)− α(t)α(y)) = 0 for all t, x, y ∈ N,

so that

(2.2) d2(x)N(α(yt)− α(t)α(y)) = {0} for all x, y, t ∈ N.

Since N is 3-prime, then equation (2.2) implies that

(2.3) d2(x) = 0 or α(yt) = α(t)α(y) for all t, x, y ∈ N.

(a) If d2(x) = 0 for all x ∈ N , by definition of d, we have

(2.4) d(x)y + α(x) d(y) = d(x)α(y) + xd(y) for all x, y ∈ N.

Replacing x by d(x) in equation (2.4), we get

α(d(x)) d(y) = d(x) d(y) for all x, y ∈ N,

which, because of d(y) ∈ Z(N), implies that

(2.5) (α(d(x))− d(x)) d(y) = 0 for all x, y ∈ N.

Since N is 3-prime and d ̸= 0, for all x ∈ N , equation (2.5) implies
that α(d(x)) = d(x). In this case, substituting xy for x, we have

α(d(x)y + α(x)d(y)) = d(x)α(y) + xd(y) for all x, y ∈ N,

that is,

d(x)α(y) + α2(x) d(y) = d(x)α(y) + xd(y) for all x, y ∈ N.

Therefore,

(2.6) (α2(x)− x) d(y) = 0 for all x, y ∈ N,

in such a way that α2 = IdN .

Now, replacing t by α(t) in Lemma 2.1, we get

d(xy)t = (d(x)α(y) + xd(y))t = d(x)α(y)t+ xd(y)t
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for all t, x, y ∈ N . By virtue of d(xy)t = td(xy), the above expression
becomes

(2.7) d(x)α(y)t+ xd(y)t = td(x)α(y) + txd(y) for all t, x, y ∈ N.

Substituting x for t and α(y) for y in equation (2.7), we get

d(x) yx = xd(x) y for all x, y ∈ N,

which implies that

(2.8) d(x)N [y, x] = {0} for all x, y ∈ N.

Since N is a 3-prime, then equation (2.8) implies that

(2.9) d(x) = 0 or x ∈ Z(N) for all x ∈ N.

Since d ̸= 0, we choose x0 ∈ N such that d(x0) ̸= 0. Then, x0 ∈ Z(N).
Replacing y by α(y) and x by x0, respectively, in equation (2.7), we
arrive at

d(x0)N [y, t] = {0} for all y, t ∈ N.

By the 3-primeness of N and d(x0) ̸= 0, the last expression gives
N ⊆ Z(N). By [6, Lemma 1.5], we conclude that N is a commutative
ring.

(b) Now assume that

α(yt) = α(t)α(y) for all y, t ∈ N ;

in this case, α(yt) = α(t)α(y) = α(y)α(t). Letting x, y, z ∈ N , we have

d(xyz) = d(xy)z + α(xy) d(z)

= (d(x)y + α(x) d(y))z + α(x)α(y) d(z),

and

d(xyz) = d(x)yz + α(x) d(yz)

= d(x)yz + α(x) d(y)z + α(x)α(y) d(z).

Combining the above expressions of d(xyz) we find that

(2.10) (d(x)y+α(x) d(y))z = d(x)yz+α(x) d(y)z for all x, y, z ∈ N.

Since d(x) ∈ Z(N) for all x ∈ N , then equation (2.10) becomes

(2.11) d(x)yz+α(x) d(y)z = zd(x)y+ zα(x) d(y) for all x, y, z ∈ N,
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which means that

d(x)yz = d(x)zy for all x, y, z ∈ N,

and therefore,

d(x)N [y, z] = {0} for all x, y, z ∈ N.

Since d ̸= 0, the last equation gives N ⊆ Z(N), and thus, N is a
commutative ring by [6, Lemma 1.5].

(ii) ⇒ (iii). We are assuming that

(2.12) d([x, y]) = 0 for all x, y ∈ N.

Substituting xy for y in equation (2.12) and using [x, xy] = x[x, y], we
arrive at

(2.13) d(x)xy = d(x)yx for all x, y ∈ N.

Replacing y by yz in equation (2.13), one can easily verify that
d(x)y[x, z] = 0 for all x, y, z ∈ N , in such a way that

(2.14) d(x)N [x, z] = {0} for all x, z ∈ N.

Once again, using the 3-primeness, equation (2.14) shows that

[x, z] = 0 or d(x) = 0 for all x, z ∈ N.

It follows that, for each fixed x ∈ N , we have

(2.15) x ∈ Z(N) or d(x) = 0.

Letting x0 ∈ Z(N) and using Lemma 2.2, we have

d(x0y) = d(x0)α(y) + x0d(y)

= d(yx0)

= α(y) d(x0) + d(y)x0,

and thus
d(x0)α(y) = α(y) d(x0) for all y ∈ N.

