TWO SIDED α-DERIVATIONS
 IN 3-PRIME NEAR-RINGS

M. SAMMAN, L. OUKHTITE, A. RAJI AND A. BOUA

Abstract

The purpose of this paper is to investigate two sided α-derivations satisfying certain differential identities on 3-prime near-rings. Some well-known results characterizing commutativity of 3 -prime near-rings by derivations (semi-derivations) have been generalized. Furthermore, examples proving the necessity of the 3-primeness hypothesis are given.

1. Introduction. In this paper, N will denote a zero-symmetric left near-ring. For any $x, y \in N$, the symbol $[x, y]$ will denote the commutator $x y-y x$, while the symbol $x \circ y$ will stand for the anti-commutator $x y+y x$. The symbol $Z(N)$ will represent the multiplicative center of N. Unless otherwise specified, we will use the term near-ring to mean zero-symmetric left near-ring. According to [6], a near-ring N is said to be 3 -prime if $x N y=\{0\}$ implies $x=0$ or $y=0 . N$ is said to be 2 -torsion free if $2 x=0$ implies $x=0$. An additive mapping $\delta: N \rightarrow N$ is said to be a derivation if

$$
\delta(x y)=x \delta(y)+\delta(x) y \quad \text { for all } x, y \in N,
$$

or equivalently, as noted in [14], that

$$
\delta(x y)=\delta(x) y+x \delta(y) \quad \text { for all } x, y \in N
$$

An additive mapping $d: N \rightarrow N$ is called an (α, β)-derivation if there exist functions $\alpha, \beta: N \rightarrow N$ such that

$$
d(x y)=d(x) \alpha(y)+\beta(x) d(y) \quad \text { for all } x, y \in N .
$$

Furthermore, an additive mapping $d: N \rightarrow N$ is called a two sided α-derivation if d is an ($\alpha, 1$)-derivation as well as a (1, α)-derivation.

[^0]Moreover, if d commutes with α, then d is called a semi-derivation (see, [8]). Clearly, every semi-derivation is a two sided α-derivation, but the converse is not true. Indeed, in Example 2, since $d \alpha \neq \alpha d$, then d is not a semi-derivation; however, d is a two sided α-derivation.

In the case where $\alpha=1$, a two sided α-derivation is just a derivation, but an example due to [1] proves that the converse is not true.

The recent literature contains numerous results on commutativity in prime and semi-prime rings admitting suitably constrained derivations and generalized derivations, and several authors have proved comparable results on near-rings. In fact, the relationship between the commutativity of a 3-prime near-ring N and the behavior of a derivation on N was initiated in 1987 by Bell and Mason [6]. In [13], Hongan generalizes some of their results by assuming that the commutativity condition is imposed on an ideal rather than on the wall near-ring. More recently, Bell et al. [5, 11] generalize several commutativity theorems for the 3-prime near-ring by treating the case of generalized derivations satisfying certain algebraic identities involving semigroup ideals. Some of our results, which deal with conditions on two sided α-derivations, extend earlier commutativity results involving similar conditions on derivations and semi-derivations.
2. Two sided α-derivation associated with a homomorphism. In the following lemmas, α is a function, not necessarily a homomorphism.

Lemma 2.1. Let d be a two sided α-derivation. Then, N satisfies the following partial distributive law:

$$
(d(x) \alpha(y)+x d(y)) \alpha(t)=d(x) \alpha(y t)+x d(y) \alpha(t) \quad \text { for all } t, x, y \in N
$$

Proof. By the definition of d, we have

$$
\begin{aligned}
d(x y t) & =d(x y) \alpha(t)+x y d(t) \\
& =(d(x) \alpha(y)+x d(y)) \alpha(t)+x y d(t) \quad \text { for all } t, x, y \in N .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
d(x y t) & =d(x) \alpha(y t)+x d(y t) \\
& =d(x) \alpha(y t)+x d(y) \alpha(t)+x y d(t) \quad \text { for all } t, x, y \in N
\end{aligned}
$$

From the two expressions of $d(x y t)$, we find that

$$
(d(x) \alpha(y)+x d(y)) \alpha(t)=d(x) \alpha(y t)+x d(y) \alpha(t) \quad \text { for all } t, x, y \in N
$$

Lemma 2.2. Let N be a near-ring. If N admits an additive mapping d, then the following statements are equivalent:
(i) d is a $(1, \alpha)$-derivation.
(ii) $d(x y)=\alpha(x) d(y)+d(x) y$ for all $x, y \in N$.

Proof.
(i) \Rightarrow (ii). Since d is a $(1, \alpha)$-derivation, then, for all $x, y \in N$, we get

$$
\begin{aligned}
d(x(y+y)) & =d(x)(y+y)+\alpha(x) d(y+y) \\
& =d(x) y+d(x) y+\alpha(x) d(y)+\alpha(x) d(y) \quad \text { for all } x, y \in N
\end{aligned}
$$

and

$$
\begin{aligned}
d(x(y+y)) & =d(x y)+d(x y) \\
& =d(x) y+\alpha(x) d(y)+d(x) y+\alpha(x) d(y) \quad \text { for all } x, y \in N
\end{aligned}
$$

Comparing the two expressions of $d(x(y+y))$, we conclude that

$$
d(x) y+\alpha(x) d(y)=\alpha(x) d(y)+d(x) y \quad \text { for all } x, y \in N
$$

Analogously, we can prove the other implication.

Theorem 2.3. Let N be a 3 -prime near-ring and d a nonzero ($1, \alpha$)derivation associated with a homomorphism α. Then the following assertions are equivalent:
(i) $d(N) \subseteq Z(N)$;
(ii) $d([x, y])=0$ for all $x, y \in N$;
(iii) N is a commutative ring.

Proof. It is obvious that (iii) implies both (i) and (ii).
(i) \Rightarrow (iii). Assume that $d(x) \in Z(N)$ for all $x \in N$. Then

$$
d(x y) \alpha(t)=\alpha(t) d(x y) \quad \text { for all } t, x, y \in N,
$$

and, using Lemma 2.1, we obtain

$$
\begin{equation*}
d(x) \alpha(y t)+x d(y) \alpha(t)=\alpha(t) d(x) \alpha(y)+\alpha(t) x d(y) \tag{2.1}
\end{equation*}
$$

for all $t, x, y \in N$. Replacing x by $d(x)$ in (2.1), we get

$$
d^{2}(x)(\alpha(y t)-\alpha(t) \alpha(y))=0 \quad \text { for all } t, x, y \in N
$$

so that

$$
\begin{equation*}
d^{2}(x) N(\alpha(y t)-\alpha(t) \alpha(y))=\{0\} \quad \text { for all } x, y, t \in N \tag{2.2}
\end{equation*}
$$

Since N is 3-prime, then equation (2.2) implies that

$$
\begin{equation*}
d^{2}(x)=0 \quad \text { or } \quad \alpha(y t)=\alpha(t) \alpha(y) \quad \text { for all } t, x, y \in N \tag{2.3}
\end{equation*}
$$

(a) If $d^{2}(x)=0$ for all $x \in N$, by definition of d, we have

$$
\begin{equation*}
d(x) y+\alpha(x) d(y)=d(x) \alpha(y)+x d(y) \quad \text { for all } x, y \in N \tag{2.4}
\end{equation*}
$$

Replacing x by $d(x)$ in equation (2.4), we get

$$
\alpha(d(x)) d(y)=d(x) d(y) \quad \text { for all } x, y \in N
$$

which, because of $d(y) \in Z(N)$, implies that

$$
\begin{equation*}
(\alpha(d(x))-d(x)) d(y)=0 \quad \text { for all } x, y \in N \tag{2.5}
\end{equation*}
$$

Since N is 3 -prime and $d \neq 0$, for all $x \in N$, equation (2.5) implies that $\alpha(d(x))=d(x)$. In this case, substituting $x y$ for x, we have

$$
\alpha(d(x) y+\alpha(x) d(y))=d(x) \alpha(y)+x d(y) \quad \text { for all } x, y \in N
$$

that is,

$$
d(x) \alpha(y)+\alpha^{2}(x) d(y)=d(x) \alpha(y)+x d(y) \quad \text { for all } x, y \in N
$$