In the case where d(x0) = 0, the last result is satisfied. Then, we get
the following conclusion:

(2.16) d(x)α(y) = α(y) d(x) for all x, y ∈ N.
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According to equation (2.12), we have d(xy) = d(yx) for all x, y ∈ N ,
which, because of Lemma 2.2, yields

(2.17) α(x) d(y) + d(x)y = d(y)α(x) + yd(x) for all x, y ∈ N.

It now follows from equations (2.16) and (2.17) that

d(x)y = yd(x) for all x, y ∈ N,

which implies that d(N) ⊆ Z(N), and case (i) gives the required
result. �

As an application of Theorem 2.3, we obtian the following corollaries.

Corollary 2.4. Let N be a 2-torsion free 3-prime near-ring and d a
nonzero derivation.

(i) [6, Theorem 2]. If d(N) ⊆ Z(N), then N is a commutative
ring.

(ii) [2, Theorem 4.1]. If d[x, y] = 0 for all x, y ∈ N , then N is a
commutative ring.

Corollary 2.5. Let N be a 2-torsion free 3-prime near-ring and d a
nonzero semi-derivation.

(i) [9, Theorem 1]. If d(N) ⊆ Z(N), then N is a commutative
ring.

(ii) [9, Theorem 2]. If d([x, y]) = 0 for all x, y ∈ N , then N is a
commutative ring.

The following example shows the necessity of the 3-primeness in the
previous theorems.

Example 2.6. Let S be a 2-torsion free near-ring. Let us define N
and d, α, F : N → N by:

N =


0 0 0
x 0 y
0 0 0

| x, y ∈ S

 ,
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d

0 0 0
x 0 y
0 0 0

 =

0 0 0
x 0 0
0 0 0


α

0 0 0
x 0 y
0 0 0

 =

0 0 0
0 0 y
0 0 0

 .

It is clear that N is not a 3-prime near-ring and d is a nonzero two
sided α-derivation satisfying:

(i) d(N) ⊆ Z(N),
(ii) d([A,B]) = 0 for all A,B ∈ N ,

but, since the addition in N is not commutative, then N cannot be a
commutative ring.

3. Two sided α-derivation associated with a function. In
this section, we treat the general case where α is a function and not
necessarily a homomorphism.

Theorem 3.1. Let N be a 3-prime near-ring. If N admits a two sided
α-derivation d such that d([x, y]) = [x, y] for all x, y ∈ N , then N is a
commutative ring or d = −α+ Id.

Proof. Suppose that

(3.1) d([x, y]) = [x, y] for all x, y ∈ N.

Substituting xy for y in equation (3.1), one can easily verify that

(3.2) d(x)[x, y] + α(x)[x, y] = x[x, y] for all x, y ∈ N.

Replacing x by [x, t] in equation (3.2), we obtain

(3.3) α([x, t])[x, t]y = α([x, t])y[x, t] for all t, x, y ∈ N.

Substituting yz for y in (3.3), we get

α([x, t])yz[x, t] = α([x, t])y[x, t]z for all t, x, y, z ∈ N,

and therefore, α([x, t])y[[x, t], z] = 0, which can be rewritten as

(3.4) α([x, t])N
[
[x, t], z

]
= {0} for all t, x, z ∈ N.
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In view of the 3-primeness of N , equation (3.4) yields

(3.5) α([x, t]) = 0 or [x, t] ∈ Z(N) for all t, x ∈ N.

If [x, t] ∈ Z(N) for all x, t ∈ N , then replacing t by xt and using the
3-primeness of N , we find that [x, t] = 0 for all x, t ∈ N . According
to [6, Lemma 1.5], we obtain the conclusion that N is a commutative
ring.

Assume that there exist x, t ∈ N such that [x, t] /∈ Z(N). In
particular, [x, t] ̸= 0 and α([x, t]) = 0, so that

(3.6) d([x, t]zy) = [x, t]zy for all z, y ∈ N.

On the other hand,

d([x, t]zy) = d([x, t]z)α(y) + [x, t]zd(y)

= [x, t]zα(y) + [x, t]zd(y) for all z, y ∈ N.(3.7)

Now, combining equation (3.6) with equation (3.7), we conclude that

(3.8) [x, t]zα(y) + [x, t]zd(y) = [x, t]zy for all z, y ∈ N.

Substituting [u, v] for y in equation (3.8), we obtain

[x, t]zα([u, v]) = 0 for all u, v, z ∈ N,

so that,

(3.9) [x, t]Nα([u, v]) = {0} for all u, v ∈ N.