Therefore,

$$
\begin{equation*}
\left(\alpha^{2}(x)-x\right) d(y)=0 \quad \text { for all } x, y \in N \tag{2.6}
\end{equation*}
$$

in such a way that $\alpha^{2}=I d_{N}$.
Now, replacing t by $\alpha(t)$ in Lemma 2.1, we get

$$
d(x y) t=(d(x) \alpha(y)+x d(y)) t=d(x) \alpha(y) t+x d(y) t
$$

for all $t, x, y \in N$. By virtue of $d(x y) t=t d(x y)$, the above expression becomes

$$
\begin{equation*}
d(x) \alpha(y) t+x d(y) t=t d(x) \alpha(y)+t x d(y) \quad \text { for all } t, x, y \in N \tag{2.7}
\end{equation*}
$$

Substituting x for t and $\alpha(y)$ for y in equation (2.7), we get

$$
d(x) y x=x d(x) y \quad \text { for all } x, y \in N,
$$

which implies that

$$
\begin{equation*}
d(x) N[y, x]=\{0\} \quad \text { for all } x, y \in N . \tag{2.8}
\end{equation*}
$$

Since N is a 3 -prime, then equation (2.8) implies that

$$
\begin{equation*}
d(x)=0 \quad \text { or } \quad x \in Z(N) \text { for all } x \in N \tag{2.9}
\end{equation*}
$$

Since $d \neq 0$, we choose $x_{0} \in N$ such that $d\left(x_{0}\right) \neq 0$. Then, $x_{0} \in Z(N)$. Replacing y by $\alpha(y)$ and x by x_{0}, respectively, in equation (2.7), we arrive at

$$
d\left(x_{0}\right) N[y, t]=\{0\} \quad \text { for all } y, t \in N .
$$

By the 3-primeness of N and $d\left(x_{0}\right) \neq 0$, the last expression gives $N \subseteq Z(N)$. By [6, Lemma 1.5], we conclude that N is a commutative ring.
(b) Now assume that

$$
\alpha(y t)=\alpha(t) \alpha(y) \quad \text { for all } y, t \in N
$$

in this case, $\alpha(y t)=\alpha(t) \alpha(y)=\alpha(y) \alpha(t)$. Letting $x, y, z \in N$, we have

$$
\begin{aligned}
d(x y z) & =d(x y) z+\alpha(x y) d(z) \\
& =(d(x) y+\alpha(x) d(y)) z+\alpha(x) \alpha(y) d(z)
\end{aligned}
$$

and

$$
\begin{aligned}
d(x y z) & =d(x) y z+\alpha(x) d(y z) \\
& =d(x) y z+\alpha(x) d(y) z+\alpha(x) \alpha(y) d(z)
\end{aligned}
$$

Combining the above expressions of $d(x y z)$ we find that (2.10) $(d(x) y+\alpha(x) d(y)) z=d(x) y z+\alpha(x) d(y) z \quad$ for all $x, y, z \in N$.

Since $d(x) \in Z(N)$ for all $x \in N$, then equation (2.10) becomes
(2.11) $d(x) y z+\alpha(x) d(y) z=z d(x) y+z \alpha(x) d(y) \quad$ for all $x, y, z \in N$,
which means that

$$
d(x) y z=d(x) z y \quad \text { for all } x, y, z \in N
$$

and therefore,

$$
d(x) N[y, z]=\{0\} \quad \text { for all } x, y, z \in N .
$$

Since $d \neq 0$, the last equation gives $N \subseteq Z(N)$, and thus, N is a commutative ring by [6, Lemma 1.5].
(ii) \Rightarrow (iii). We are assuming that

$$
\begin{equation*}
d([x, y])=0 \quad \text { for all } x, y \in N \tag{2.12}
\end{equation*}
$$

Substituting $x y$ for y in equation (2.12) and using $[x, x y]=x[x, y]$, we arrive at

$$
\begin{equation*}
d(x) x y=d(x) y x \quad \text { for all } x, y \in N \tag{2.13}
\end{equation*}
$$

Replacing y by $y z$ in equation (2.13), one can easily verify that $d(x) y[x, z]=0$ for all $x, y, z \in N$, in such a way that

$$
\begin{equation*}
d(x) N[x, z]=\{0\} \quad \text { for all } x, z \in N . \tag{2.14}
\end{equation*}
$$

Once again, using the 3 -primeness, equation (2.14) shows that

$$
[x, z]=0 \quad \text { or } \quad d(x)=0 \text { for all } x, z \in N .
$$

It follows that, for each fixed $x \in N$, we have

$$
\begin{equation*}
x \in Z(N) \quad \text { or } \quad d(x)=0 \tag{2.15}
\end{equation*}
$$

Letting $x_{0} \in Z(N)$ and using Lemma 2.2, we have

$$
\begin{aligned}
d\left(x_{0} y\right) & =d\left(x_{0}\right) \alpha(y)+x_{0} d(y) \\
& =d\left(y x_{0}\right) \\
& =\alpha(y) d\left(x_{0}\right)+d(y) x_{0}
\end{aligned}
$$

and thus

$$
d\left(x_{0}\right) \alpha(y)=\alpha(y) d\left(x_{0}\right) \quad \text { for all } y \in N
$$

In the case where $d\left(x_{0}\right)=0$, the last result is satisfied. Then, we get the following conclusion:

$$
\begin{equation*}
d(x) \alpha(y)=\alpha(y) d(x) \quad \text { for all } x, y \in N \tag{2.16}
\end{equation*}
$$

According to equation (2.12), we have $d(x y)=d(y x)$ for all $x, y \in N$, which, because of Lemma 2.2, yields

$$
\begin{equation*}
\alpha(x) d(y)+d(x) y=d(y) \alpha(x)+y d(x) \quad \text { for all } x, y \in N \tag{2.17}
\end{equation*}
$$

It now follows from equations (2.16) and (2.17) that

$$
d(x) y=y d(x) \quad \text { for all } x, y \in N
$$

which implies that $d(N) \subseteq Z(N)$, and case (i) gives the required result.

As an application of Theorem 2.3, we obtian the following corollaries.

Corollary 2.4. Let N be a 2-torsion free 3 -prime near-ring and d a nonzero derivation.
(i) [6, Theorem 2]. If $d(N) \subseteq Z(N)$, then N is a commutative ring.
(ii) $[\mathbf{2}$, Theorem 4.1]. If $d[x, y]=0$ for all $x, y \in N$, then N is a commutative ring.

Corollary 2.5. Let N be a 2-torsion free 3 -prime near-ring and d a nonzero semi-derivation.
(i) [9, Theorem 1]. If $d(N) \subseteq Z(N)$, then N is a commutative ring.
(ii) $[\mathbf{9}$, Theorem 2]. If $d([x, y])=0$ for all $x, y \in N$, then N is a commutative ring.

The following example shows the necessity of the 3 -primeness in the previous theorems.

Example 2.6. Let S be a 2-torsion free near-ring. Let us define N and $d, \alpha, F: N \rightarrow N$ by:

$$
N=\left\{\left.\left(\begin{array}{lll}
0 & 0 & 0 \\
x & 0 & y \\
0 & 0 & 0
\end{array}\right) \right\rvert\, x, y \in S\right\}
$$

$$
\begin{aligned}
d\left(\begin{array}{lll}
0 & 0 & 0 \\
x & 0 & y \\
0 & 0 & 0
\end{array}\right) & =\left(\begin{array}{lll}
0 & 0 & 0 \\
x & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\alpha\left(\begin{array}{lll}
0 & 0 & 0 \\
x & 0 & y \\
0 & 0 & 0
\end{array}\right) & =\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & y \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

It is clear that N is not a 3 -prime near-ring and d is a nonzero two sided α-derivation satisfying:
(i) $d(N) \subseteq Z(N)$,
(ii) $d([A, B])=0$ for all $A, B \in N$,
but, since the addition in N is not commutative, then N cannot be a commutative ring.
3. Two sided α-derivation associated with a function. In this section, we treat the general case where α is a function and not necessarily a homomorphism.

Theorem 3.1. Let N be a 3-prime near-ring. If N admits a two sided α-derivation d such that $d([x, y])=[x, y]$ for all $x, y \in N$, then N is a commutative ring or $d=-\alpha+I d$.