By the 3-primeness of N , equation (3.9) shows that

α([u, v]) = 0 for all u, v ∈ N.

Computing d([u, v]zy) as in equations (3.6) and (3.7), we obtain

[u, v]z(α(y) + d(y)− y) = 0 for all u, v, z, y ∈ N,

which implies that

(3.10) [u, v]N(α(y) + d(y)− y) = {0} for all u, v, y ∈ N.

By the 3-primeness of N , equation (3.10) shows that

(3.11) [u, v] = 0 or α(y) + d(y)− y = 0 for all u, v, y ∈ N.

According to [6, Lemma 1.5], equation (3.11) assures that N is a
commutative ring or d = −α+ Id. �
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As an application of Theorem 3.1, we obtain the following corollaries.

Corollary 3.2. [10, Theorem 1]. If R is a prime ring admitting a
derivation d satisfying d([x, y]) = [x, y] for all x, y ∈ R, then R is
commutative.

Corollary 3.3. [8, Theorem 2.2]. Let N be a 3-prime near-ring. If
N admits a nonzero derivation d such that d([x, y]) = [x, y] for all
x, y ∈ N , then N is a commutative ring.

Corollary 3.4. Let N be a 3-prime near-ring. If N admits a nonzero
semi-derivation d such that d([x, y]) = [x, y] for all x, y ∈ N , then N
is a commutative ring or d = −α+ Id.

Theorem 3.5. Let N be a 2-torsion free 3-prime near-ring. There
is no nonzero two sided α-derivation d such that d(x ◦ y) = 0 for all
x, y ∈ N .

Proof. Assume that N admits a nonzero two sided α-derivation d,
such that

(3.12) d(x ◦ y) = 0 for all x, y ∈ N.

Replacing y by xy in equation (3.12), because of x ◦ xy = x(x ◦ y), we
get d(x)(x ◦ y) = 0, which means that

(3.13) d(x)xy = d(x)y(−x) for all x, y ∈ N.

Substituting yz for y and −x for x in (3.13), we obtain d(−x)y(xz −
zx) = 0 for all x, y, z ∈ N , and therefore,

(3.14) d(−x)N(xz − zx) = {0} for all x, z ∈ N.

In light of the 3-primeness of N , equation (3.14) yields

(3.15) d(x) = 0 or x ∈ Z(N) for all x ∈ N.

Let x ∈ Z(N); since N is 2-torsion free, then equation (3.12) forces
d(xy) = 0 so that

(3.16) d(x)y + α(x) d(y) = 0 for all y ∈ N.
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Substituting y ◦ z for y in equation (3.16), we get

(3.17) d(x)(y ◦ z) = 0 for all y, z ∈ N.

Replacing z by zt and y by −y in equation (3.17), one can easily see
that

(3.18) d(x)N [y, t] = {0} for all t, y ∈ N.

By the 3-primeness of N , equation (3.18) shows that either d(x) = 0
or N is a commutative ring by [6, Lemma 1.5]. But, in the latter case,
our hypothesis reduces to d(xy) = 0 for all x, y ∈ N and, replacing
y by yz in this equation, we get d(x)Nz = {0} for all x, z ∈ N ,
which yields d = 0. Hence, in both cases, we conclude that d = 0,
a contradiction. �

Remark 3.6. Ashraf and Ali [2, Corollary 4.1] showed that a 2-torsion
free prime near-ring N must be commutative if it admits a derivation d
where d satisfies d(x ◦ y) = 0 for all x, y ∈ N . However, this result
is not true. Indeed, the existence of a derivation satisfying the above
condition does not assure the commutativity of N . Our aim in the
following corollary is to give the corrected result.

Corollary 3.7. Let N be a 2-torsion free prime near-ring. If there
exists a derivation d of N satisfying d(x ◦ y) = 0 for all x, y ∈ N , then
d = 0.

Corollary 3.8. Let N be a 2-torsion free 3-prime near-ring. Then
there exists no nonzero semi-derivation d of N satisfying d(x ◦ y) = 0
for all x, y ∈ N .

In [8, Theorem 2.4], it is proved that a 3-prime near-ring N must be
a commutative ring if it admits a derivation d such that d(x◦y) = x◦y
for all x, y ∈ N , but this result is less precise. The following result
treats the above condition in a more general situation.

Theorem 3.9. Let N be a 2-torsion free 3-prime near-ring admitting
a two sided α-derivation d. If d(x ◦ y) = x ◦ y for all x, y ∈ N , then
d = −α+ Id.
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Proof. We assume that

(3.19) d(x ◦ y) = x ◦ y for all x, y ∈ N.

Replacing y by xy in equation (3.19), it is obvious to see that

(3.20) d(x)(x ◦ y) + α(x)(x ◦ y) = x(x ◦ y) for all x, y ∈ N.