Proof. Suppose that

$$
\begin{equation*}
d([x, y])=[x, y] \quad \text { for all } x, y \in N . \tag{3.1}
\end{equation*}
$$

Substituting $x y$ for y in equation (3.1), one can easily verify that

$$
\begin{equation*}
d(x)[x, y]+\alpha(x)[x, y]=x[x, y] \quad \text { for all } x, y \in N . \tag{3.2}
\end{equation*}
$$

Replacing x by $[x, t]$ in equation (3.2), we obtain

$$
\begin{equation*}
\alpha([x, t])[x, t] y=\alpha([x, t]) y[x, t] \quad \text { for all } t, x, y \in N . \tag{3.3}
\end{equation*}
$$

Substituting $y z$ for y in (3.3), we get

$$
\alpha([x, t]) y z[x, t]=\alpha([x, t]) y[x, t] z \quad \text { for all } t, x, y, z \in N,
$$

and therefore, $\alpha([x, t]) y[[x, t], z]=0$, which can be rewritten as

$$
\begin{equation*}
\alpha([x, t]) N[[x, t], z]=\{0\} \quad \text { for all } t, x, z \in N . \tag{3.4}
\end{equation*}
$$

In view of the 3 -primeness of N, equation (3.4) yields

$$
\begin{equation*}
\alpha([x, t])=0 \quad \text { or } \quad[x, t] \in Z(N) \quad \text { for all } t, x \in N \tag{3.5}
\end{equation*}
$$

If $[x, t] \in Z(N)$ for all $x, t \in N$, then replacing t by $x t$ and using the 3 -primeness of N, we find that $[x, t]=0$ for all $x, t \in N$. According to [6, Lemma 1.5], we obtain the conclusion that N is a commutative ring.

Assume that there exist $x, t \in N$ such that $[x, t] \notin Z(N)$. In particular, $[x, t] \neq 0$ and $\alpha([x, t])=0$, so that

$$
\begin{equation*}
d([x, t] z y)=[x, t] z y \quad \text { for all } z, y \in N \tag{3.6}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
d([x, t] z y) & =d([x, t] z) \alpha(y)+[x, t] z d(y) \\
& =[x, t] z \alpha(y)+[x, t] z d(y) \quad \text { for all } z, y \in N . \tag{3.7}
\end{align*}
$$

Now, combining equation (3.6) with equation (3.7), we conclude that

$$
\begin{equation*}
[x, t] z \alpha(y)+[x, t] z d(y)=[x, t] z y \quad \text { for all } z, y \in N . \tag{3.8}
\end{equation*}
$$

Substituting $[u, v]$ for y in equation (3.8), we obtain

$$
[x, t] z \alpha([u, v])=0 \quad \text { for all } u, v, z \in N
$$

so that,

$$
\begin{equation*}
[x, t] N \alpha([u, v])=\{0\} \quad \text { for all } u, v \in N \tag{3.9}
\end{equation*}
$$

By the 3 -primeness of N, equation (3.9) shows that

$$
\alpha([u, v])=0 \quad \text { for all } u, v \in N .
$$

Computing $d([u, v] z y)$ as in equations (3.6) and (3.7), we obtain

$$
[u, v] z(\alpha(y)+d(y)-y)=0 \quad \text { for all } u, v, z, y \in N
$$

which implies that

$$
\begin{equation*}
[u, v] N(\alpha(y)+d(y)-y)=\{0\} \quad \text { for all } u, v, y \in N \tag{3.10}
\end{equation*}
$$

By the 3-primeness of N, equation (3.10) shows that

$$
\begin{equation*}
[u, v]=0 \quad \text { or } \quad \alpha(y)+d(y)-y=0 \quad \text { for all } u, v, y \in N \tag{3.11}
\end{equation*}
$$

According to [6, Lemma 1.5], equation (3.11) assures that N is a commutative ring or $d=-\alpha+I d$.

As an application of Theorem 3.1, we obtain the following corollaries.

Corollary 3.2. [10, Theorem 1]. If R is a prime ring admitting a derivation d satisfying $d([x, y])=[x, y]$ for all $x, y \in R$, then R is commutative.

Corollary 3.3. [8, Theorem 2.2]. Let N be a 3 -prime near-ring. If N admits a nonzero derivation d such that $d([x, y])=[x, y]$ for all $x, y \in N$, then N is a commutative ring.

Corollary 3.4. Let N be a 3 -prime near-ring. If N admits a nonzero semi-derivation d such that $d([x, y])=[x, y]$ for all $x, y \in N$, then N is a commutative ring or $d=-\alpha+I d$.

Theorem 3.5. Let N be a 2-torsion free 3-prime near-ring. There is no nonzero two sided α-derivation d such that $d(x \circ y)=0$ for all $x, y \in N$.

Proof. Assume that N admits a nonzero two sided α-derivation d, such that

$$
\begin{equation*}
d(x \circ y)=0 \quad \text { for all } x, y \in N \tag{3.12}
\end{equation*}
$$

Replacing y by $x y$ in equation (3.12), because of $x \circ x y=x(x \circ y)$, we get $d(x)(x \circ y)=0$, which means that

$$
\begin{equation*}
d(x) x y=d(x) y(-x) \quad \text { for all } x, y \in N \tag{3.13}
\end{equation*}
$$

Substituting $y z$ for y and $-x$ for x in (3.13), we obtain $d(-x) y(x z-$ $z x)=0$ for all $x, y, z \in N$, and therefore,

$$
\begin{equation*}
d(-x) N(x z-z x)=\{0\} \quad \text { for all } x, z \in N \tag{3.14}
\end{equation*}
$$

In light of the 3 -primeness of N, equation (3.14) yields

$$
\begin{equation*}
d(x)=0 \quad \text { or } \quad x \in Z(N) \quad \text { for all } x \in N \tag{3.15}
\end{equation*}
$$

Let $x \in Z(N)$; since N is 2-torsion free, then equation (3.12) forces $d(x y)=0$ so that

$$
\begin{equation*}
d(x) y+\alpha(x) d(y)=0 \quad \text { for all } y \in N \tag{3.16}
\end{equation*}
$$

Substituting $y \circ z$ for y in equation (3.16), we get

$$
\begin{equation*}
d(x)(y \circ z)=0 \quad \text { for all } y, z \in N \tag{3.17}
\end{equation*}
$$

Replacing z by $z t$ and y by $-y$ in equation (3.17), one can easily see that

$$
\begin{equation*}
d(x) N[y, t]=\{0\} \quad \text { for all } t, y \in N . \tag{3.18}
\end{equation*}
$$

By the 3-primeness of N, equation (3.18) shows that either $d(x)=0$ or N is a commutative ring by [6, Lemma 1.5]. But, in the latter case, our hypothesis reduces to $d(x y)=0$ for all $x, y \in N$ and, replacing y by $y z$ in this equation, we get $d(x) N z=\{0\}$ for all $x, z \in N$, which yields $d=0$. Hence, in both cases, we conclude that $d=0$, a contradiction.

Remark 3.6. Ashraf and Ali [2, Corollary 4.1] showed that a 2-torsion free prime near-ring N must be commutative if it admits a derivation d where d satisfies $d(x \circ y)=0$ for all $x, y \in N$. However, this result is not true. Indeed, the existence of a derivation satisfying the above condition does not assure the commutativity of N. Our aim in the following corollary is to give the corrected result.

Corollary 3.7. Let N be a 2 -torsion free prime near-ring. If there exists a derivation d of N satisfying $d(x \circ y)=0$ for all $x, y \in N$, then $d=0$.

Corollary 3.8. Let N be a 2-torsion free 3-prime near-ring. Then there exists no nonzero semi-derivation d of N satisfying $d(x \circ y)=0$ for all $x, y \in N$.

In [8, Theorem 2.4], it is proved that a 3-prime near-ring N must be a commutative ring if it admits a derivation d such that $d(x \circ y)=x \circ y$ for all $x, y \in N$, but this result is less precise. The following result treats the above condition in a more general situation.

Theorem 3.9. Let N be a 2-torsion free 3-prime near-ring admitting a two sided α-derivation d. If $d(x \circ y)=x \circ y$ for all $x, y \in N$, then $d=-\alpha+I d$.

Proof. We assume that

$$
\begin{equation*}
d(x \circ y)=x \circ y \quad \text { for all } x, y \in N . \tag{3.19}
\end{equation*}
$$

Replacing y by $x y$ in equation (3.19), it is obvious to see that

$$
\begin{equation*}
d(x)(x \circ y)+\alpha(x)(x \circ y)=x(x \circ y) \quad \text { for all } x, y \in N . \tag{3.20}
\end{equation*}
$$