Substituting x ◦ t for x in equation (3.20), we obtain

(3.21) α(x ◦ t)((x ◦ t) ◦ y) = 0 for all t, x, y ∈ N,

which can be rewritten as α(x ◦ t)(x ◦ t)y + α(x ◦ t)y(x ◦ t) = 0 for all
t, x, y ∈ N . Accordingly,

α(x ◦ t)(x ◦ t)y = −α(x ◦ t)y(x ◦ t)
= α(x ◦ t)y(−(x ◦ t)) for all t, x, y ∈ N.(3.22)

Putting yz instead of y in equation (3.22), we find that

α(x ◦ t)(x ◦ t)yz = α(x ◦ t)y(−(x ◦ t))z
= α(x ◦ t)yz(−(x ◦ t)) for all t, x, y, z ∈ N.

Consequently,

α(x ◦ t)y[−(x ◦ t), z] = 0 for all t, x, y, z ∈ N,

so that

(3.23) α(x ◦ t)N [−(x ◦ t), z] = {0} for all t, x, z ∈ N.

In light of the 3-primeness of N , equation (3.23) shows that

(3.24) α(x ◦ t) = 0 or − (x ◦ t) ∈ Z(N)

Suppose that there exist x, t ∈ N such that −(x ◦ t) ∈ Z(N), and set
−(x ◦ t) = u. From equation (3.19), it follows that d(u ◦ k) = u ◦ k
which, because of d(u) = u, yields

α(u)d(k) + d(u)k + α(u)d(k) = ku for all k ∈ N.

In view of
d(u)k + α(u)d(k) = α(u)d(k) + d(u)k,

we then conclude that α(u)d(k) = 0 for all k ∈ N , so that

(3.25) α(u)Nd(k) = 0 for all k ∈ N.
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If d = 0, then our hypothesis reduces to x ◦ y = 0 for all x, y ∈ N
which leads to N = {0}, a contradiction. Thus, equation (3.25) forces
α(u) = 0. Therefore, equation (3.24) reduces to

(3.26) α(x ◦ t) = 0 or α(−(x ◦ t)) = 0 for all x, t ∈ N.

If there exist x, t ∈ N such that α(−(x ◦ t)) = 0, then once again
setting u = −(x ◦ t), we get

d(ukv) = d(u)kv + α(u)d(kv) = ukv for all k, v ∈ N.

On the other hand,

d(ukv) = d(uk)α(v) + ukd(v) = ukα(v) + ukd(v),

and, comparing the last two expressions, we get

ukα(v) + ukd(v) = ukv for all k, v ∈ N,

which implies that

uN(α(v) + d(v)− v) = {0} for all v ∈ N.

By the 3-primeness of N , we conclude that

x ◦ t = 0 or α(v) + d(v)− v = 0 for all v ∈ N.

Similarly, if there exist x, t ∈ N such that α(x ◦ t) = 0, then using
similar techniques as above, we find that

x ◦ t = 0 or α(v) + d(v)− v = 0 for all v ∈ N.

Now, if we assume that x ◦ t = 0 for all x, t ∈ N , then t2 = 0 for all
t ∈ N , and hence,

0 = (x ◦ t) = txt for all x, t ∈ N,

that is, tNt = {0} for all t ∈ N , which forces N = {0}, a contradiction.
Consequently, equation (3.26) shows that d = −α+ Id. �

Using Theorem 3.9, the corrected version of [8, Theorem 2.4] should
be as follows.

Corollary 3.10. Let N be a 2-torsion free 3-prime near-ring. There
is no derivation d of N such that d(x ◦ y) = x ◦ y for all x, y ∈ N .
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Corollary 3.11. Let N be a 2-torsion free 3-prime near-ring admitting
a semi-derivation d. If d(x◦y) = x◦y for all x, y ∈ N , then d = −α+Id.

The following example shows the necessity of the 3-primeness in the
previous theorems.

Example 3.12. Let S be a 2-torsion free near-ring. Let us define N ,
d and α : N → N by:

N =


0 0 x
0 0 y
0 0 0

| x, y ∈ S


d

0 0 x
0 0 y
0 0 0

 =

0 0 x
0 0 0
0 0 0

 ,

α

0 0 x
0 0 y
0 0 0

 =

0 0 y
0 0 y
0 0 0

 .

It is clear that N is a non 3-prime near-ring and d is a nonzero two
sided α-derivation such that:

(i) d([A,B]) = [A,B];
(ii) d(A ◦B) = 0;
(iii) d(A ◦B) = A ◦B;

for all A,B ∈ N , but neither d = −α+ Id nor N is a commutative ring
because the addition is not commutative.
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