Substituting $x \circ t$ for x in equation (3.20), we obtain

$$
\begin{equation*}
\alpha(x \circ t)((x \circ t) \circ y)=0 \quad \text { for all } t, x, y \in N, \tag{3.21}
\end{equation*}
$$

which can be rewritten as $\alpha(x \circ t)(x \circ t) y+\alpha(x \circ t) y(x \circ t)=0$ for all $t, x, y \in N$. Accordingly,

$$
\begin{align*}
\alpha(x \circ t)(x \circ t) y & =-\alpha(x \circ t) y(x \circ t) \\
& =\alpha(x \circ t) y(-(x \circ t)) \quad \text { for all } t, x, y \in N . \tag{3.22}
\end{align*}
$$

Putting $y z$ instead of y in equation (3.22), we find that

$$
\begin{aligned}
\alpha(x \circ t)(x \circ t) y z & =\alpha(x \circ t) y(-(x \circ t)) z \\
& =\alpha(x \circ t) y z(-(x \circ t)) \quad \text { for all } t, x, y, z \in N .
\end{aligned}
$$

Consequently,

$$
\alpha(x \circ t) y[-(x \circ t), z]=0 \quad \text { for all } t, x, y, z \in N,
$$

so that

$$
\begin{equation*}
\alpha(x \circ t) N[-(x \circ t), z]=\{0\} \quad \text { for all } t, x, z \in N . \tag{3.23}
\end{equation*}
$$

In light of the 3 -primeness of N, equation (3.23) shows that

$$
\begin{equation*}
\alpha(x \circ t)=0 \quad \text { or } \quad-(x \circ t) \in Z(N) \tag{3.24}
\end{equation*}
$$

Suppose that there exist $x, t \in N$ such that $-(x \circ t) \in Z(N)$, and set $-(x \circ t)=u$. From equation (3.19), it follows that $d(u \circ k)=u \circ k$ which, because of $d(u)=u$, yields

$$
\alpha(u) d(k)+d(u) k+\alpha(u) d(k)=k u \quad \text { for all } k \in N
$$

In view of

$$
d(u) k+\alpha(u) d(k)=\alpha(u) d(k)+d(u) k
$$

we then conclude that $\alpha(u) d(k)=0$ for all $k \in N$, so that

$$
\begin{equation*}
\alpha(u) N d(k)=0 \quad \text { for all } k \in N \tag{3.25}
\end{equation*}
$$

If $d=0$, then our hypothesis reduces to $x \circ y=0$ for all $x, y \in N$ which leads to $N=\{0\}$, a contradiction. Thus, equation (3.25) forces $\alpha(u)=0$. Therefore, equation (3.24) reduces to

$$
\begin{equation*}
\alpha(x \circ t)=0 \quad \text { or } \quad \alpha(-(x \circ t))=0 \quad \text { for all } x, t \in N . \tag{3.26}
\end{equation*}
$$

If there exist $x, t \in N$ such that $\alpha(-(x \circ t))=0$, then once again setting $u=-(x \circ t)$, we get

$$
d(u k v)=d(u) k v+\alpha(u) d(k v)=u k v \quad \text { for all } k, v \in N
$$

On the other hand,

$$
d(u k v)=d(u k) \alpha(v)+u k d(v)=u k \alpha(v)+u k d(v),
$$

and, comparing the last two expressions, we get

$$
u k \alpha(v)+u k d(v)=u k v \quad \text { for all } k, v \in N
$$

which implies that

$$
u N(\alpha(v)+d(v)-v)=\{0\} \quad \text { for all } v \in N
$$

By the 3-primeness of N, we conclude that

$$
x \circ t=0 \quad \text { or } \quad \alpha(v)+d(v)-v=0 \quad \text { for all } v \in N .
$$

Similarly, if there exist $x, t \in N$ such that $\alpha(x \circ t)=0$, then using similar techniques as above, we find that

$$
x \circ t=0 \quad \text { or } \quad \alpha(v)+d(v)-v=0 \quad \text { for all } v \in N .
$$

Now, if we assume that $x \circ t=0$ for all $x, t \in N$, then $t^{2}=0$ for all $t \in N$, and hence,

$$
0=(x \circ t)=t x t \quad \text { for all } x, t \in N
$$

that is, $t N t=\{0\}$ for all $t \in N$, which forces $N=\{0\}$, a contradiction. Consequently, equation (3.26) shows that $d=-\alpha+I d$.

Using Theorem 3.9, the corrected version of [8, Theorem 2.4] should be as follows.

Corollary 3.10. Let N be a 2-torsion free 3-prime near-ring. There is no derivation d of N such that $d(x \circ y)=x \circ y$ for all $x, y \in N$.

Corollary 3.11. Let N be a 2 -torsion free 3 -prime near-ring admitting a semi-derivation d. If $d(x \circ y)=x \circ y$ for all $x, y \in N$, then $d=-\alpha+I d$.

The following example shows the necessity of the 3 -primeness in the previous theorems.

Example 3.12. Let S be a 2 -torsion free near-ring. Let us define N, d and $\alpha: N \rightarrow N$ by:

$$
\begin{gathered}
N=\left\{\left.\left(\begin{array}{lll}
0 & 0 & x \\
0 & 0 & y \\
0 & 0 & 0
\end{array}\right) \right\rvert\, x, y \in S\right\} \\
d\left(\begin{array}{lll}
0 & 0 & x \\
0 & 0 & y \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & x \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\alpha\left(\begin{array}{lll}
0 & 0 & x \\
0 & 0 & y \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & y \\
0 & 0 & y \\
0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

It is clear that N is a non 3-prime near-ring and d is a nonzero two sided α-derivation such that:
(i) $d([A, B])=[A, B]$;
(ii) $d(A \circ B)=0$;
(iii) $d(A \circ B)=A \circ B$;
for all $A, B \in N$, but neither $d=-\alpha+I d$ nor N is a commutative ring because the addition is not commutative.

REFERENCES

1. N. Argaç, On near-rings with two sided α-derivations, Turkish J. Math. 28 (2004), 195-204.
2. M. Ashraf and A. Shakir, On (σ, τ)-derivations of prime near-rings II, Sarajevo J. Math. 4 (2008), 23-30.
3. H.E. Bell, On derivations in near-rings II, Kluwer Academic Publishers, Netherlands, 1997.
4. H.E. Bell and N. Argaç, Derivations, products of derivations, and commutativity in near-rings, Alg. Colloq. 8 (2001), 399-407.
5. H.E. Bell, A. Boua and L. Oukhtite, Semigroup ideals and commutativity in 3 -prime near rings, Comm. Alg. 43 (2015), 1757-1770.
6. H.E. Bell and G. Mason, On derivations in near-rings, North-Holland Math. Stud. 137 (1987), 31-35.
7. \qquad , On derivations in near-rings and rings, Math. J. Okayama Univ. 34 (1992), 135-144.
8. J. Bergen, Derivations in prime rings, Canad. Math. Bull. 26 (1983), 267270.
9. A. Boua and L. Oukhtite, Derivations on prime near-rings, Int. J. Open Prob. Comp. Sci. Math. 4 (2011), 162-167.
10. \qquad , Semiderivations satisfying certain algebraic identities on prime near-rings, Asian-Europ. J. Math. 6 (2013), 1350043 (8 pages).
11. A. Boua, L. Oukhtite and H.E. Bell, Differential identities on semigroup ideals of right near-rings, Asian-Europ. J. Math. 6 (2013), DOI:10.1142/ S1793557113500502.
12. M.N. Daif and H.E. Bell, Remarks on derivations on semiprime rings, Int. J. Math. Math. Sci. 15 (1992), 205-206.
13. M. Hongan, On near-rings with derivations, Math. J. Okayama Univ. 32 (1990), 89-92.
14. X.K. Wang, Derivations in prime near-rings, Proc. Amer. Math. Soc. 121 (1994), 361-366.

Taibah University, College of Science, Department of Mathematics, P.O. Box 2285 Medina, 41477, Saudi Arabia
Email address: msamman@kfupm.edu.sa
Taibah University, College of Science, Department of Mathematics, P.O. Box 2285 Medina, 41477, Saudi Arabia
Email address: oukhtitel@hotmail.com
Université Moulay Ismaïl, Faculté des Sciences et Techniques, Département de Mathématiques, Errachidia, 52000, Morocco

Email address: rajiabd2@gmail.com

Ibn Zohr University, Faculty of Sciences, Department of Mathematics, P.O. Box 8106 Agadir, 80000, Morocco

Email address: karimoun2006@yahoo.fr

[^0]: 2010 AMS Mathematics subject classification. Primary 16N60, 16W25, 16Y30.
 Keywords and phrases. 3 -prime near-rings, two sided α-derivations, commutativity.

 Received by the editors on December 19, 2013, and in revised form on October 19, 2014.

